Synthesis of Adaptive Side-Channel Attacks

Quoc-Sang Phan1, \textbf{Lucas Bang}2,
Corina S. Păsăreanu1,3, Pasquale Malacaria4, Tevfik Bultan2

1Carnegie Mellon University
Moffet Field, CA, USA

2University of California, Santa Barbara
Santa Barbara, CA, USA

3NASA Ames Research Center
Moffet Field, CA, USA

4Queen Mary University of London
London E1 4NS, UK

Computer Security Foundations
Santa Barbara, CA, USA
24 August 2017
Overview

Figure: “RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis”
Motivating Example

High security input (secret): h
Low security input (public): l

int compare(h, l)
if (h <= l)
sleep(1);
else
sleep(2);
return 0;

Main channel:
Always 0. No information.

Side channel:
t = 1 ⇒ h ≤ l
t = 2 ⇒ h > l
Motivating Example

High security input (secret): h
Low security input (public): l

```c
int compare(h, l)
if (h <= l)
sleep(1);
else
sleep(2);
return 0;
```

Main channel: Always 0. No information.
Side channel: $t = 1 \Rightarrow h \leq l$
$t = 2 \Rightarrow h > l$
Motivating Example

High security input (secret): h
Low security input (public): l

```c
int compare(h, l)
    if(h <= l)
        sleep(1);
    else
        sleep(2);
    return 0;
```

Main channel: Always 0. No information.

Side channel:
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]
Motivating Example

High security input (secret): \(h \)
Low security input (public): \(l \)

```c
int compare(h, l)
    if(h <= l)
        sleep(1);
    else
        sleep(2);
return 0;
```
Motivating Example

High security input (secret): h
Low security input (public): l

```c
int compare(h, l)
    if (h <= l)
        sleep(1);
    else
        sleep(2);
return 0;
```

Main channel:
Always 0. No information.

$t = 1 \Rightarrow h \leq l$
$t = 2 \Rightarrow h > l$
Motivating Example

High security input (secret): h
Low security input (public): l

```c
int compare(h, l)
    if (h <= l)
        sleep(1);
    else
        sleep(2);
return 0;
```

Main channel:
Always 0. No information.

Side channel:
$t = 1 \Rightarrow h \leq l$
Motivating Example

High security input (secret): h
Low security input (public): l

```c
int compare(h, l)
    if(h <= l)
        sleep(1);
    else
        sleep(2);
    return 0;
```

Main channel:
Always 0. No information.

Side channel:
$t = 1 \Rightarrow h \leq l$
$t = 2 \Rightarrow h > l$
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Too few divisions.
Unbalanced divisions.
Best tree induces maximum number of divisions and balanced divisions.
\(t = 1 \implies h \leq l \)
\(t = 2 \implies h > l \)
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

\(t = 1 \Rightarrow h \leq 6 \)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

1 = 6
$$t = 1 \Rightarrow h \leq l$$
$$t = 2 \Rightarrow h > l$$

太少了，这会导致分枝不平衡。最佳树会产生最多的分枝数目并且是平衡的。
\[t = 1 \quad \Rightarrow \quad h \leq l \]
\[t = 2 \quad \Rightarrow \quad h > l \]
$t = 1 \Rightarrow h \leq l$
$t = 2 \Rightarrow h > l$
$t = 1 \Rightarrow h \leq l$
$t = 2 \Rightarrow h > l$

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 = 6

$1 = 6$

$t=1 \Rightarrow h \leq 6$
$t=2 \Rightarrow h > 6$
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]
\[t = 1 \Rightarrow h \leq l \]
\[t = 2 \Rightarrow h > l \]

Too few divisions.
Unbalanced divisions.
Best tree induces **maximum # divisions**
\(t = 1 \Rightarrow h \leq l \)
\(t = 2 \Rightarrow h > l \)

Best tree induces \textbf{maximum \# divisions} and \textbf{balanced divisions}.
$t = 1 \Rightarrow h \leq l$
$t = 2 \Rightarrow h > l$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Best tree induces **maximum # divisions** and **balanced divisions**.
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]

Best tree induces maximum # divisions and balanced divisions.
Best tree induces **maximum # divisions** and **balanced divisions**.
Best tree induces **maximum # divisions** and **balanced divisions**.
\[t = 1 \Rightarrow h \leq l\]
\[t = 2 \Rightarrow h > l\]

