Transaction

- . .

Enterprise Scale Data
Management
Divy Agrawal

Department of Computer Science
University of California at Santa Barbara

S_Ehedules and Histories

Definition 3.1 (Schedules and histories):
Let T={t,, ..., t,} be a set of transactions, where each t, ET
has the form t;=(op, <;) with op; denoting the operations of t|
and <; their ordering.
(i) A history for T is a pair s=(op(s),<,) s.t.

(a) op(s) S Uiy ,0p; U Uy, o fay ¢}

(b) for all i, 1<isn: ¢, € op(s) < a; & op(s)

Uiy 0 < € <

(d) for alli, 1=<i=n, and all p E op;: p <, ¢; or p <; 3;

(e) for all p, g € op(s) s.t. at least one of them is a write

and both access the same data item: p<;q or q<,p

(i) A schedule is a prefix of a history.

Definition 3.2 (Serial history):

A history s is serial if for any two transactions t; and t; in's,
where ixj, all operations from t; are ordered in s before all
operations from t; or vice versa.

Transactional Information Systems 3-2 wam

+
History Example

3
rl[x] 12[x]
w2[I
wl[x]
w3[y]
rl[z] r3[z]
w3[Z]

r1[x]r2[x]ri[z]wl[x]w2[y]r3[z]w3[y]w3[z]c1lc2c3

4/4/11

+
History Example

R1[x]
wl[x] cl
Rl[z
R2[x] w2[y] c2
w3[y
R3[z
w3[z]
’ Histories

mWithout loss of generality:
= Examples will be total orders

mNotations:
= Trans(H): transactions in H
= Commit(H): committed in H
= Abort(H): aborted in H
= Active(H): not committed and not aborted.

+
Correctness

mFunction 0:S - {0,1} such that
correct(S)={sinS | 0 (s)=1}

mPragmatic considerations:
m Correct(S)#¢
= Correct(S) is efficiently decidable
m Correct(S) is sufficiently large (WHY?)

mGoal: develop several such criteria given
that semantics not known.

4/4/11

+

Correctness

mSyntatctical semantics for schedules based
on an intuitive notion:
= Each transaction is a correct mapping, i.e.,

Consistent Consistent

(DB &
- Transaction T -

Hence, serial execution of transactions will be
correct.

+

General Idea

mNotion of equivalence of two schedules S1
and S2

mUse this notion of equivalence to accept all
schedules which are “equivalent” to some
serial schedule as being correct.

mHow to establish this equivalence notion?

+ .
Semantics

mEquivalence via a notion of semantics:

= We do not know the semantics of transaction
programs

= We need a general notion that can capture all
potential transaction semantics

= Need a general enough and powerful
notion that can capture all possible
semantics of transactions.

4/4/11

+
Herbrand Semantics

mRead operation ri[x] reads the last value by
the last write that occurs before ri[x].

mWi[x] writes a value that potentially
depends on the value of all data items that
Ti has read prior to wi[x].

10

+
Herbrand Semantics

mAbstract notion of semantics:
1. ri[x] reads the last wj[x] (j#i) before ri[x].
2. Wi[x] depends on:
1. Data from DB
2. Transactions in ACTIVE U COMMIT prior to
wi[x].
Last write is well defined!!! Why?

)) Wilx] > RKDx]
Assumption I: No transaction Aborts ;i

Assumption II: Initial Transactions:
wO[entire-database], or equivalently
wO[x,V, 2, ...]

+
Formal Definition: H-Semantics

mHs(ri[x])=Hs(wj[x]) where wj[x] is the
last write operation

mHs(Wi[x])=fix(Hs(ri[y1]), ..., Hs(xri[ym]))

mHU (Herbrand Universe) for transaction:
what is conveyed to the transaction.

mHS for schedules: what is the permanent
effect of the schedule of transactions.

12

4/4/11

Example "
mS=wO[x]wO[y]cOrl[x]r2[y]w2[x]wl[y]clc2
mHs[wO[x]]=f0x()

mHs[wO[y]]=f0y()

mHs[r1[x]]=f0x()

mHs[r2[y]]=f0y()
mHs[w2[x]]=f2x(Hs[r2[y]])=f2x(0y())
mHs[wl[y])=fly(Hs[r1[x]])=fly(f0x()

+ .
Herbrand Universe "

mLet D={x,y,2,...} be a finite set of data items.
For a transaction T let op(T) denote all the
steps of T. The HU of Ti is:
= fOx() in HU for each x in D

m If wi[x] in Op(Ti) then fix(vl, ..., vin) in HU where
vi are the values read by Ti before wi[x].

History Semantics "

mH[h]:D > HU
mH[h] (%) := Hs(wi[x])

Where wi(x) is the last operation in h writing
X.

In other words — the semantics of a history h
is the set of values that are written last in h.

4/4/11

4/4/11

+
Why are we doing all this?

16

m General/abstract notion of semantics.

m Can work with any interpretation of the
transaction program, i.e., we do not have to
worry about the program semantics of the
transaction as to how they manipulate the
data.

+
Example "

mh=wO[x]wO[y]cOrl[x]r2[y]w2[x]wl[y]c2cl

mHs[x]=Hs[w2[x]]={2x(f0y())

mHs[y]=Hs[w1[y]]=fly(f0x())

+
Final State Equivalence "

mS and S’ over the same set of transactions
then S is equivalent to S’ if H(S)=H(S’).

