Lecture Plan

• Recursion
 – General structure of recursive solutions
 – Why do recursive solutions terminate?
 – How do recursive programs manage the stack?
 – Tail recursion
 – When to use recursion?

What Is Recursion?

Recursion like a set of Russian dolls.
What Is Recursion?

- **Recursive call** A method call in which the method being called is the same as the one making the call
- **Direct recursion** Recursion in which a method directly calls itself
 - example
- **Indirect recursion** Recursion in which a chain of two or more method calls returns to the method that originated the chain
 - example

Recursion

- You must be careful when using recursion.
- Recursive solutions can be less efficient than iterative solutions.
- Still, many problems lend themselves to simple, elegant, recursive solutions.

Some Definitions

- **Base case** The case for which the solution can be stated non-recursively
- **General (recursive) case** The case for which the solution is expressed in terms of a smaller version of itself
- **Recursive algorithm** A solution that is expressed in terms of (a) smaller instances of itself and (b) a base case
Finding a Recursive Solution

- Each successive recursive call should bring you closer to a situation in which the answer is known.
- A case for which the answer is known (and can be expressed without recursion) is called a base case.
- Each recursive algorithm must have at least one base case, as well as the general (recursive) case.

General format for many recursive functions

```plaintext
if (some condition for which answer is known) // base case
    solution statement
else // general case
    recursive function call
```

Computing Factorial

Recursive definition
A definition in which something is defined in terms of a smaller version of itself

What is 3 factorial?
Computing Factorial

Recursive Computation

Factorial Program

The function call Factorial(4) should have value 24, because that is 4 * 3 * 2 * 1.

For a situation in which the answer is known, the value of 0! is 1.

So our base case could be along the lines of

```cpp
if ( number == 0 )
    return 1;
```
Factorial Program

Now for the general case . . .

The value of Factorial(n) can be written as
n * the product of the numbers from (n - 1) to 1,
that is,
\[n \times (n - 1) \times \ldots \times 1 \]
or, \[n \times \text{Factorial}(n - 1) \]
And notice that the recursive call Factorial(n - 1) gets us “closer” to the base case of Factorial(0).

Recursive Factorial

```c
int Factorial ( int number )
// Pre: number >= 0.
{
    if ( number == 0 ) // base case
        return 1;
    else // general case
        return number * Factorial ( number - 1 );
}
```

Why is this correct?

Three-Questions for Verifying Recursive Functions

• Base-Case Question: Is there a non-recursive way out of the function?
• Smaller-Caller Question: Does each recursive function call involve a smaller case of the original problem leading to the base case?
• General-Case Question: Assuming each recursive call works correctly, does the whole function work correctly?
Computing Exponentiation Recursively

• From mathematics, we know that $2^0 = 1$ and $2^5 = 2 \times 2^4$

• In general, $x^0 = 1$ and $x^n = x \times x^{n-1}$ for integer x, and integer $n > 0$.

• Here we are defining x^n recursively, in terms of x^{n-1}.

```c
// Recursive definition of power function
int Power ( int x, int n )
{
    if ( n == 0 )
        return 1; // base case
    else
        // general case
        return ( x * Power ( x , n-1 ) ) ;
}
```

Can you compute multiplication recursively?
How about addition?

Fibonacci Sequence

Shall we try it again?

Problem: Calculate Nth item in Fibonacci sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

• What is the next number?
• What is the size of the problem?
• Which case do you know the answer to?
• Which case can you express as a smaller version of the size?
Fibonacci Program

```c
int Fibonacci(int n)
{
    if (n == 0 || n == 1)
        return n;
    else
        return Fibonacci(n-2) +
        Fibonacci(n-1);
}
```

That was easy, but it is not very efficient. Why?

Recursive Linear Search

```c
struct  ListType
{
    int  length ; // number of elements in the list
    int  info[ MAX_ITEMS ] ;
} ;
ListType   list ;
```

Problem Instance

PROTOTYPE

```c
bool ValueInList(ListType list , int value , int startIndex);
```

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>36</td>
<td>..</td>
<td>95</td>
<td>75</td>
<td>29</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Already searched

index of current element to examine

Needs to be searched
bool ValueInList (ListType list , int value, int startIndex)
// Searches list for value between positions startIndex
// and list.length-1
// Pre: list.info[startIndex] . . list.info[list.length - 1]
// contain values to be searched
// Post: Function value =
// {value exists in list.info[startIndex] . .
// list.info[list.length - 1] }
{
 if (list.info[startIndex] == value) // one base case
 return true ;
 else if (startIndex == list.length -1) // another base case
 return false ;
 else
 // general case
 return ValueInList(list, value, startIndex + 1) ;
}

“Why Use Recursion?”

• Those examples could have been written without recursion, using iteration instead. The iterative
 solution uses a loop, and the recursive solution uses an if statement.
• However, for certain problems the recursive solution is the most natural solution. Build a
 prototype. A more efficient iterative solution can be developed later.
• Recursive solutions are easier to reason about.
 • The Functional Programming paradigm adopts recursion.