Best tree induces **maximum # divisions** and **balanced divisions**.
Best tree induces maximum # divisions and balanced divisions.
\[
t = 1 \implies h \leq l \\
t = 2 \implies h > l
\]

Best tree induces **maximum # divisions** and **balanced divisions**.
Best tree induces **maximum # divisions** and **balanced divisions**.
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]

Best tree induces maximum # divisions and balanced divisions.
Best tree induces maximum # divisions and balanced divisions.

channel capacity
\[t = 1 \implies h \leq l \]
\[t = 2 \implies h > l \]

Best tree induces **maximum # divisions** and **balanced divisions**.

channel capacity
entropy
Find the Best Tree...
Find the Best Tree...
Find the Best Attack!
Find the Best Tree...
Find the Best Attack!
How?
Our Approach

1. Symbolic execution of attacker + system model.
2. Generate attack tree, symbolic over h and \bar{L}.
3. Optimize over all trees \equiv maximization problem for \bar{L}.
1. Symbolic execution of attacker + system model.
Our Approach

1. Symbolic execution of attacker + system model.
2. Generate attack tree, symbolic over h and \bar{L}.
Our Approach

1. Symbolic execution of attacker + system model.
2. Generate attack tree, symbolic over h and \bar{L}.
3. Optimize over all trees
Our Approach

1. Symbolic execution of attacker + system model.
2. Generate attack tree, symbolic over h and \bar{L}.
3. Optimize over all trees \equiv maximization problem for \bar{L}.
Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PC's, over symbolic inputs.
- When branch instruction encountered with condition c:
 - True branch: $\text{PC} \leftarrow \text{PC} \land c$
 - False branch: $\text{PC} \leftarrow \text{PC} \land \neg c$
- Check feasibility of PC using constraint solvers (Z3).
- Explore only feasible branches.
- During exploration, maintain side channel cost model.
- Results in symbolic tree (attack tree).
Symbolic Execution

- Static program analysis technique.
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, PCs, over symbolic inputs.

When branch instruction encountered with condition c:
- **True** branch: $\text{PC} \leftarrow \text{PC} \land c$
- **False** branch: $\text{PC} \leftarrow \text{PC} \land \neg c$

Check feasibility of PC using constraint solvers (Z3).

Explore only feasible branches.

During exploration, maintain side channel cost model.

Results in symbolic tree (attack tree).
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, PCs, over symbolic inputs.
- When branch instruction encountered with condition c:
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, PCs, over symbolic inputs.
- When branch instruction encountered with condition c:
 - True branch: $PC \leftarrow PC \land c$
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, PCs, over symbolic inputs.
- When branch instruction encountered with condition c:
 - True branch: $PC \leftarrow PC \land c$
 - False branch: $PC \leftarrow PC \land \neg c$
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, PCs, over symbolic inputs.
- When branch instruction encountered with condition c:
 - True branch: $PC \leftarrow PC \land c$
 - False branch: $PC \leftarrow PC \land \neg c$
- Check feasibility of PC using constraint solvers (Z3).
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, *PCs*, over symbolic inputs.
- When branch instruction encountered with condition *c*:
 - True branch: $PC \leftarrow PC \land c$
 - False branch: $PC \leftarrow PC \land \neg c$
- Check feasibility of *PC* using constraint solvers (Z3).
- Explore only feasible branches.
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, PCs, over symbolic inputs.
- When branch instruction encountered with condition c:
 - True branch: $PC \leftarrow PC \land c$
 - False branch: $PC \leftarrow PC \land \neg c$
- Check feasibility of PC using constraint solvers (Z3).
- Explore only feasible branches.
- During exploration, maintain side channel cost model.
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, PCs, over symbolic inputs.
- When branch instruction encountered with condition c:
 - True branch: $PC \leftarrow PC \land c$
 - False branch: $PC \leftarrow PC \land \neg c$
- Check feasibility of PC using constraint solvers (Z3).
- Explore only feasible branches.
- During exploration, maintain side channel cost model.
- Results in symbolic tree
Symbolic Execution

