CMPSC 274: Transaction Processing
Lecture #6: Concurrency Control
Protocols

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers
o 4.4 Non-Locking Schedulers

¢ 4.4.1 Timestamp Ordering

s 4 4.2 Seriatization-Graptr Testing
¢ 4.4.3 Optimistic Protocols

e 4.5 Hybrid Protocols

® 4.6 Lessons Learned

4/20/11

(Basic) Timestamp Ordering

Timestamp ordering rule (TO rule):

Each transaction t;is assigned a unique timestamp ts(t;)
(e.g., the time of t;'s beginning).

If p(x) and qj(x) are in conflict, then the following must hold:
Pi(x) <, q;(x) iff ts(t;) < ts(t;) for every schedule s.

Theorem 4.15:
Gen (TO) C CSR.

Basic timestamp ordering protocol (BTO):
* For each data item x maintain max-r (x) = max{ts(t;) | r;(x) has been scheduled}
and max-w (x) = max{ts(t;) | w;(x) has been scheduled}.
e Operation p;(x) is compared to max-q (x) for each conflicting q:
e if ts(t;) < max-q (x) for some q then abort t;
* else schedule p,(x) for execution and set max-p (x) to ts(t;)

BTO Example

s = r5(x) w,(x) r3ly) wy(y) ¢, ws(z) 3 14(2) ¢4

r(x) w,(x) r5(y) a, wsy(z) ¢5 a;

4/20/11

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers
* 4.4 Non-Locking Schedulers

o 4 A4 1 TFimestamp-Orderine
A HimMeEStamP-otrGering

¢ 4.4.2 Serialization-Graph Testing
e 4. 4.3 Optimistic Protocols

e 4.5 Hybrid Protocols

® 4.6 Lessons Learned

Serialization Graph Testing (SGT)

SGT protocol:

e For p;(x) create a new node in the graph if it is the first operation of t,

* Insert edges (t; t;) for each q(x) <, p;(x) that is in conflict with p;(x) (i=j).

¢ |f the graph has become cyclic then abort t; (and remove it from the graph)
else schedule p,(x) for execution.

Theorem 4.16:
Gen (SGT) = CSR.

Node deletion rule:
A node t; in the graph (and its incident edges) can be removed
when t; is terminated and is a source node (i.e., has no incoming edges).

Example:

r(X) Wy(x) Waly) ¢, Tyly) ¢

removing node t, at the time of ¢,
would make it impossible to detect the
cycle.

4/20/11

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers
* 4.4 Non-Locking Schedulers
® 4.4.1 Timestamp Ordering

o 4 42 Serialization-Graph Testing
¢ 4.4.3 Optimistic Protocols

s 4.5 Hybrid Protocols
® 4.6 Lessons Learned

Optimistic Protocols

Motivation: conflicts are infrequent

Approach:
divide each transaction t into three phases:
read phase:
execute transaction with writes into private workspace
validation phase (certifier):
upon t‘s commit request
test if schedule remains CSR if t is committed now
based on t‘s read set RS(t) and write set WS(t)
write phase:
upon successful validation
transfer the workspace contents into the database
(deferred writes)
otherwise abort t (i.e., discard workspace)

4/20/11

Backward-oriented Optimistic CC (BOCC)

Execute a transaction’s validation and write phase together as a critical section:
while t; being in the val-write phase, no other t, can enter its val-write phase

BOCC validation of t;:

compare t; to all previously committed t

accept t; if one of the following holds

¢ t; has ended before t has started, or

* RS(t;) N WS(t) = & and t; has validated before t;

Theorem 4.46:
Gen (BOCC) C CSR.

Proof:

Assume that G(s) is acyclic. Adding a newly validated transaction
can insert only edges into the new node, but no outgoing edges
(i.e., the new node is last in the serialization order).

BOCC Example

read write
phase phase
/—H
r(x) ryly) val. wi(x)
L. | | | |
t T [
1
rly) (2 val. w,(z)
| - . | [|
tor ' | 1
2
ry(x) rs(y) val
t | i abort
3
r4(x) val. w,(x)
|

4/20/11

Forward-oriented Optimistic CC (FOCC)

Execute a transaction’s val-write phase as a strong critical section:
while t; being in the val-write phase, no other t, can perform any steps.

FOCC validation of t;:
compare t; to all concurrently active t; (which must be in their read phase)
accept t; if WS(t) N RS*(t;) = & where RS*(t;) is the current read set of t;

Remarks:
® FOCC is much more flexible than BOCC:
upon unsuccessful validation of t; it has three options:
* abort t;
* abort one of the active t;for which RS*(t;) and WS(t;) intersect
* wait and retry the validation of t; later
(after the commit of the intersecting t,)
* Read-only transactions do not need to validate at all.

Correctness of FOCC

Theorem 4.18:
Gen (FOCC) C CSR.

Proof:

Assume that G(s) has been acyclic and that validating t; would create a cycle.

So t; would have to have an outgoing edge to an already committed t,.
However, for all previously committed t, the following holds:
e Ift, was committed before t started, then no edge (tj, t,) is possible.
e Iftywasinits read phase when t, validated, then WS(t,) must be
disjoint with RS*(t;) and all later reads of t; and all writes of t;
must follow t, (because of the strong critical section);
so neither a wr nor a ww/rw edge (tj, t,) is possible.

4/20/11

FOCC Example
read write
phase phase
—
r(x) rily) val. wi(x)
| - L [|
t, It T L
ry(y) ry(2) val. w,(z)
| I . | [
t, 1 ' | L
r3(2)

t, |—¢7 abort

| ry(x) ruly) l val.lwa(y) |
1 % —— 1

—~
5
—

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers
o 4 4 Non-locking Schedulers

¢ 4.5 Hybrid Protocols
4.6 tessons tearned

4/20/11

Hybrid Protocols

Idea: Combine different protocols,
each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the union of the
underlying “local” conflict graphs is acyclic.

Example 4.15:
use SS2PL for rw/wr synchronization and TO or TWR for ww
with TWR (Thomas‘ write rule) as follows:
for wj(x): if ts(t;) > max-w (x) then execute w;(x) else do nothing

both ted by SS2PL/TWR
5, = W(x) rly) Wolx) wly) c; waly) ¢, P oy S52P
1 20

S = Wy (x) roy) wy(x) wy(y) €, ryy) wyly) ¢ but s, is not CSR
Problem with s,: needs synch among the two “local” serialization orders

Solution: assign timestamps such that the serialization orders
of $52PL and TWR are in line — (i) <tsli) = <

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers

¢ 4.4 Non-Locking Schedulers
¢ 4.5 Hybrid Protocols

¢ 4.6 Lessons Learned

4/20/11

Lessons Learned

e S2PL is the most versatile and robust protocol
and widely used in practice
* Knowledge about specifically restricted access patterns
facilitates non-two-phase locking protocols (e.g., TL, AL)
e O2PL and SGT are more powerful but have more overhead
® FOCC can be attractive for specific workloads

¢ Hybrid protocols are conceivable but non-trivial

4/20/11

