
4/10/11

1

+

Enterprise Scale Data
Management
Divy Agrawal
Department of Computer Science
University of California at Santa Barbara

Transaction
Correctness

2

+
Lost Update (REVIEW)
 History corresponding to lost update:
 H=r1[x]r2[x]w1[x]w2[x]
 Possible serializations: H1=r1[x]w1[x]r2[x]w2[x]

OR H2=r2[x]w2[x]r1[x]w1[x]

 Construct D(H), D(H1) and D(H2) and see if
this H is not FSE either to H1 or H2?

 Indeed the interleaved history H is not
Final State Equivalent to either of the serial
orders.

4/10/11 Spring'2011: CMPSC 274

4/10/11

2

3

+
Fund Transfer (REVIEW)

 Fund Transfer History:
 H=r2[x]w2[x]r1[x]r1[y]r2[y]w2[y]
 Final State Equivalent to both T1-T2 and T2-T1.

 Even if we can develop an efficient tool to
enforce FSR executions, it is not good
enough for our purpose.

4/10/11 Spring'2011: CMPSC 274

4

+
Key Insight

 We need to strengthen the notion of final
state serializability:
 By not only focusing on the state of the database

alone
 But also requiring that the “database view”

observed by each transaction in the equivalent
schedules is identical (THIS IS MISSED BY FSE
SINCE IT TREATS READ-ONLY TRANSACTIONS
DEAD).

THIS LECTURE.

4/10/11 Spring'2011: CMPSC 274

4/10/11

3

+

4/10/11 Spring'2011: CMPSC 274 3-5

View Serializability

Defini&on 3.9 (View Equivalence):
Schedules s and s‘ are view equivalent, denoted s ≈v s‘, if the following hold:
(i)  op(s)=op(s‘)
(ii)  H[s] = H[s‘]
(iii)  Hs[p] = Hs‘[p] for all (read or write) steps

Where H and Hs are the Herbrand Semantics.

Note in the case of Final State Equivalence we only considered
Herbrand Semantics of Database objects.

Here we are considering the Herbrand Semantics of each
individual operation.

+
View Serializability

4/10/11 Spring'2011: CMPSC 274

Theorem 3.2:
For schedules s and s‘ the following statements

hold.
(i)  s ≈v s‘ iff op(s)=op(s‘) and RF(s)=RF(s‘)
(ii)  s ≈v s‘ iff D(s)=D(s‘)

Where RF is the reads-from relations.

D(s) is the step graph we used for FSE.

4/10/11

4

+

4/10/11 Spring'2011: CMPSC 274 3-7

Defini&on 3.10 (View Serializability):
A schedule s is view serializable if there exists a serial schedule s‘ s.t. s ≈v s‘.
VSR denotes the class of all view‐serializable histories.

View Serializability

Corollary 3.2 (checking equality of Step graphs):
View equivalence of two schedules s and s‘ can be decided in Qme that
is polynomial in the length of the two schedules.

+

4/10/11 Spring'2011: CMPSC 274 3-8

Inconsistent Read Reconsidered

•  Inconsistent read anomaly:

 I = r2(x) w2(x) r1(x) r1(y) r2(y) w2(y) c1 c2

→  history is not VSR !

Observa(on: VSR properly captures our intui(on

RF(I) = {(t0,x,t2), (t2,x,t1), (t0,y,t1), (t0,y,t2), (t2,x,t∞), (t2,y,t∞)}
RF(t1 t2) = {(t0,x,t1), (t0,y,t1), (t0,x,t2), (t0,y,t2), (t2,x,t∞), (t2,y,t∞)}
RF(t2 t1) = {(t0,x,t2), (t0,y,t2), (t2,x,t1), (t2,y,t1), (t2,x,t∞), (t2,y,t∞)}

4/10/11

5

+

4/10/11 Spring'2011: CMPSC 274 3-9

Relationship Between VSR and FSR

Theorem 3.3:
VSR ⊂ FSR.

Theorem 3.4:
Let s be a history without dead steps. Then s ∈ VSR iff s ∈ FSR.