- Static program analysis technique.
- Execute program on **symbolic** rather than concrete inputs.
- Maintain **path conditions**, PCs, over symbolic inputs.
- When branch instruction encountered with condition c:
 - True branch: $PC \leftarrow PC \land c$
 - False branch: $PC \leftarrow PC \land \neg c$
- Check feasibility of PC using constraint solvers (Z3).
- Explore only feasible branches.
- During exploration, maintain side channel cost model.
- Results in symbolic tree (attack tree).
Symbolic attack tree:

and all symbolic constraints between h and l

\[L = l \]

\[h \geq l \]

\[L = l \]

\[h \geq l \]

\[L = l \]

\[h \geq l \]

\[L = l \]

\[h \geq l \]

\[L = l \]

\[h \geq l \]

\[L = l \]

\[h \geq l \]

Each leaf: symbolic constraint on h given by \(\bar{L} \)

Find optimal \(\bar{L} = \langle l, l_1, l_2, l_{11}, l_{12}, l_{21}, l_{22} \rangle = \langle 4, 6, 2, 7, 5, 3, 1 \rangle \)
Symbolic attack tree:

h and all l-choices symbolic constraints between h and l symbolic
Symbolic attack tree:

- h and all l-choices symbolic
- constraints between h and l symbolic

Each leaf: symbolic constraint on h given by

$\bar{L} = \langle l, l_1, l_2, l_{11}, l_{12}, l_{21}, l_{22} \rangle$

Find optimal $\bar{L} = \langle 4, 6, 2, 7, 5, 3, 1 \rangle$
Symbolic attack tree:

h and all l-choices symbolic constraints between h and l symbolic

Each leaf: symbolic constraint on h given by \bar{L}
Symbolic attack tree:

h and all l-choices symbolic constraints between h and l symbolic

Each leaf: symbolic constraint on h given by \bar{L}

Find optimal $\bar{L} = \langle l, l_1, l_2, l_{11}, l_{12}, l_{21}, l_{22} \rangle$
Symbolic attack tree:

h and all l-choices symbolic constraints between h and l symbolic

Each leaf: symbolic constraint on h given by \bar{L}

Find optimal $\bar{L} = \langle l, l_1, l_2, l_{11}, l_{12}, l_{21}, l_{22} \rangle = \langle 4, 6, 2, 7, 5, 3, 1 \rangle$
Finding Best Attack Tree
Method 1
Maximizing Number of Partition Divisions

foo(int l, int h)
 if (l<0)
 if (h<0) sleep(1)
 else if (h<5) sleep(2)
 else sleep(3)
 else
 if (h>1) sleep(4)
 else sleep(5)
Max-SMT: Maximum Satisfiability Modulo Theories

Find an assignment for l and h_i that maximizes the number of satisfiable constraints.

Optimal choice $l = -1$.

Max-SMT assignment \equiv maximizing channel capacity.

MAX-SMT Problem: Find an assignment of values to variables that maximizes the number of simultaneously satisfied clauses.
Max-SMT: Maximum Satisfiability Modulo Theories

\[C_1: \ l < 0 \land h_1 < 0 \]
\[C_2: \ l < 0 \land h_2 \geq 0 \land h_2 < 5 \]
\[C_3: \ l < 0 \land h_3 \geq 5 \]
\[C_4: \ l \geq 0 \land h_4 > 1 \]
\[C_5: \ l \geq 0 \land h_5 \leq 1 \]
Max-SMT: Maximum Satisfiability Modulo Theories

\[C_1: \ l < 0 \land h_1 < 0 \]
\[C_2: \ l < 0 \land h_2 \geq 0 \land h_2 < 5 \]
\[C_3: \ l < 0 \land h_3 \geq 5 \]
\[C_4: \ l \geq 0 \land h_4 > 1 \]
\[C_5: \ l \geq 0 \land h_5 \leq 1 \]

- Find an assignment for \(l \) and \(h_i \) that maximizes the number of satisfiable constraints.
Max-SMT: Maximum Satisfiability Modulo Theories

\[C_1: \quad l < 0 \land h_1 < 0 \]
\[C_2: \quad l < 0 \land h_2 \geq 0 \land h_2 < 5 \]
\[C_3: \quad l < 0 \land h_3 \geq 5 \]
\[C_4: \quad l \geq 0 \land h_4 > 1 \]
\[C_5: \quad l \geq 0 \land h_5 \leq 1 \]

