
BitTorrent – Peer To Peer File Sharing
CS290F: Networking for Multimedia

Mini PhD Major Area Exam

I) Introduction

Content  distribution  is  an  important  topic  in  networking 

and  has  been  evolving  from  the  start  of  the  Internet. 

Content  distribution  began  with  the  simple  Client-Server 

structure  in  a  unicast  format.  While  this  is  still  the 

cornerstone of the Internet, newer methods of distribution 

have been developed. These newer methods of distribution 

are usually developed to reduce the cost of distributing the 

content,  usually  in  the  form  of  reducing  bandwidth 

restrictions  and  the  bottleneck  at  the  Server.  Content 

Distribution Networks (CDNs) use multicast and anycast to 

attempt  to  reduce  network  resource  costs  of  distributing 

content.  Peer  to Peer (P2P) file sharing decentralizes  the 

classical Client-Server structure, removing any bottlenecks 

on the Server side. BitTorrent, a P2P file sharing protocol, 

is one of the most popular ways to distribute large amounts 

of data.

This paper will define Peer to Peer networking then take an 

in  depth  look  at  the  BitTorrent  protocol.  The  BitTorrent 

protocol has been evolving over the years, adding additional 

features, combating exploitations.

2) Peer to Peer Networking

The  P2P  structure  is  a  distributed  network  architecture 

where  node's  on  the  network  contribute  to  the  overall 

system without the need of a centralized controlling server. 

In the classical Client-Server network structure, Clients are 

strictly  consumers  of  resources  and  Servers  are  strictly 

producers of resources.  Peers in a P2P structure are both 

consumers  and  producers  of  resources.  Examples  of 

resources  that  P2P  networks  share  include  processing 

power, network bandwidth, and disk storage.

P2P  file  sharing  networks  are  P2P  networks  that  the 

specific resource that is being produced and consumed by 

peers  is  computer  files.  Peers  download  files  from other 

peers rather than though a central Sever. This offloads the 

networking  constraints  of  the  Server  and  spans  it  across 

multiple peers.

3) BitTorrent Introduction

“Incentives  Build  Robustness  in  BitTorrent,”  by  Bram 

Cohen, the author of the BitTorrent protocol, was published 

in the Workshop on Economics of Peer-to-Peer Systems on 

May 22, 2003. At the time of the publication, the BitTorrent 

protocol  was  already  implemented  and  in  use.  Cohen's 

paper goes into the basic design and implementation of the 

first BitTorrent client. Cohen's goal in designing BitTorrent 

was a peer to peer file distribution system that achieves a 

higher level of robustness and resource utilization than any 

other current implementation though a modified tit-for-tat 

scheme.

A) Publishing Content

Content  is  made  available  for  download  though  the 

BitTorrent protocol initially by the publishing of a .torrent  

file on the web. This small file contains information about 

the  target  file  that  will  be  downloaded,  and  most 

importantly, information about the target file's tracker.

The tracker is responsible for announcing other peers trying 

to download a file over BitTorrent. The tracker by default 

returns a random list of peers to a requesting client. Cohen 

explains that the tracker is the single point of congestion in 

the BitTorrent implementation.

The target file that will be downloaded is divided into many 

smaller,  approximately  a  quarter  megabyte,  files  called 

pieces,  which in turn are fragmented into subpieces.  The 

.torrent file contains a sequence of SHA1 hash files that 

allow the verification of a successful downloaded piece.

B) Download Strategies

Cohen  introduces  a  few  download  strategies  that  his 

implementation  uses  to  achieve  better  download  rates. 

These  strategies  are  actually  methods  of  selecting  what 

piece  to  attempt  to  download.  The  first  strategy  is  to 

download complete pieces at a time. If the first subpiece is 

downloaded, then the client requests the other subpieces of 

that file. This strategy is used in combination with a piece 

selection strategy.

When a client starts a torrent download and has no pieces 

itself to upload, it enters the Random First Piece stage. The 

client  must  attempt  to  get  any  piece  possible  so  it  can 

engage in normal BitTorrent traffic, rather than in just the 

random un-chocked  startup  with  will  be  discussed  later. 