LEFT AS EXERCISES

+

4/10/11 Spring'2011: CMPSC 274 3-10

On the Complexity of Testing VSR

Theorem 3.5:
The problem of deciding for a given schedule s whether s ∈ VSR holds
is NP‐complete.

Our two attempts based on FSE and VE
Resulted in failures.

Need something else!!!

4/10/11

6

+

4/10/11 Transactional Information Systems 3-11

Conflicting Operations

Definition 3.12 (Conflicts and Conflict Relations):
Let s be a schedule, t, t‘ ∈ trans(s), t ≠ t‘.
(i)  Two data operations p ∈ t and q ∈ t‘ are in conflict in s if

 they access the same data item and at least one of them is a
write.

(ii)  {(p, q)} | p, q are in conflict and p <s q} is the conflict relation
of s.

12

+
Conflicts: What’s the deal?

 Now that we have defined the notion of
conflicts:
 The intuition is if two histories maintain the order

of conflicting operations they must influence the
database and the transactions in the same way.

 This is definition is operation and not grounded
in semantics as was the case with FSE and CE.

 Ready to define EQUIVALENCE based on
conflicts.

4/10/11 Spring'2011: CMPSC 274

4/10/11

7

+

4/10/11 Transactional Information Systems 3-13

Conflict Serializability

Definition 3.13 (Conflict Equivalence):
Schedules s and s‘ are conflict equivalent, denoted

s ≈c s‘, if
op(s) = op(s‘) and conf(s) = conf(s‘).

+

4/10/11 Transactional Information Systems 3-14

Conflict Serializability

Definition 3.14 (Conflict Serializability):
Schedule s is conflict serializable if there is a

serial schedule s‘ s.t. s ≈c s‘.
CSR denotes the class of all conflict serializable

schedules.

Example a: r1(x) r2(x) r1(z) w1(x) w2(y) r3(z) w3(y) c1 c2w3(z) c3

Example b: r2(x) w2(x) r1(x) r1(y) r2(y) w2(y) c1 c2

→  ∈ CSR

→  ∉ CSR

4/10/11

8

+

4/10/11 Transactional Information Systems 3-15

Properties of CSR

Theorem 3.8:
CSR ⊂ VSR

Example: s = w1(x) w2(x) w2(y) c2 w1(y) c1 w3(x) w3(y) c3
s ∈ VSR, but s ∉ CSR.

16

+

4/10/11 Transactional Information Systems 3-16

Efficient Ways to Recognize CSR
Executions

 What is a directed graph?

 Think of ways to associate a graph with a
schedule!

4/10/11

9

+

4/10/11 Transactional Information Systems 3-17

Conflict Graph
Definition 3.15 (Conflict Graph):
Let s be a schedule. The conflict graph G(s) = (V, E) is a directed graph
with vertices V := commit(s) and
edges E := {(t, t‘) | t ≠ t‘ and there are steps p ∈ t, q ∈ t‘ with (p, q) ∈ conf(s)}.

Theorem 3.10:
Let s be a schedule. Then s ∈ CSR iff G(s) is acyclic.

Corollary 3.4:
Testing if a schedule is in CSR can be done in time polynomial
to the schedule‘s number of transactions.

Example 3.12:
s = r1(y) r3(w) r2(y) w1(y) w1(x) w2(x) w2(z) w3(x) c1 c3 c2

G(s): t1 t2

t3

18

+

4/10/11 Transactional Information Systems 3-18

Activity

 What is a characterization (in a
mathematical sense)?

 How do you prove necessary and sufficient
condition?

 What needs to be shown for the
serializability theorem?