- Find an assignment for \(l \) and \(h_i \) that maximizes the number of satisfiable constraints.
Max-SMT: Maximum Satisfiability Modulo Theories

\[C_1: \ l < 0 \land h_1 < 0\]
\[C_2: \ l < 0 \land h_2 \geq 0 \land h_2 < 5\]
\[C_3: \ l < 0 \land h_3 \geq 5\]
\[C_4: \ l \geq 0 \land h_4 > 1\]
\[C_5: \ l \geq 0 \land h_5 \leq 1\]

- Find an assignment for \(l\) and \(h_i\) that maximizes the number of satisfiable constraints.

Optimal choice \(l = -1\).

Max-SMT assignment \(\equiv\) maximizing channel capacity.
Max-SMT: Maximum Satisfiablity Modulo Theories

\[C_1: \quad l < 0 \land h_1 < 0 \]
\[C_2: \quad l < 0 \land h_2 \geq 0 \land h_2 < 5 \]
\[C_3: \quad l < 0 \land h_3 \geq 5 \]
\[C_4: \quad l \geq 0 \land h_4 > 1 \]
\[C_5: \quad l \geq 0 \land h_5 \leq 1 \]

- Find an assignment for \(l \) and \(h_i \) that maximizes the number of satisfiable constraints.
- Optimal choice \(l = -1 \).
Max-SMT: Maximum Satisfiability Modulo Theories

\[C_1: \quad l < 0 \land h_1 < 0 \]
\[C_2: \quad l < 0 \land h_2 \geq 0 \land h_2 < 5 \]
\[C_3: \quad l < 0 \land h_3 \geq 5 \]
\[C_4: \quad l \geq 0 \land h_4 > 1 \]
\[C_5: \quad l \geq 0 \land h_5 \leq 1 \]

- Find an assignment for \(l \) and \(h_i \) that maximizes the number of satisfiable constraints.
- Optimal choice \(l = -1 \).
- Max-SMT assignment \(\equiv \) maximizing channel capacity.
Max-SMT: Maximum Satisfiability Modulo Theories

\[C_1: \ l < 0 \land h_1 < 0 \]
\[C_2: \ l < 0 \land h_2 \geq 0 \land h_2 < 5 \]
\[C_3: \ l < 0 \land h_3 \geq 5 \]
\[C_4: \ l \geq 0 \land h_4 > 1 \]
\[C_5: \ l \geq 0 \land h_5 \leq 1 \]

- Find an assignment for \(l \) and \(h_i \) that maximizes the number of satisfiable constraints.
- Optimal choice \(l = -1 \).
- Max-SMT assignment \(\equiv \) maximizing channel capacity.

MAX-SMT Problem: Find an assignment of values to variables that maximizes the number of simultaneously satisfied clauses.
Finding Best Attack Tree
Method 2
Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions.

Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$H = \sum_i p(C_i(h,l)) \log_2 \frac{1}{p(C_i(h,l))}$$

Compared with MAX-SMT:

Channel Capacity $= \log_2 \# \text{divisions}$

$H \leq \text{CC}$
Finding Balanced Partitions
Find low inputs L for an attack tree with optimally balanced divisions

Compared with MAX-SMT:
Channel Capacity $= \log_2 \#\text{divisions}$

$H \leq CC$
Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions

\equiv Maximizing Shannon entropy based on symbolic constraints.
Finding Balanced Partitions

Find low inputs \(L \) for an attack tree with optimally balanced divisions

\[\equiv \text{Maximizing Shannon entropy based on symbolic constraints.} \]

Given probabilities, quantify information gain with *Shannon entropy*:

\[C_i(h, l) \]
Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions

\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$p(C_i(h, l))$$
Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions

≡ Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with *Shannon entropy*:

$$p(C_i(h, l)) \log_2 \frac{1}{p(C_i(h, l))}$$
Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions

\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$\sum_i p(C_i(h, l)) \log_2 \frac{1}{p(C_i(h, l))}$$
Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions

\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with *Shannon entropy*:

$$\mathcal{H} = \sum_i p(C_i(h, l)) \log_2 \frac{1}{p(C_i(h, l))}$$
Finding Balanced Partitions