During normal downloading, a client downloads pieces in a 

Rarest First style. More populated pieces tend to have more 

available  bandwidth  thus  allowing  the  pieces  to  be 

downloaded  later  with  no  penelty.  Finally,  when  the 

download  is  almost  complete,  the  client  enters  an  End 



Game mode where it re-requests downloads of pieces that it 

is currently downloading in hope to find a faster peer. The 

client then cancels the slower of the peers.

Cohen explains that  if  peers only uploaded to peers who 

provided good download speeds there would be no methods 

of finding new peers who might provide better bandwidth. 

Optimistic Unchoking is the random selection of a peer and 

engaging in unrestricted traffic.  This is  used to find new 

peers that might provide good download speeds.

C) Cohen's Paper

Cohen's paper introduces a new protocol that obtained fast 

and  widespread  adoption.  It  fails  to  however  provide 

background information on a few of it's economic strategies 

that  are  used  in  the  development  of  the  protocol.  For 

example, it fails to explain what the Prisoner's Dilemma is 

and only vaguely relates it to BitTorrent.

Cohen's paper also did not include any experimental or in-

depth real word data.  The paper includes only one graph 

that shows the number of peers and seeders over time for a 

400  megabyte  file.  Cohen's  paper  would  have  benefited 

from including and analyzing BitTorrent traffic and relating 

it to other decentralized file distribution methods, showing 

where BitTorrent succeeds and the other methods fail.

4) BitTorrent Measurement and Analysis

Pouwelse, Garbacki, Epema, and Sips in their paper “The 

BitTorrent  P2P  File-Sharing  System:  Measurements  and 

Analysis” collect and analyze real world BitTorrent traffic 

and relate that to other forms of P2P file sharing systems. 

This paper fills one of the holes in Cohen's paper, but to be 

fair, came out after BitTorrent became incredibly popular 

and that type of widespread data was available.

A) Experiment Setup

Data  was  collected  over  an  8  month  period  from 

Suprnova.org, one of the most popular torrent hosting sites. 

Suprnova  uses  a  mirroring  system  that  balances  user 

requests by redirecting them to the mirrored site. The first 

part of the experiment uses three scripts. First a script to 

check the availability and response time of  the Suprnova 

mirrors.  Second  a  script  to  scrape  Suprnova's  pages, 

downloading all torrent files. Finally, a third script to parse 

the torrent file and check the status of the trackers.

The  second  part  of  the  experiment  was  monitoring  the 

peers this was achieved by a script to select a file, a script to 

contact  the tracker to get a list of peers for a file,  and a 

script to contact individual peers downloading a file and get 

statistics about it.

B) Results

Five  different  results  are  reported  in  the  paper:  overall 

system  activity,  availability,  integrity,  flashcrowds,  and 

download performance. The paper does a good job explain 

and using figures to explain the results.

The paper presents a time slice focusing around Christmas 

2003  because  of  it's  large  variance  in  number  of  peers 

downloading  due  to  numerous  failures  in  mirrors  and 

trackers.  Figure  1  showing  this  time  slice  is  replicated 

below.  This  shows  the  weaknesses  in  the  current 

implementation  of  BitTorrent  in  having  a  centralized 

tracker  and  use  of  a  website  like  Suprnova.  The  paper 

however lacks in presenting an overall system activity from 

the  entire  8  month  survey.  This  would  have  allowed  the 

identification  of  the  growth  of  Suprnova  and  BitTorrent 

along with other things.

Number of users downloading or seeding on BitTorrent/

Suprnova for one month (Dec'03-Jan'04), from [2]

The availability of mirrors had a direct correlation with the 

popularity of a download. When the file servers that hosted 

torrent files went down, it blocked essentially blocked any 

peer  from  starting  a  new  download.  The  availability  of 

peers was also analyzed, showing that peers often did not 

seed  after  finishing  downloading.  The  authors  identified 

this  problem  is  due  to  there  is  no  incentive  within  the 

BitTorrent protocol to seed after finishing downloading, nor 

on the Supernova site or trackers, but provided no possible 

fixes to the solution.

Integrity  of  the  torrents  was  mainly  controlled  by  the 

Suprnova  website,  outside  of  the  BitTorrent  protocol.  A 

combination  of  message  boards  and  moderators  rid  any 

uploaded fakes that  the authors  tried to post  quickly and 

efficiently. One weak point  is that  a mirror might not be 

trustworthy and can inject data into the website or torrent.

