CMPSC 24: Lecture 14
Trees, Binary Trees, \& Binary Search Trees

Divyakant Agrawal
Department of Computer Science
UC Santa Barbara

Lecture Plan \qquad

- Tree ADT
- Binary Search Tree (BST) ADT

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binary Tree

A node can have at most two children.

The two children of a node are called the left child and the right child, if they exist.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

A Binary Search Tree (BST) is . . . \qquad

A special kind of binary tree in which:

1. Each node contains a distinct data value,
\qquad
2. The key values in the tree can be compared using "greater than" and "less than", and
\qquad
3. The key value of each node in the tree is
less than every key value in its right subtree, and greater than every key value in its left subtree.
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shape of a Binary Search Tree . . .

Depends on its key values and their order of insertion.

Insert the elements ' J ' ' E ' ' F ' ' T ' ' A ' in that order.

The first value to be inserted is put into the root node.

```
J'
```

Inserting ' E ' into the BST

Thereafter, each value to be inserted begins by comparing itself to the value in the root node, moving left it is less, or moving right if it is greater. This continues at each level until it can be inserted as a new leaf.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Inserting ' T ' into the BST
\qquad
\qquad

Begin by comparing ' T ' to the value in the root node, moving left it is less, or moving right if it is greater. This continues until it can be inserted as a leaf.

\qquad
\qquad
\qquad

Inserting ' A ' into the BST
\qquad
\qquad

Begin by comparing ' A ' to the value in the root node, moving left it is less, or moving right if it is greater. This
\qquad continues until it can be inserted as a leaf.

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tree ADT: IsFull and IsEmpty \qquad
bool TreeType::IsFull() const
NodeType* location;
Node
try
1
location $=$ new NodeType
delete location;
return false;
,
atch(std::bad_alloc exception)
return true;
)
bool TreeType:: IsEmpty () const
i
return root $=$ NULL

How to Compute the Size of a Tree? \qquad
\qquad $-$

27

CountNodes(tree)

if tree is NULL
return 0 \qquad
else
return CountNodes(Left(tree)) +
\qquad
CountNodes(Right(tree)) +1 \qquad
\qquad

Implementation of LengthIs

\qquad
int CountNodes (TreeNode* tree); // Prototype int TreeType::LengthIs() const \qquad
\{
return CountNodes (root) ;
\}
int CountNodes (TreeNode* tree)
// Recursive function that counts the nodes
$\{$
if (tree $==$ NULL)
return 0 ;
else
return CountNodes (tree->left) + CountNodes (tree->right) +1 ;
\}

Why do we need two functions?

Function Print

Definition: Prints the items in the binary search tree in order from smallest to largest.
Base Case: If tree = NULL, do nothing.
General Case: Traverse the left subtree in order Then print Info(tree).
Then traverse the right subtree in order.

```
Code for Recursive InOrder Print
    void PrintTree(TreeNode* tree,
    std::ofstream& outFile)
    {
    if (tree != NULL)
    {
        PrintTree(tree->left, outFile);
        outFile << tree->info;
        PrintTree(tree->right, outFile);
    }
}
Code for Recursive InOrder Print
```

Tree Traversals \qquad
\qquad
\qquad
Inorder(Left(tree)) PreOrder(tree)

Inorder(tree)

 if tree is not NULVisit Info(tree)
eft(tre Preorder(Left(tree))

Inorder(Right(tree))

PostOrder(tree)
if tree is not NULL Preorder(Right(tree))
\qquad

Postorder(Left(tree))
Postorder(Right(tree))
Visit Info(tree)
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Iterator

The client program passes a parameter to ResetTree and GetNextItem indicating which of the three traversals to
\qquad use

ResetTree generates a queues of node contents in the indicated order

GetNextItem processes the node contents from the appropriate queue: inQue, preQue, postQue

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Iterator

void TreeType: :GetNextItem(ItemType\& item
ordertype order, bool\& finished)
\{
finished = false;
switch (order)
case PRE_ORDER
preque. Dequeue (item);
if (preQue.IsEmpty())
finished $=$ true;
break;
case IN_ORDER : inque. Dequeue (item) Can you think of other
if (inque.IsEmpty()) implementations?
finished = true; implementations?
break;
post@ue. Dequeue (item);
f (postQue.IsEmpty ())
break;
\}
\}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