Find low inputs \(L \) for an attack tree with optimally balanced divisions

\[\equiv \text{Maximizing Shannon entropy based on symbolic constraints.} \]

Given probabilities, quantify information gain with *Shannon entropy*:

\[
\mathcal{H} = \sum_i p(C_i(h, l)) \log_2 \frac{1}{p(C_i(h, l))}
\]

Compared with MAX-SMT:
Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions

\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$H = \sum_i p(C_i(h, l)) \log_2 \frac{1}{p(C_i(h, l))}$$

Compared with MAX-SMT:

Channel Capacity $= \log_2 \#\text{divisions}$

$$H \leq CC$$
Maximizing Shannon Entropy Numerically

\[L = l \]

\[\text{cost}\langle 1 \rangle \quad h \geq l \]

\[L = l_1 \]

\[\text{cost}\langle 1 \rangle \quad h \geq l \quad h \geq l_1 \]

\[\text{cost}\langle 2 \rangle \quad h < l \]

\[L = l_2 \]

\[\text{cost}\langle 2 \rangle \quad h < l \quad h < l_2 \]
Maximizing Shannon Entropy Numerically

\[L = l \]

\[\text{cost}\langle 1 \rangle \quad h \geq l \]

\[L = l_1 \]

\[\text{cost}\langle 1 \rangle \quad h \geq l \quad h \geq l_1 \]

\[\text{cost}\langle 2 \rangle \quad h < l \]

\[L = l_2 \]

\[\text{cost}\langle 2 \rangle \quad h < l \quad h < l_2 \]

\[C_1 = h < l \land h < l_1 \]

\[C_2 = h < l \land h \geq l_1 \]

\[C_3 = h \geq l \land h < l_2 \]

\[C_4 = h \geq l \land h \geq l_2 \]
Maximizing Shannon Entropy Numerically

\[L = I \]

\[L = I_1 \]

\[L = I_2 \]

\[C_1 = h < I \land h < I_1 \]
\[C_2 = h < I \land h \geq I_1 \]
\[C_3 = h \geq I \land h < I_2 \]
\[C_4 = h \geq I \land h \geq I_2 \]
Maximizing Shannon Entropy Numerically

\[C_1 = h < l \land h < l_1 \]
Maximizing Shannon Entropy Numerically

\[C_1 = h < l \wedge h < l_1 \]

Symbolic model counting functions computed with Barvinok.
Maximizing Shannon Entropy Numerically

\[C_1 = h < l \land h < l_1 \]

Symbolic model counting functions computed with Barvinok.

Barvinok gives piecewise multi-variate polynomial.
Maximizing Shannon Entropy Numerically

\[C_1 = h < l \land h < l_1 \]

Symbolic model counting functions computed with Barvinok.

Barvinok gives piecewise multi-variate polynomial.

\[F_1(l, l_1, l_2) = \begin{cases}
6 & : l > 6 \land l_1 > 6 \\
1 & : 1 \leq l \leq 6 \land l \leq l_1 \\
l_1 - 1 & : 1 \leq l_1 \leq 6 \land l_1 < l
\end{cases} \]

\(F_1(\bar{L}) \) tells you the size of the partition cell for \(C_1 \), for given \(\bar{L} \).
Maximizing Shannon Entropy Numerically