When  a  new  file  is  pushed  to  the  system  and  gains 

popularity quickly, this effect is called a flashcrowd. The 



BitTorrent  system  along  with  Suprnova's  structure  was 

easily able to handle the effects of the flashcrowd. Finally, 

download  performance  is  related  to  the  number  of 

downloaders in a swarm. Download performance is directly 

related to the popularity of the file, and when the popularity 

of the file dies off, so does the ability to download the file.

5) Expanding the Protocol

The  tracker  has  clearly  been  identified  as  the  soul 

centralized  component  of  the  BitTorrent  protocol.  The 

tracker was identified as the main contributing factor the 

the availability  of the BitTorrent  system in the Suprnova 

analysis.  Decentralizing  the  BitTorrent  protocol  would 

further increase the protocol's robustness.

Two methods of decentralizing of the BitTorrent protocol 

have been widely adopted. The first and simpler of the two 

is  Peer  Exchange  (PEX).  PEX  simply  involves  two 

connected peers to exchange their knowledge of other peers 

in  the  swarm,  increasing  the  overall  connectivity.  The 

second method of decentralizing the BitTorrent protocol is 

though the use of Distributed Hash Tables (DHTs).

A) Distributed Hash Tables

Crosby and Wallach of Rice University analyze BitTorrent's 

two  Kademlia-Based  DHTs.  Kademlia  is  a  Distributed 

Hash Table designed for peer to peer networks. Mainline 

DHT and Azureus DHT are both based off Kidemlia but 

are not compatible with each other.

The paper finds many flaws in the current implementations 

of  the  Kademlia  DHT.  It  finds  that  the  current 

implementations  of  Kademlia  are  incorrect,  causing  the 

Mainline DHT to dead-end it's  lookups over  20% of the 

time and the Azureus DHT nodes reject  50% of the key 

stores. Some of the problems can be contributed to bugs in 

the clients. Along with not working correctly, the average 

lookup time is slow, around one minute.

The  paper  identifies  the  weaknesses  in  the  current 

implementations  of  Kademlia-DHTs,  stemming  from 

incorrectly  implementation  and  poor  DHT  parameters. 

While  some  of  these  problems  can  be  fixed  while 

maintaining  compatibility  with  the  current  infrastructure, 

the paper recommended a incompatible jump to a new DHT 

implementation that addresses all of the problems laid out. 

Yet these changes would not solve the inherent problems of 

security with the DHT.

In  the  end,  BitTorrent  clients  benefit  from  the  current 

implementation of DHT no matter how flawed it might be. 

It currently is not ready to replace the centralized tracker, 

but inefficiently allow peers to join a swarm if the tracker is 

down. Even if the peer only finds one other peer from the 

DHT, though PEX the peer can join and participate in the 

swarm.

6) Improving Traffic Locality

Peer to Peer network traffic has substantially increased over 

the  past  few years.  Internet  Service  Providers  (ISPs)  are 

starting to throttle, or cut  back, bandwidth of P2P traffic 

that  cross  over  to  other  ISPs,  primarily  focusing  on 

BitTorrent traffic. Cross-ISP traffic increases the operating 

cost of an ISP dramatically, thus limiting it is in the ISP's 

best interest.

The BitTorrent protocol that Cohen laid out in his paper, 

and that is currently implemented by all clients, does not 

discriminate peers,  every peer  is  treated the same. When 

multiple peers are within an ISP all requesting the same file 

over  BitTorrent,  the  file  is  crossed  over  from  other  IPS 

multiple times. To reduce the burden on ISPs, and to avoid 

the throttling that  might be in place,  Bindal,  Cao,  Chan, 

Medval, Suwala, Bates, and  Zhang propose selecting peers 

locally  within  the  ISP  in  their  paper  “Improving  Traffic 

Locality in BitTorrent via Biased Neighbor Selection ”.

The  paper  states  two  methods  for  implementing  biased 

neighbor selection. The first proposed solution is to  modify 

client and trackers. The clients would report to the tracker 

it's  local  ISP,  then  the  tracker  would  respond  with  a 

selection of it peers that are local to the ISP. The second 

proposed solution requires ISPs that use P2P traffic shaping 

devices to intercept the peer list returned from trackers and 

substitute external  peers  with local  ones.  Figure 1 in  the 

paper, replicated below, visualizes the differences between 

the current implementation of BitTorrent and how it would 

look with biased neighbor selection.

