Lecture Plan

- Tree ADT
 - Binary Search Tree (BST) ADT

Jake’s Pizza Shop

Owner
 Jake

Manager
 Brad

Waitress
 Joyce

Waiter
 Chris

Cook
 Max

Helper
 Len
Nomenclature

ROOT NODE
Owner
Jake

LEVEL 0

Manager
Brad

Chief
Carol

LEVEL 1

Waitress
Joyce

Waiter
Chris

Cook
Max

Helper
Len

LEVEL 2

LEAF NODE

PARENT, CHILD, ANCESTOR, DESCENDANT

SUBTREE

Trees

Level:
Distance of a node from root

Height:
The maximum level

Why is this not a tree?
A node can have at most two children.

The two children of a node are called the left child and the right child, if they exist.

A Binary Tree

How Many Leaf Nodes?
How Many Descendants of Q?

Q
 V
 E
 T
 A
 K
 S

How Many Ancestors of K?

Q
 V
 E
 T
 A
 K
 S

Trees

How many different binary trees can be made from 2 nodes? 4 nodes? 6 nodes?
Implementing a Binary Tree with Pointers and Dynamic Data

Structure of a Tree Node

Possible to add a parent pointer

A Binary Search Tree (BST) is . . .

A special kind of binary tree in which:

1. Each node contains a distinct data value,

2. The key values in the tree can be compared using "greater than" and "less than", and

3. The key value of each node in the tree is less than every key value in its right subtree, and greater than every key value in its left subtree.
Binary Search Trees

Each node is the root of a subtree

How to define a tree and a BST in a recursive manner?

Shape of a Binary Search Tree . . .

Depends on its key values and their order of insertion.

Insert the elements ‘J’ ‘E’ ‘F’ ‘T’ ‘A’ in that order.

The first value to be inserted is put into the root node.

Inserting ‘E’ into the BST

Thereafter, each value to be inserted begins by comparing itself to the value in the root node, moving left if it is less, or moving right if it is greater. This continues at each level until it can be inserted as a new leaf.
Inserting ‘F’ into the BST

Begin by comparing ‘F’ to the value in the root node, moving left if it is less, or moving right if it is greater. This continues until it can be inserted as a leaf.

```
'J'

'E'
'F'
```

Inserting ‘T’ into the BST

Begin by comparing ‘T’ to the value in the root node, moving left if it is less, or moving right if it is greater. This continues until it can be inserted as a leaf.

```
'J'

'E'
'T'

'F'
```

Inserting ‘A’ into the BST

Begin by comparing ‘A’ to the value in the root node, moving left if it is less, or moving right if it is greater. This continues until it can be inserted as a leaf.

```
'J'

'E'
'A'
'T'

'F'
```
What BST . . .

is obtained by inserting
the elements ‘A’ ‘E’ ‘F’ ‘J’ ‘T’ in that order?

Binary Search Tree . . .

obtained by inserting
the elements ‘A’ ‘E’ ‘F’ ‘J’ ‘T’ in that order.

Another BST

Add nodes containing these values in this order:

Is ‘F’ in the binary search tree?

Tree ADT: IsFull and IsEmpty

```cpp
bool TreeType::IsFull() const
{
    NodeType* location;
    try
    {
        location = new NodeType;
        delete location;
        return false;
    }
    catch(std::bad_alloc exception)
    {
        return true;
    }
}

bool TreeType::IsEmpty() const
{
    return root == NULL;
}
```

How to Compute the Size of a Tree?
CountNodes(tree)

if tree is NULL
 return 0
else
 return CountNodes(Left(tree)) +
 CountNodes(Right(tree)) + 1

Implementation of LengthIs

```cpp
int CountNodes(TreeNode* tree); // Prototype

int TreeType::LengthIs() const
{
    return CountNodes(root);
}

int CountNodes(TreeNode* tree)
// Recursive function that counts the nodes
{
    if (tree == NULL)
        return 0;
    else
        return CountNodes(tree->left) +
        CountNodes(tree->right) + 1;
}
```

Why do we need two functions?

Printing all the Nodes in Order

```
Tree
  A B C
    D E F
      G H I

Prints first: A, B, C
Prints second: D, E, F, G, H, I
Prints last: A, B, C
```
Function Print

Definition: Prints the items in the binary search tree in order from smallest to largest.

Base Case: If tree = NULL, do nothing.

General Case: Traverse the left subtree in order. Then print Info(tree). Then traverse the right subtree in order.

Code for Recursive InOrder Print

```cpp
doctor PrintTree(TreeNode* tree, std::ofstream& outFile)
{
    if (tree != NULL)
    {
        PrintTree(tree->left, outFile);
        outFile << tree->info;
        PrintTree(tree->right, outFile);
    }
}
```

Tree Traversals

- **Inorder(tree)**
 - if tree is not NULL
 - Inorder(Leftree)
 - Visit Info(tree)
 - Inorder(Righttree)

- **PreOrder(tree)**
 - if tree is not NULL
 - Visit Info(tree)
 - PreOrder(Left(tree))
 - PreOrder(Right(tree))

- **PostOrder(tree)**
 - if tree is not NULL
 - Postorder(Lefttree)
 - Postorder(Righttree)
 - Visit Info(tree)
Traversals

Each node is visited three times

Traversals

Iterator

The client program passes a parameter to ResetTree and GetNextItem indicating which of the three traversals to use

ResetTree generates a queue of node contents in the indicated order

GetNextItem processes the node contents from the appropriate queue: inQue, preQue, postQue
Iterator

```cpp
void TreeType::ResetTree(OrderType order)
    // Calls function to create a queue of the
tree // elements in the desired order.
{
    switch (order)
    {
        case PRE_ORDER  : PreOrder(root, preQue); break;
        case IN_ORDER   : InOrder(root, inQue); break;
        case POST_ORDER : PostOrder(root, postQue); break;
    }
}
```

```cpp
void TreeType::GetNextItem(ItemType& item, OrderType order, bool& finished)
{
    finished = false;
    switch (order)
    {
        case PRE_ORDER  : preQue.Dequeue(item);
            if (preQue.IsEmpty()) finished = true; break;
        case IN_ORDER   : inQue.Dequeue(item);
            if (inQue.IsEmpty()) finished = true; break;
        case POST_ORDER : postQue.Dequeue(item);
            if (postQue.IsEmpty()) finished = true; break;
    }
}
```

Can you think of other implementations?