<table>
<thead>
<tr>
<th>Condition</th>
<th>Function</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
</table>
| $C_1 = h < l \land h < l_1$ | $F_1(\bar{i}) = \begin{cases}
8 & : l > 8 \land l_1 > 8 \\
-1 & : 1 \leq l \leq 8 \land l \leq l_1 \\
l_1 - 1 & : 1 \leq l_1 \leq 8 \land l_1 < l
\end{cases}$ | $8 : l_1 < 1 \land 8 < l$ | $l - l_1 : 1 \leq l_1 \leq l \leq 8$ | $l - 1 : l_1 < 1 \land l \leq 8$ | $9 - l : 1 \leq l_1 \leq 8 < l$ |
| $C_2 = h < l \land h \geq l_1$ | $F_2(\bar{i}) = \begin{cases}
8 & : l_1 < 1 \land 8 < l \\
l - l_1 & : 1 \leq l_1 \leq l \leq 8 \\
l - 1 & : l_1 < 1 \land l \leq 8 \\
9 - l_1 & : 1 \leq l_1 \leq 8 < l
\end{cases}$ | $8 : l_1 < 1 \land 8 < l_2$ | $l_2 - l : 1 \leq l \leq l_2 \leq 8$ | $l_2 - 1 : l < 1 \land l_2 \leq 8$ | $9 - l : 1 \leq l \leq 8 < l_2$ |
| $C_3 = h \geq l \land h < l_2$ | $F_3(\bar{i}) = \begin{cases}
8 & : l < 1 \land 8 < l_2 \\
l_2 - l & : 1 \leq l \leq l_2 \leq 8 \\
l_2 - 1 & : l < 1 \land l_2 \leq 8 \\
9 - l & : 1 \leq l \leq 8 < l_2
\end{cases}$ | $8 : l < 1 \land l_2 < 1$ | $9 - l : 1 \leq l \leq 8 \land l_2 < l$ | $9 - l_2 : 1 \leq l_2 \leq 8 \land l \leq l_2$ |
Maximizing Shannon Entropy Numerically

\[C_1 = h < l \wedge h < l_1 \]

\[F_1(\bar{l}) = \begin{cases}
8 : l > 8 \wedge l_1 > 8 \\
9 : l > 8 \wedge l_1 < l \\
1 : 1 \leq l \leq 8 \wedge l_1 \leq l \\
4 : 1 \leq l \leq 8 \wedge l_1 < l \\
6 : 1 \leq l \leq 8 \wedge l_1 < l \\
7 : 1 \leq l \leq 8 \wedge l_1 < l \\
5 : 1 \leq l \leq 8 \wedge l_1 < l \\
3 : 1 \leq l \leq 8 \wedge l_1 < l \\
2 : 1 \leq l \leq 8 \wedge l_1 < l \\
1 : 1 \leq l \leq 8 \wedge l_1 < l \\
0 : 1 \leq l \leq 8 \wedge l_1 < l \\
\end{cases} \]

\[C_2 = h < l \wedge h \geq l_1 \]

\[F_2(\bar{l}) = \begin{cases}
8 : l_1 < 1 \wedge 8 \geq l_1 \\
9 : l_1 < 1 \wedge 8 \geq l_1 \\
1 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
4 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
6 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
7 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
5 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
3 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
2 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
1 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
0 : 1 \leq l_1 \leq l \wedge 8 \geq l_1 \\
\end{cases} \]

\[C_3 = h \geq l \wedge h < l_2 \]

\[F_3(\bar{l}) = \begin{cases}
8 : l < 1 \wedge 8 \leq l_2 \\
9 : l < 1 \wedge 8 \leq l_2 \\
1 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
4 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
6 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
7 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
5 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
3 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
2 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
1 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
0 : 1 \leq l \leq l_2 \wedge 8 \leq l_2 \\
\end{cases} \]

\[C_4 = h \geq l \wedge h \geq l_2 \]

\[F_4(\bar{l}) = \begin{cases}
8 : l < 1 \wedge l_2 < 1 \\
9 : l < 1 \wedge l_2 < 1 \\
1 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
4 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
6 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
7 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
5 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
3 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
2 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
1 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
0 : 1 \leq l \leq l_2 \wedge l_2 < 1 \\
\end{cases} \]