Uniform random neighbor selection in the standard

BitTorrent versus biased neighbor selection, from [4]

Traffic  throttling  does  not  solve  the  redundancy  in  cross 

ISP  traffic.  Traffic  throttling  only  minor  reduces  the 

redundancy and makes the BitTorrent downloads happen at 

a much slower rate. Biased neighbor selection, on the other 

hand, does reduce cross ISP traffic redundancy when the 

amount of external peers used is low.

The paper  then  presents  the  results  of  its  simulations  of 

clients using biased neighbor selection. It shows that for a 

throttled ISP setting, small portion of users, around 25%, 



will not experience as fast downloads as they would have 

without biased neighbor selection. However, the other 75% 

of peers will on average experience a decrease in download 

time.  When  the  ISP  is  not  throttling  the  download  time 

difference is not as great on either end, and the crossover 

point was moved up to around 50%.

7) Exploiting the Protocol

BitTorrent, as described in Cohen's paper, attempts to create 

robustness  though  incentives.  Piatek,  Isdal,  Anderson, 

Krishnamurthy,  and  Venkataramani  in  their  paper  “Do 

incentives  build  robustness  in  BitTorrent?”  question 

Cohen's design in whether robustness is actually achieved 

though  the  incentives  put  forth.  The  authors  introduce 

BitTyrant, a BitTorrent client that uses strategic gaming to 

increase the client's download speed.

A) BitTyrant

The authors first attempt to locate areas in the BitTorrent 

client where the client can be selfish and where this is from 

in  the  protocol.  This  is  done  performance  modeling 

parameterized  by  real  world  data.  Figure  4  shows  the 

expected  download  performance  as  a  function  of  upload 

capacity, which has been replicated below. It can be seen in 

this figure that there is not a one to one ratio as a pure tit-

for-tat scheme would ensue. This is identified as one of the 

key exploitable parts in the BitTorrent client, the ratio of 

upload to download.

Expectation of download performance as

a function of upload capacity, from [5]

BitTyrant  actively  attempts  to  maximize  its  performance 

though three strategies.  First,  strategically pick peers  and 

upload rates to those peers to maximize the download per 

unit  of  upload  ratio.  Second:  strategically  maximize  the 

number of active peers until the benefit of adding a new 

peer is outweighed by the costs of getting replicated data. 

Third: strategically lower the upload bandwidth to peers as 

long  as  that  peer  continues  to  upload  back,  reallocating 

saved bandwidth to adding an additional peer to the active 

set.

In  addition  to  the  strategic  gaming  methods  described 

above, BitTyrent implements other methods to cheat current 

BitTorrent  clients.  This  includes  attempting  to  get  peers 

opportunistic unchoked slot multiple times by reconnecting 

with a different client identifier. BitTyrent also attempts to 

connect  to  older  seeding  clients  that  use  a  seeding 

algorithm that uploaded to faster downloading clients first 

in order to maximize the distribution. BitTyrent finally can 

falsify the pieces it  has in order to gain the opportunistic 

unchoked slot from certain peers.

B) Implementation and Results

The paper then compares BitTyrent to the client it is based 

off of and most popular in the data analyzed, Azureus. The 

two clients  were capped with upload speeds of  125 kb/s 

with Azureus set to its default settings. Both clients would 

join selected swarms with file sizes under 1 gigabyte and 

their  download  times  would  be  compared.  BitTyrent''s 

download speed was on average of over  70% faster  than 

that of the Azureus.  It  is not stated why swarms that are 

distributing  files  larger  than  1  gigabyte  are  ignored. 

BitTorrent  was developed  in  the  mind for  distribution of 

large  files,  and  limiting  the  swarms that  are  distributing 

large files seems short-sided.

BitTyrent was also simulated in a swarm of just BitTyrent 

clients. This simulation showed that if all the clients in a 

swarm are BitTyrent, download times of clients with lower 

capacity  for  uploading  suffer,  their  download  times 

increase.  This  simulation  however  does  not  model  real 

world swarms. The number of clients was static at 350, the 

file  size  was  set  at  5  megabytes  with  a  128  kb/s  seed 

connection. A more accurate simulation could have easily 

been modeled by looking at the actual data collected from 

swarms.

