Lecture #2.

A Model of Distributed Computations

Distributed System Model:
- a set of processes connected by a communication network.

System Model:
- provides the facility to exchange information among processes.
- finite but unpredictable communication delay.
- no common global memory and communicate solely by passing messages.
- no physical global clock.
- messages may be delivered out-of-order, may be lost, garbled, or duplicated.
- processors may fail.
- communication links may go down.

=> System can be modeled as a graph
vertices: processes
edges: links
A distributed program is composed of a set of n asynchronous processes labeled \(P_1, P_2, \ldots, P_n \).

WLOG: assume each \(P_i \) on a different process.

\(C_{ij} \): communication channel between \(P_i \) and \(P_j \).

\(m_{ij} \): denotes a message sent from \(P_i \) to \(P_j \).

Global state:

\[
\{\text{States of } P_i\} \cup \{\text{States of } C_{ij}\} \\
\downarrow \\
\text{local memory} \quad \text{messages in transit}
\]
A model of distributed executions.
- the execution of a process consists of a sequential execution of its actions.
- Actions are atomic and are of three types:
 1. Internal events
 2. Message send events
 3. Message receive events.

Event e_i^x: x^i event at P_i.

msg m: send(m)
 recv(m)

Events cause:

- state transition of process
- state transition of channel

\Rightarrow affects the global state.

Internal event: only affect the process.

Send event: affects the sender and the channel.

Receive event: affects the receiver and the channel.
events at P_i: linear sequence.

$e_i^1, e_i^2, \ldots, e_i^x, e_i^{x+1}, \ldots$

$H_i = (b_i, \rightarrow_i)$

ordering relation

$e_i^x \rightarrow e_i^{x+1}$

\rightarrow_i: causal ordering or dependence.

send and receive events capture the flow of information between processes

\rightarrow_{msg}: causal dependency due to messages

For every m:

$send(m) \rightarrow_{msg} recv(m)$

A natural way to visualize the evolution of a distributed computation is to use space-time diagrams.
Causal Precedence Relation

\[H = \bigcup_i h_i \]

Define a binary relation

\[(H, \rightarrow) \]
∀e_i, ∀e_j ∈ H e_i → e_j

iff

1. e_i → e_j (i.e., i = j ∧ x < y), or
2. e_i →_{msg} e_j , or
3. ∃e_k st. e_i → e_k ∧ e_k → e_j

Called the happens-before relation.

Concurrent events:

 e_i and e_j are concurrent e_i \parallel e_j

iff

 e_i \rightarrow e_j ∧ e_j \rightarrow e_i

For any two events e_i + e_j,

either

 e_i \rightarrow e_j

or

 e_j \rightarrow e_i

or e_i \parallel e_j
Models of Communication NWS.

FIFO: channel is a queue

non-FIFO: channel is a set

Causal Order: channels satisfy happen-before

\[m_{ij} \rightarrow m_{kj} \]

if \(\text{send}(m_{ij}) \rightarrow \text{send}(m_{kj}) \)

then \(\text{recv}(m_{ij}) \rightarrow \text{recv}(m_{kj}) \).

causally related messages destined to the same destination are delivered in an order consistent with the causality:

\[\text{CO} \subset \text{FIFO} \subset \text{NON-FIFO}. \]

CO considerably simplifies the design of distributed algorithms.

\[\text{e.g. update to replica} \]
Global state of a distributed system.

\[\text{state of } P_i^j U \text{ state of } C_i^j. \]

\[L_S^{x_i} : \text{state of } P_i \text{ after } e_i^x, \text{ (initial state: } L_S^{x_i}) \]

\[SC_{ij}^{x,y} = \{ m_{ij} | \text{send}(m_{ij}) < L_S^{x_i} \land \text{recv}(m_{ij}) \leq L_S^{y_i} \} \]

denotes all messages that \(P_i \) sent up to event \(e_i^x \) and \(P_j \) has not received until \(e_j^y \).

\[GS = \{ U_i L_S^{x_i}, U_{j,k} SC_{jk}^{y,j,z} \} \]

Meaningful \(GS \): all states of all components must be recorded at a single instant.

\[\downarrow \]

This is generally not possible.

So what can go wrong? Construct an example.

\[P_1 \]

\[\Rightarrow m \]

\[P_2 \]

\[\Rightarrow P_2 \text{ says } m \text{ is recorded} \]

but \(P_2 \) has no memory of \(m \) being sent.
\Rightarrow when a snapshot is taken

not all snapshots be consistent.

GS is consistent if

$$\forall m_{ij} : s_{\text{end}}(m_{ij}) \leq LS_x \Rightarrow m_{ij} \notin S_{ij}$$

\land recr$(m_{ij}) \not\subseteq LS_y$

CUTS