\[\frac{F_1(\bar{L})}{8} \]
Maximizing Shannon Entropy Numerically

<table>
<thead>
<tr>
<th>Condition</th>
<th>(F_i(\bar{L}))</th>
</tr>
</thead>
</table>
| \(C_1 = h < l \land h < l_1 \) | \[
\begin{align*}
F_1(\bar{L}) = \begin{cases}
8 & : l > 8 \land l_1 > 8 \\
 l - 1 & : 1 \leq l \leq 8 \land l \leq l_1 \\
l_1 - 1 & : 1 \leq l_1 \leq 8 \land l_1 < l
\end{cases}
\end{align*}
\] |
| \(C_2 = h < l \land h \geq l_1 \) | \[
\begin{align*}
F_2(\bar{L}) = \begin{cases}
8 & : l_1 < 1 \land 8 < l \\
l - l_1 & : 1 \leq l_1 \leq l \leq 8 \\
l_1 - 1 & : l_1 < 1 \land l \leq 8 \\
 9 - l_1 & : 1 \leq l_1 \leq 8 < l
\end{cases}
\end{align*}
\] |
| \(C_3 = h \geq l \land h < l_2 \) | \[
\begin{align*}
F_3(\bar{L}) = \begin{cases}
8 & : l < 1 \land 8 < l_2 \\
l_2 - l & : 1 \leq l \leq l_2 \leq 8 \\
l_2 - 1 & : 1 \leq l \leq l_2 \leq 8 \\
 9 - l & : 1 \leq l \leq 8 < l_2
\end{cases}
\end{align*}
\] |
| \(C_4 = h \geq l \land h \geq l_2 \) | \[
\begin{align*}
F_4(\bar{L}) = \begin{cases}
8 & : l < 1 \land l_2 < 1 \\
 9 - l & : 1 \leq l \leq 8 \land l_2 < l \\
 9 - l_2 & : 1 \leq l_2 \leq 8 \land l \leq l_2
\end{cases}
\end{align*}
\] |

\[\mathcal{H}(\bar{L}) = \frac{F_1(\bar{L})}{8} \]
Maximizing Shannon Entropy Numerically

<table>
<thead>
<tr>
<th>Condition</th>
<th>Expression $F_i(\bar{l})$</th>
</tr>
</thead>
</table>
| $C_1 = h < l \land h < l_1$ | $F_1(\bar{l}) = \begin{cases}
0 : l > 8 \land l_1 > 8 \\
1 : 1 \leq l \leq 8 \land l \leq l_1 \\
1 : 1 \leq l_1 \leq 8 \land l_1 < l
\end{cases}$ |
| $C_2 = h < l \land h \geq l_1$ | $F_2(\bar{l}) = \begin{cases}
0 : l_1 < 1 \land 8 < l \\
l - l_1 : 1 \leq l_1 \leq l \leq 8 \\
l - 1 : l_1 < 1 \leq l \leq 8 \\
9 - l_1 : 1 \leq l_1 \leq 8 < l
\end{cases}$ |
| $C_3 = h \geq l \land h < l_2$ | $F_3(\bar{l}) = \begin{cases}
0 : l < 1 \land 8 < l_2 \\
l_2 - l : 1 \leq l \leq l_2 \leq 8 \\
l_2 - 1 : l < 1 \leq l_2 \leq 8 \\
9 - l : 1 \leq l \leq 8 < l_2
\end{cases}$ |
| $C_4 = h \geq l \land h \geq l_2$ | $F_4(\bar{l}) = \begin{cases}
0 : l < 1 \land l_2 < 1 \\
9 - l : 1 \leq l \leq 8 \land l_2 < l \\
9 - l_2 : 1 \leq l_2 \leq 8 \land l \leq l_2
\end{cases}$ |

$H(\bar{L}) = \frac{F_1(\bar{L})}{8} \log_2 \frac{8}{F_1(\bar{L})} + \frac{F_2(\bar{L})}{8} \log_2 \frac{8}{F_2(\bar{L})} + \frac{F_3(\bar{L})}{8} \log_2 \frac{8}{F_3(\bar{L})} + \frac{F_4(\bar{L})}{8} \log_2 \frac{8}{F_4(\bar{L})}$
Maximizing Shannon Entropy Numerically

\[H(\bar{L}) = \frac{F_1(\bar{L})}{8} \log_2 \frac{8}{F_1(\bar{L})} + \frac{F_2(\bar{L})}{8} \log_2 \frac{8}{F_2(\bar{L})} + \frac{F_3(\bar{L})}{8} \log_2 \frac{8}{F_3(\bar{L})} + \frac{F_4(\bar{L})}{8} \log_2 \frac{8}{F_4(\bar{L})} \]
Maximizing Shannon Entropy Numerically

\[H(\bar{L}) = \frac{F_1(\bar{L})}{8} \log_2 \frac{8}{F_1(\bar{L})} + \frac{F_2(\bar{L})}{8} \log_2 \frac{8}{F_2(\bar{L})} + \frac{F_3(\bar{L})}{8} \log_2 \frac{8}{F_3(\bar{L})} + \frac{F_4(\bar{L})}{8} \log_2 \frac{8}{F_4(\bar{L})} \]

Numerically maximize \(H(\bar{L}) \)