Printing List in Reverse

struct NodeType
{
 int info ;
 NodeType* next ;
}
class SortedType
{
 public :

 private :
 NodeType* listData ;
} ;
RevPrint(listData)

A | B | C |\n\hline
FIRST, print out this section of list, backwards

THEN, print this element

Base Case and General Case

Base case: list is empty
Do nothing

General case: list is non-empty
Extract the first element;
Print rest of the list (may be empty);
Print the first element

Printing in Reverse

```cpp
void RevPrint ( NodeType* listPtr )
{
  if ( listPtr != NULL ) // general case
    {
      RevPrint ( listPtr->next ); // process the rest
      std::cout << listPtr->info << std::endl ; // print this element
    }
  // Base case: if the list is empty, do nothing
}
```

How would this work without recursion?
Function BinarySearch()

- BinarySearch takes sorted array info, and two subscripts, fromLoc and toLoc, and item as arguments. It returns false if item is not found in the elements info[fromLoc…toLoc]. Otherwise, it returns true.

- BinarySearch can be written using iteration, or using recursion.

```cpp
bool BinarySearch( ItemType info[], ItemType item, int fromLoc, int toLoc)
{
    int mid;
    int first = fromLoc;
    int last = toLoc;
    bool found = false;
    while ((first <= last) && !found)
    {
        mid = (first + last) / 2;
        switch (item.ComparedTo(info[mid]))
        {
            case LESS: last = mid - 1;
            break;
            case GREATERTHAN: first = mid + 1;
            break;
            case EQUAL: found = true;
            break;
        }
    }
    return found;
}
```

Which version is easier: compare to iterative version presented next

Iterative BinarySearch()

```cpp
bool BinarySearch( ItemType info[], ItemType item, int fromLoc, int toLoc)
{
    int mid;
    int first = fromLoc;
    int last = toLoc;
    bool found = false;
    while ((first <= last) && !found)
    {
        mid = (first + last) / 2;
        switch (item.ComparedTo(info[mid]))
        {
            case LESS: last = mid - 1;
            break;
            case GREATERTHAN: first = mid + 1;
            break;
            case EQUAL: found = true;
            break;
        }
    }
    return found;
}
```
When a function is called...

- **A transfer of control** occurs from the calling block to the code of the function. It is necessary that there be a return to the correct place in the calling block after the function code is executed. This correct place is called the **return address**.
- When any function is called, the **run-time stack** is used. On this stack is placed an **activation record (stack frame)** for the function call.
 - This stores all the variables local to the called function.

Stack Activation Frames

- The **activation record** stores the return address for this function call, and also the parameters, local variables, and the function’s return value.
- The activation record for a particular function call is **popped off the run-time stack** when the final closing brace in the function code is reached, or when a return statement is reached in the function code.
- At this time the function’s return value, if non-void, is brought back to the calling block return address for use there.

Mystery Recursive Function

```c
// Another recursive function
int Func ( int a, int b )
{
    int result;
    if ( b == 0 ) // base case
        result = 0;
    else if ( b > 0 ) // first general case
        result = a + Func ( a, b - 1 ); // instruction 50
    else // second general case
        result = Func ( -a, -b ); // instruction 70
    return result;
}
```
5/12/10

Run-Time Stack Activation Records

\[x = \text{Func}(5, 2); \quad \text{// original call at instruction 100} \]

Second Call

\[x = \text{Func}(5, 2); \quad \text{// original call at instruction 100} \]

Third Call

\[x = \text{Func}(5, 2); \quad \text{// original call at instruction 100} \]
Run-Time Stack Activation Records

Third Call Completes

\[x = \text{Func}(5, 2); \quad // \text{original call at instruction 100} \]

- Return Address: 50
- FCTVAL: ?
- Result: 5 + Func(5, 0) = ?
- \(b = 1 \)
- \(a = 5 \)
- The record for Func(5, 2) is popped first with its FCTVAL.

Second Call Completes

\[x = \text{Func}(5, 2); \quad // \text{original call at instruction 100} \]

- Return Address: 100
- FCTVAL: ?
- Result: 5 + Func(5, 1) = ?
- \(b = 2 \)
- \(a = 5 \)
- The record for Func(5, 1) is popped next with its FCTVAL.

First Call Completes

\[x = \text{Func}(5, 2); \quad // \text{original call at line 100} \]

- Return Address: 100
- FCTVAL: 10
- Result: 5 + Func(5, 1) = 5 + 5
- \(b = 2 \)
- \(a = 5 \)
- The record for Func(5, 2) is popped last with its FCTVAL.
Practice: Show Activation Records For These Calls

\[x = \text{Func}(-5, -3); \]
\[x = \text{Func}(5, -3); \]

What operation does \text{Func}(a, b)\) simulate?

Tail Recursion

- The case in which a function contains only a single recursive call and it is the last statement to be executed in the function.

- Tail recursion can be replaced by iteration to remove recursion from the solution as in the next example.

Tail Recursion Example

```c
bool ValueInList ( ListType list, int value, int startIndex )
{
    if ( list.info[startIndex] == value ) // one base case
        return true;
    else if (startIndex == list.length -1 ) // another base case
        return false ;
    else // general case
        return ValueInList( list, value, startIndex + 1 );
}
```

Equivalent Iterative Version

```cpp
bool ValueInList ( ListType list , int value , int startIndex )
{
    while ( list.info[startIndex] != value && startIndex != list.length-1 )
        startIndex++;
    if ( value == list.info[startIndex] )
        return true;
    else
        return false;
}
```

So, what is the general logic?

Convert into Iterative Solution

```cpp
int Power(int number, int exponent)
{
    if (exponent == 0)
        return 1;
    else
        return number * Power(number, exponent - 1);
}
```

Iterative Equivalent

```cpp
int Power (int number, int exponent)
{
    int val = 1;
    while (exponent != 0)
    {
        val = number*val;
        exponent--;
        What is the logic?
    }
    return val;
}
```
Tower of Hanoi

Worked out on the blackboard