CMPSC 24: Lecture 14 Trees, Binary Trees, & Binary Search Trees

Divyakant Agrawal Department of Computer Science UC Santa Barbara

Binary Tree

A node can have at most two children.

7

The two children of a node are called the left child and the right child, if they exist.

A Binary Search Tree (BST) is . . .

- A special kind of binary tree in which:
- 1. Each node contains a distinct data value,
- 2. The key values in the tree can be compared using "greater than" and "less than", and
- 3. The key value of each node in the tree is less than every key value in its right subtree, and greater than every key value in its left subtree.

15

CountNodes(tree)

if tree is NULL return 0 else return CountNodes(Left(tree)) +

CountNodes(Right(tree)) + 1

28

10

Function Print

 Definition:
 Prints the items in the binary search tree in order from smallest to largest.

 Base Case:
 If tree = NULL, do nothing.

 General Case:
 Traverse the left subtree in order.

 Then print Info(tree).
 Then traverse the right subtree in order.

31

Code for Recursive InOrder Print void PrintTree(TreeNode* tree, std::ofstream& outFile) { f(tree != NULL) f printTree(tree->left, outFile); outFile << tree->info; PrintTree(tree->right, outFile); } }