8) Stopping BitTorrent Gamers

Levin,  LaCurts,  Spring,  and  Bhattacharjee  have  taken  a 

closer look at BitTorrent's tit-for-tat structure in their paper 

“BitTorrent  is  an  auction:  Analyzing  and  improving 

BitTorrent’s  incentives.”  In  their  paper,  they  clearly  state 

and disprove the common misconception about BitTorrent, 

focusing mainly on it's perception of using tit-for-tat when 

it actually models an auction more closely.

A) The Problem

The paper  explains that  tit-for-tat  was originally  the idea 

proposed by Cohen, but to improve download speeds, the 

specification was relaxed. This relaxation came mainly in 

the unchoking algorithm used to help find new peers that 

have fast uploading rates. This relaxation of the tit-for-tat 

thus created opportunities for exploitation, as explained in 



the BitTyrant paper. The two most widespread clients that 

exploit  those  weaknesses,  BitThief  and  BitTyrant,  are 

introduced.

BitTyrant attempts to find the smallest winning bid to get 

download  bandwidth  from  a  peer  by  adjusting  the 

uploading  bandwidth  by  small  increments.  This  allows 

BitTyrant to minimize its upload bandwidth to each peer it 

downloads from, allowing the saved uploading bandwidth 

to be put towards downloading from another peer. BitThief 

attempts to enter as many opportunistic unchoked slots as 

possible, eliminating the requirement to participate in the 

swarm.

B) The Solution: PropShare

The  paper  introduces  PropShare,  a  BitTorrent  client  that 

rewards  peers  with  proportional  shares  of  bandwidth. 

PropsShare  which  defeats  the  exploits  and  preforms  on 

average  better  than  the  normal  BitTorrent  or  BitTyrant. 

BitTorrent's  current  protocol  is  not  fair:  if  two peers  are 

connected to another, and one of the two uploads more, that 

peer does not receive more download bandwidth. PropShare 

gives  out  proportional  bandwidth  to  peers  that  win  the 

audition.

Multiple  tests  were  conducted  comparing  the  average 

download  time  of  the  different  protocols.  States  that 

PropShare  can  be  introduced  into  public  today,  without 

widespread  adoption.  Does  not  go  into  the  affects  of 

PropShare  on  other  normal  clients,  nor  how  PropShare 

preforms with solely PropShare clients. Gives an algorithm 

for bootstrapping piece exchange, or the starting of peers 

and building trust between peers. 

PropShare and BitTyrant running on live swarms, from [6]

9) Conclusion

BitTorrent's evolution over the years were due to the desire 

to create a more robust, fast, and distributed peer to peer 

file sharing network. Identifying the single point of failure, 

the trackers, brought about the implementation of DHTs. As 

BitTorrent  becomes  more  popular,  ISPs  began  throttling 

traffic,  which in turn gave way to localizing peers.  Once 

BitTorrent's  modified  tit-for-tat  implementation  became 

exploitable,  solutions  were  developed.  BitTorrent  is  still 

developing and soon will become a mature, well developed 

protocol.

References

[1] B. Cohen. Incentives Build Robustness in BitTorrent. 

In Workshop on Economics of Peer-to-Peer Systems, 

Berkeley, USA, May 22, 2003. 

[2] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, H.J. Sips. 

The  BitTorrent  P2P  File-Sharing  System: 

Measurements  and  Analysis.  In  Lecture  Notes  in 

Computer Science, Volume 3640, 2005.

[3] S.  Crosby  and  D.  Wallach.  An  Analysis  of 

BitTorrent’s Two Kademlia-Based DHTs .  Technical 

Report  TR07-04,  Department  of  Computer  Science, 

Rice University, May 2007.

[4] R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala, T. 

Bates, and A. Zhang, “Improving Traffic Locality in 

BitTorrent  via  Biased  Neighbor  Selection,”  in  26th 

IEEE  International  Conference  on  Distributed 

Computing Systems (ICDCS 2006), July 2006.

[5] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, 

A. Venkataramani. Do incentives build robustness in 

BitTorrent?. In NSDI, 2007

[6] D.  Levin,  K.  LaCurts,  N.  Spring,  and  B. 

Bhattacharjee. BitTorrent is an auction: Analyzing and 

improving  BitTorrent’s  incentives.  In  SIGCOMM 

Conference on Data Communication, 2008