4/10/11

10

+

4/10/11 Transactional Information Systems 3-19

Proof of the Conflict-Graph Theorem

(i) Let s be a schedule in CSR. So there is a serial schedule s‘ with
conf(s) = conf(s‘).
 Now assume that G(s) has a cycle t1 → t2 → ... → tk → t1.
 This implies that there are pairs (p1, q2), (p2, q3), ... , (pk, q1)
 with pi ∈ ti, qi ∈ ti, pi <s q(i+1), and pi in conflict with q(i+1).
 Because s‘ ≈c s, it also implies that pi <s‘ q(i+1).
 Because s‘ is serial, we obtain ti <s‘ t(i+1) for i=1, ..., k-1, and tk <s‘ t1.
 By transitivity we infer t1 <s‘ t2 and t2 <s‘ t1, which is impossible.
 This contradiction shows that the initial assumption is wrong. So
G(s) is acyclic.

+

4/10/11 Transactional Information Systems 3-20

Proof of the Conflict-Graph Theorem

(ii) Let G(s) be acyclic. So it must have at least one source node.
 The following topological sort produces a total order < of transactions:
 a) start with a source node (i.e., a node without incoming edges),
 b) remove this node and all its outgoing edges,
 c) iterate a) and b) until all nodes have been added to the
sorted list.
 The total transaction ordering order < preserves the edges in G(s);
 therefore it yields a serial schedule s‘ for which s‘≈c s.

4/10/11

11

+

4/10/11 Transactional Information Systems 3-21

Order Preserving Conflict Serializability

Definition 3.18 (Order Preservation):
Schedule s is order preserving conflict serializable if it is
conflict equivalent to a serial schedule s‘ and
for all t, t‘ ∈ trans(s): if t completely precedes t‘ in s, then the same holds in s‘.
OCSR denotes the class of all schedules with this property.

Theorem 3.12:
OCSR ⊂ CSR.

Example 3.13:
s = w1(x) r2(x) c2 w3(y) c3 w1(y) c1

→  ∈ CSR

→  ∉ OCSR

+

4/10/11 Transactional Information Systems 3-22

Commit-order Preserving Conflict
Serializability

Definition 3.19 (Commit Order Preservation):
Schedule s is commit order preserving conflict serializable if
for all ti, tj ∈ trans(s): if there are p ∈ ti, q ∈ tj with (p,q) ∈ conf(s) then ci <s cj.
COCSR denotes the class of all schedules with this property.

Theorem 3.13:
COCSR ⊂ CSR.

Example:
s = w3(y) c3 w1(x) r2(x) c2 w1(y) c1

→  ∈ OCSR

→  ∉ COCSR

Theorem 3.15:
COCSR ⊂ OCSR.

Theorem 3.14:
Schedule s is in COCSR iff there is a serial schedule s‘ s.t. s ≈c s‘ and
for all ti, tj ∈ trans(s): ti <s‘ tj ⇔ ci <s cj.

4/10/11

12

+

4/10/11 Transactional Information Systems 3-23

Commit Serializability (SKIP)
Definition 3.20 (Closure Properties of Schedule Classes):
Let E be a class of schedules.
For schedule s let CP(s) denote the projection Πcommit(s) (s).
E is prefix-closed if the following holds: s ∈ E ⇔ p ∈ E for each prefix of s.
E is commit-closed if the following holds: s ∈ E ⇒ CP(s) ∈ E.

Theorem 3.16:
CSR is prefix-commit-closed, i.e., prefix-closed and commit-closed.

Definition 3.21 (Commit Serializability):
Schedule s is commit-Θ-serializable if CP(p) is Θ-serializable for each
prefix p of s, where Θ can be FSR, VSR, or CSR.
The resulting classes of commit-Θ-serializable schedules are denoted
CMFSR, CMVSR, and CMCSR.

Theorem 3.17:
(i) CMFSR, CMVSR, CMCSR are prefix-commit-closed.
(ii) CMCSR ⊂ CMVSR ⊂ CMFSR

24

+

4/10/11 Transactional Information Systems 3-24

Landscape of History Classes

4/10/11

13

+

4/10/11 Transactional Information Systems 3-25

Lessons Learned

•  Equivalence to serial history is a natural correctness criterion

•  CSR, albeit less general than VSR,

 is most appropriate for

•  complexity reasons

•  its generalizability to semantically rich operations

•  OCSR and COCSR have additional beneficial properties (LATER)

