
1

CMPSC 24: Lecture 14
Trees, Binary Trees, &
Binary Search Trees

Divyakant Agrawal
Department of Computer Science

UC Santa Barbara

5/16/10 1

Lecture Plan

•  Tree ADT
–  Binary Search Tree (BST) ADT

2

3

 Owner
 Jake

 Manager Chef
 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

Jake’s Pizza Shop

UNIQUE PATH BETWEEN NODES

2

4

 Owner
 Jake

 Manager Chef
 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

Nomenclature

ROOT NODE

LEAF NODE

LEVEL 0

LEVEL 1

LEVEL 2

PARENT, CHILD, ANCESTOR, DESCENDANT

SUBTREE

5

Trees

Level:
Distance of a
node from root

Height:
The maximum
level

6

Trees

Why is
this

not a
tree

?

3

7

A node can have at most two children.

The two children of a node are called the left
child and the right child, if they exist.

Binary Tree

8

A Binary Tree

 Q

 V

 T

 K S

 A E

 L

9

How Many Leaf Nodes?

 Q

 V

 T

 K S

 A E

 L

4

10

How Many Descendants of Q?

 Q

 V

 T

 K S

 A E

 L

11

How Many Ancestors of K?

 Q

 V

 T

 K S

 A E

 L

12

Trees

How many different binary trees can be made
from 2 nodes? 4 nodes? 6 nodes?

5

13

Implementing a Binary Tree with Pointers and
Dynamic Data

 Q

 V

 T

 K S

 A E

 L

14

Structure of a Tree Node

Possible to add
a parent pointer

15

A special kind of binary tree in which:

1. Each node contains a distinct data value,

2. The key values in the tree can be compared using
“greater than” and “less than”, and

3. The key value of each node in the tree is
 less than every key value in its right subtree, and
greater than every key value in its left subtree.

A Binary Search Tree (BST) is . . .

6

16

Binary Search Trees

Each
node is

the
root of a
subtree

How to define a tree and a BST in a recursive manner?

17

Depends on its key values and their order of insertion.

Insert the elements ‘J’ ‘E’ ‘F’ ‘T’ ‘A’ in that order.

The first value to be inserted is put into the root node.

Shape of a Binary Search Tree . . .

‘J’

18

Thereafter, each value to be inserted begins by comparing
itself to the value in the root node, moving left it is less, or
moving right if it is greater. This continues at each level
until it can be inserted as a new leaf.

Inserting ‘E’ into the BST

‘J’

 ‘E’

7

19

Begin by comparing ‘F’ to the value in the root node, moving
left it is less, or moving right if it is greater. This
continues until it can be inserted as a leaf.

Inserting ‘F’ into the BST

‘J’

 ‘E’

 ‘F’

20

Begin by comparing ‘T’ to the value in the root node,
moving left it is less, or moving right if it is greater. This
continues until it can be inserted as a leaf.

Inserting ‘T’ into the BST

‘J’

 ‘E’

 ‘F’

 ‘T’

21

Begin by comparing ‘A’ to the value in the root node,
moving left it is less, or moving right if it is greater. This
continues until it can be inserted as a leaf.

Inserting ‘A’ into the BST

‘J’

 ‘E’

 ‘F’

 ‘T’

 ‘A’

8

22

is obtained by inserting
 the elements ‘A’ ‘E’ ‘F’ ‘J’ ‘T’ in that order?

What BST . . .

‘A’

23

obtained by inserting
 the elements ‘A’ ‘E’ ‘F’ ‘J’ ‘T’ in that order.

Binary Search Tree . . .

‘A’

‘E’

‘F’

‘J’

‘T’

24

Another BST

Add nodes containing these values in this order:

‘D’ ‘B’ ‘L’ ‘Q’ ‘S’ ‘V’ ‘Z’

‘J’

 ‘E’

‘A’ ‘H’

‘T’

 ‘M’

‘K’ ‘P’

9

25

Is ‘F’ in the binary search tree?

‘J’

 ‘E’

‘A’ ‘H’

‘T’

 ‘M’

‘K’

‘V’

‘P’ ‘Z’ ‘D’

‘Q’ ‘L’ ‘B’

‘S’
What is the time complexity?

26

bool TreeType::IsFull() const
{

 NodeType* location;

 try

 {

 location = new NodeType;

 delete location;

 return false;

 }

 catch(std::bad_alloc exception)

 {

 return true;

 }

}

bool TreeType::IsEmpty() const

{

 return root == NULL;

}

Tree ADT: IsFull and IsEmpty

27

How to Compute the Size of a Tree?

10

28

CountNodes(tree)

if tree is NULL
return 0

else
 return CountNodes(Left(tree)) +
 CountNodes(Right(tree)) + 1

29

int CountNodes(TreeNode* tree); // Prototype
int TreeType::LengthIs() const
{
 return CountNodes(root);
}

int CountNodes(TreeNode* tree)
// Recursive function that counts the nodes
{
 if (tree == NULL)
 return 0;
 else
 return CountNodes(tree->left) +
 CountNodes(tree->right) + 1;
}

Implementation of LengthIs

Why do we need two functions?

30

Printing all the Nodes in Order

11

31

Function Print

Definition: Prints the items in the binary search
 tree in order from smallest to largest.

Base Case: If tree = NULL, do nothing.
General Case: Traverse the left subtree in order.
 Then print Info(tree).
 Then traverse the right subtree in order.

32

Code for Recursive InOrder Print

void PrintTree(TreeNode* tree,
 std::ofstream& outFile)
{
 if (tree != NULL)
 {
 PrintTree(tree->left, outFile);
 outFile << tree->info;
 PrintTree(tree->right, outFile);
 }
}

33

Tree Traversals

Inorder(tree)
if tree is not NULL

 Inorder(Left(tree))
 Visit Info(tree)
 Inorder(Right(tree))

PostOrder(tree)
if tree is not NULL

 Postorder(Left(tree))
 Postorder(Right(tree))
 Visit Info(tree)

PreOrder(tree)
if tree is not NULL

 Visit Info(tree)
 Preorder(Left(tree))
Preorder(Right(tree))alphabetic order

12

34

Traversals

Each node
is visited

three times

35

Traversals

36

Iterator

The client program passes a parameter to ResetTree and
GetNextItem indicating which of the three traversals to
use

ResetTree generates a queues of node contents in the
indicated order

GetNextItem processes the node contents from the
appropriate queue: inQue, preQue, postQue

13

37

Iterator

void TreeType::ResetTree(OrderType order)

// Calls function to create a queue of the
tree

// elements in the desired order.

{

 switch (order)

 {

 case PRE_ORDER : PreOrder(root, preQue);

 break;

 case IN_ORDER : InOrder(root, inQue);

 break;

 case POST_ORDER: PostOrder(root, postQue);

 break;

 }

}

38

void TreeType::GetNextItem(ItemType& item,

 OrderType order, bool& finished)

{

 finished = false;

 switch (order)

 {

 case PRE_ORDER : preQue.Dequeue(item);

 if (preQue.IsEmpty())

 finished = true;

 break;

 case IN_ORDER : inQue.Dequeue(item);

 if (inQue.IsEmpty())

 finished = true;

 break;

 case POST_ORDER: postQue.Dequeue(item);

 if (postQue.IsEmpty())

 finished = true;

 break;

 }

}

Iterator

Can you think of other
implementations?