+
Example "

uS = rl[x]r2[y]wl[y]r3[z]w3[z]r2[x]w2[z]w]1[x]
u S'=r3[z]w3[z]r2[y]r2[x]wa[z]r]1[x]w][y]w][x]
m H[S](x)=f1x(f0x())=H[S’](x)

= H[S](y)=f1y(f0x()=H[S'](y)
= H[S](z)=f2z(f0x(),0y ())=H[S"] (z)

+
Another Example
mS=rl[x]r2[ylwl[y]w2[y]clc2

nS’=rl[x]wl[y]r2[y]w2[y]clc2
= H[S](y)=12y(f0y ()

mH[S"](y)=f2y(H[S'](z2[y]) =2y (£1y (f0x()))

+
Observations

mExample shows that we cannot simply
determine equivalence on final write
operation.

mWhat preceded must also be taken into
account.
= In S: final value of y is based on initial value of y.

= In S’: final value of y is based on the value of y
written by T1.

m Our task: can we build an efficient tool to
determine equivalence efficiently?

4/4/11

Reads-from Relation, Useful,
Alive, and Dead Steps

m Rj[x] reads-x-from wi[x] if wi[x] is the last write
such that wi[x] < rj[x].

mRF(S) = { (Ti, %, Tj) | rj[x] reads-x-from wi[x]}

m Step p is directly useful for g denoted p—>q if:
= Q reads-from P or

= P is a read step and q is a subsequent write in the
same transaction.

m>* is the transitive closure of >

+
Reads-from Relation, Useful,
Alive, and Dead Steps

mP is alive in S if it is useful for some step in
Teo:
= Exists q in T~ such that p>* q
= Otherwise P is dead in S.

mLive reads-from relation:
= LRF(S)={Ti, x, Tj) | rj[x] is alive and rj[x] in RF(S)}

+
Example
= S=wO[x,ylrl[x]r2[y]lwl[ylw2[y]lr=[x,y]
= §'=wO[x,ylrl[x]wl[ylr2[y]w2[y]r=[x,y]

= RF(S)={(T0,%,T1),(T0,y,T2),(T0,x,T=), (T2,y, T}
= RF(S)={(T0,x,T1),(T0,y,T2),(T0,%,T),(T2,y,T)}

mR2[y] alive in S and S’ (verify)
mR1[X] dead in S but alive in S’ (verify)

4/4/11

4/4/11

+
Example (contd.)
mLRF(S)={(T0,y,T2), (TO,x,T«),(T2,y,T)}
mLRF(S)=RF(S’)

mRedefine FSE: S and S’ are final state
equivalent if and only if LRF(S)=LRF(S")
(Prove it — omitted).

mBuild a tool that will allow to “efficiently”
identify the LRF relations: STEP GRAPH.

+
Step Graph Construction

m Construct step graph D(S)=(V,E) where:
= V=0p(8)
=E=[(p,9) | p.ginVandp > q]

m]t can be shown that LRF(s)=LRF(s’) iff
D(s)=D(S").

mS f.s.e. 5 iff D(S)=D(S’) and op(S)=op(S’)

Examples to check FSE using
Step Graph

mS=rl[x]r2[y]lwl[y]r3[z]w3[z]r2[x]w2[z]w]1][x]
S’ =r3[z]w3[z]r2[y]r2[x]w3[z]r]l [x]w]1[y]w]1[x]

mConstruct D(S) and D(S’) in class.

+
Another Example

mS=rl[x]r2[y][wl[y]w2[y]
nS’=rl[x]wl[y]r2[y]w2[y]

mConstruct D(S) and D

(S’) to check FSE.

F_§R: Example 3.9

5= 13(x) ra(y) Wi (y) wyly)

s'=13(x) wa(y) raly) waly)

D(s): D(s):
W) i i) {wgly))
______))
() —— waly) eu
Wa(Y) Wly)
) raly) rulx))
7 dead”
o
Transactional Information Systems 3-29 wam
+ .
Testing for FSE

mFSE can be decided in time polynomial in th
length of two schedules.

mFSR: A history is FSR if there exists a serial
history S’ such that S is FSE to S’.

nS=rl[x]r2[y]lwl[y]r3[z]w3[z]r2[x]w2[z]w]1][x]
Is equivalent to serial history T3-T2-T1 (verify)

4/4/11

10

+
Testing for FSR

mHow to test for FSR:
= Try all N! serialzations of N transactions.

mNot Efficient!!!

mMore importantly: lets revisit our examples
of Lost Update and Fund Transfer and see if
it works from application point-of-view?

+
Lost Update

mHistory corresponding to lost update:
= H=rl[x]r2[x]w][x]w2[x]
m Possible serializations: H1=r1[x]wl[x]r2[x]w2[x]
OR H2=r2[x]w2[x]rl[x]wl[x]

mConstruct D(H), D(H1) and D(H2) and see if
this H is not FSE either to H1 or H2?

+
Fund Transfer

mFund Transfer History:
= H=r2[x]wa[x]r]l[x]r1[y]r2[y]w2[y]
= FSE to both T1-T2 and T2-T1.

mEven if we can develop an efficient tool to
enforce FSR executions, it is not good
enough for our purpose.

4/4/11

11

4/4/11

+ .
Key Insight

mWe need to strengthen the notion of final
state serializability:
= By not only focusing on the state of the database

= But also requiring that the “database view”
observed by each transaction in the equivalent
schedules is identical.

NEXT LECTURE.

12

