Recap

- Abstract Data Types
 - Specification (What?)
 - Implementation (How?)
- Unsorted lists
 - Array-based implementation
 - Pointer-based implementation
- Questions
 - Reference vs. value type
 - Comparing enumerated types
- Exceptions (TODAY)

Lecture Plan

- Linked list implementation of unsorted list
- Time complexity of algorithms
 - Big Oh
ADT Unsorted List

• Transformers
 – MakeEmpty
 – InsertItem
 – DeleteItem

• Observers
 – IsFull
 – GetLength
 – RetrieveItem

• Iterators
 – ResetList
 – GetNextItem

Specification

// SPECIFICATION FILE (unsortedType.h)
#include "ItemType.h"
struct NodeType;
class UnsortedType // declares a class data type
{
 public :
 // 8 public member functions
 UnsortedType(); // constructors
 void MakeEmpty();
 bool IsFull() const; // returns length of list
 int GetLength() const; // returns length of list
 void RetrieveItem(ItemType& item, bool& found);
 void InsertItem(ItemType item);
 void DeleteItem(ItemType item);
 void ResetList();
 void GetNextItem(ItemType& item);

Linked List Implementation (private part)

private:
 NodeType* listData;
 list length;
 NodeType* currentPos;
struct NodeType
{
 NodeType* next;
};
list
 length
 currentPos
 listData

List with two items

Linked List Implementation

How do you know that a linked list is empty?
listData is NULL

What should the constructor do?
Set length to 0
Set listData to NULL

What about currentPos?
We let ResetList take care of initializing currentPos

Linked List Implementation

What about the observers IsFull and GetLength?
GetLength just returns length

Can a linked list ever be full?
Yes, if you run out of memory
Ask for a new node within a try/catch

Linked List Implementation of IsFull

```cpp
bool UnsortedType::IsFull() const
{
    NodeType* location;
    try
    {
        location = new NodeType;
        delete location;
        return false;
    }
    catch (std::bad_alloc exception)
    {
        return true;
    }
}
```
Linked List Implementation of MakeEmpty

```cpp
void UnsortedType::MakeEmpty()
{
    NodeType* tempPtr;
    while (listData != NULL)
    {
        tempPtr = listData;
        listData = listData->next;
        delete tempPtr;
    }
    length = 0;
}
```

Why can’t we just set `listData` to `NULL`?

C++ concepts to come

- Exceptions
- Deep vs. shallow copying
- Constructor, destructor, copy constructor
- Dynamically allocated arrays

Order of Magnitude of a Function

- The order of magnitude, or Big-O, of a function expresses an upper bound to the growth of a function relative to its parameters.
- Used to analyze the space and time complexity of algorithms/programs.
Asymptotic Analysis

- Ignoring constants in $T(n)$
- Analyzing $T(n)$ as n "gets large"

Example: $T(n) = 13n^3 + 42n^2 + 2n \log n + 4n$

As n grows larger, n^3 is MUCH larger than n^2, $n \log n$, and n, so it dominates $T(n)$.

The running time grows "roughly on the order of n^3"

$T(n) = O(n^3)$

Big-Oh Defined

$T(n) = O(f(n))$ if there are constants c and n_0 such that $T(n) \leq c \cdot f(n)$ when $n > n_0$

Big-O Notation

- $T(n) = O(f(n))$ if there are constants c and n_0 such that $T(n) \leq c \cdot f(n)$ when $n > n_0$
- If $f(n) = 1000n$ and $g(n) = n^2$, $n_0 = 999$ and $c = 1$, then $f(n) \leq 1 \cdot g(n)$ where $n > n_0$ and we say that $f(n) = O(g(n))$
- The O notation indicates bounded above by a constant multiple of:
Big-Oh Properties

- Fastest growing function dominates a sum
 \(O(f(n)+g(n)) = O(\max\{f(n), g(n)\}) \)
- Product of upper bounds is upper bound for the product
 \(f(n) \cdot g(n) = O(f(n) \cdot g(n)) \)
- If \(f \) is \(O(g) \) and \(h \) is \(O(r) \) then \(f \cdot h \) is \(O(gr) \)
- \(f(n) \) is transitive
 \(O(1), O(\log n), O(n^{1/2}), O(n \log n), O(n^2), O(2^n), O(n!) \)

Some Big-Oh’s are not reasonable

- Polynomial Time algorithms
 \(O(n^c), c > 1 \)
 Polynomial algorithms are said to be reasonable
 - They solve problems in reasonable times!
 - Coefficients, constants or low-order terms are ignored e.g. if \(f(n) = 2n^2 \) then \(f(n) = O(n^2) \).

- Exponential Time algorithms
 \(O(r^n), r > 1 \)
 Exponential algorithms are said to be unreasonable

Can we justify Big O notation?

- Big O notation is a huge simplification; can we justify it?
- It only makes sense for large problem sizes
- For sufficiently large problem sizes, the highest-order term swamps all the rest!
Classifying Algorithms based on Big-Oh

- A function \(f(n) \) is said to be of at most logarithmic growth if \(f(n) = O(\log n) \).
- A function \(f(n) \) is said to be of at most quadratic growth if \(f(n) = O(n^2) \).
- A function \(f(n) \) is said to be of at most polynomial growth if \(f(n) = O(n^k) \) for some natural number \(k > 1 \).
- A function \(f(n) \) is said to be of at most exponential growth if there is a constant \(c \), such that \(f(n) = O(c^n) \), and \(c > 1 \).
- A function \(f(n) \) is said to have constant running time if the size of the input \(n \) has no effect on the running time of the algorithm, e.g., assignment of a value to a variable. The equation for this algorithm is \(f(n) = c \).
- Other logarithmic classifications: \(f(n) = O(n \log n) \), \(f(n) = O(\log \log n) \).

Names of Orders of Magnitude

- \(O(1) \) bounded (by a constant) time
- \(O(\log N) \) logarithmic time
- \(O(N) \) linear time
- \(O(N \log N) \) \(N \log N \) time
- \(O(N^2) \) quadratic time
- \(O(2^n) \) exponential time

How do various functions grow?

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\log N)</th>
<th>(N \log N)</th>
<th>(N^2)</th>
<th>(2^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>24</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>64</td>
<td>256</td>
<td>65,536</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>160</td>
<td>1024</td>
<td>4,294,967,296</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>384</td>
<td>4,096</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>896</td>
<td>16,384</td>
<td></td>
</tr>
</tbody>
</table>
Big-O Comparison of List Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Array-based</th>
<th>Pointer-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructor</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IsFull</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>GetLength</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>RetrieveItem</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>MakeEmpty</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>InsertItem</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DeleteItem</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>ResetList</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>GetNextItem</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>