\(\bar{L} = \langle 4, 2, 6 \rangle \)
Maximizing Shannon Entropy Numerically

\[
H(\bar{L}) = \frac{F_1(\bar{L})}{8} \log_2 \frac{8}{F_1(\bar{L})} + \frac{F_2(\bar{L})}{8} \log_2 \frac{8}{F_2(\bar{L})} + \frac{F_3(\bar{L})}{8} \log_2 \frac{8}{F_3(\bar{L})} + \frac{F_4(\bar{L})}{8} \log_2 \frac{8}{F_4(\bar{L})}
\]

Numerically maximize \(H(\bar{L}) \)

\[
\bar{L} = \langle 4, 2, 6 \rangle
\]

First two steps of optimal binary search attack on 8 secrets.
Finding Best Attack Tree
Method 3
Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).

Optimization version of SAT.

MaxH-MARCO algorithm:
1. Exhaustive enumeration of maximal partitions of the secret h.
2. Compute Shannon entropy for each maximal partition, select the one with largest Entropy.

MSS solution \Rightarrow maximize Shannon entropy.
Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).

Optimization version of SAT.
Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).

Optimization version of SAT.

MaxH-MARCO algorithm:
Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).

Optimization version of SAT.

MaxH-MARCO algorithm:

1. Exhaustive enumeration of maximal partitions of the secret h.
Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).

Optimization version of SAT.

MaxH-MARCO algorithm:

1. Exhaustive enumeration of maximal partitions of the secret h.
2. Compute Shannon entropy for each maximal partition,
Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).

Optimization version of SAT.

MaxH-MARCO algorithm:

1. Exhaustive enumeration of maximal partitions of the secret h.
2. Compute Shannon entropy for each maximal partition, select the one with largest Entropy.
Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).

Optimization version of SAT.

MaxH-MARCO algorithm:

1. Exhaustive enumeration of maximal partitions of the secret h.
2. Compute Shannon entropy for each maximal partition, select the one with largest Entropy.

MSS solution \Rightarrow maximize Shannon entropy.
Finding Best Attack Tree
Finding Best Attack Tree
3 Methods
Finding Best Attack Tree
3 Methods
Do they work?
Finding Best Attack Tree
3 Methods

Do they work?

Yes
Implementation

- Java Symbolic Pathfinder (JPF / SPF) for symbolic execution.
- Specialized listeners for tracking observables (time, space).
- Latte and Barvinok for model counting path constraints.
- Max-SMT (Z3), MARCO (java + Z3) MSS.
- Mathematica’s NMAXIMIZE for numeric maximization.
- Heuristics: top-down greedy optimization.
Case study: Law Enforcement Employment Database

From DARPA Space-Time Analysis for Cybersecurity (STAC)

Server

- 41 classes, 2844 line of code.
- stores all employee records by ID in a database.
- Some employee IDs have restricted access.

Client

Commands available for users: SEARCH, INSERT, GET, PUT, …

SEARCH a b has a timing channel: adaptive range query attack.
Case study: Law Enforcement Employment Database

Domain: 100 possible IDs in database (6.541 bits)
Case study: Law Enforcement Employment Database

Domain: 100 possible IDs in database (6.541 bits)

MAX-SMT

- Attack tree depth: 17 (complete attack)
- Running time: 21s
Case study: Law Enforcement Employment Database

Domain: 100 possible IDs in database (6.541 bits)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Attack tree depth</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX-SMT</td>
<td>17 (complete attack)</td>
<td>21s</td>
</tr>
<tr>
<td>Numeric Entropy Maximization</td>
<td>7 (complete attack)</td>
<td>57s</td>
</tr>
</tbody>
</table>
Case study: Law Enforcement Employment Database

Domain: 100 possible IDs in database (6.541 bits)

<table>
<thead>
<tr>
<th>Method</th>
<th>Attack tree depth</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX-SMT</td>
<td>17 (complete attack)</td>
<td>21s</td>
</tr>
<tr>
<td>Numeric Entropy Maximization</td>
<td>7 (complete attack)</td>
<td>57s</td>
</tr>
<tr>
<td>Max SAT Subsets</td>
<td>7 (complete attack)</td>
<td>2m 36s</td>
</tr>
</tbody>
</table>
Case study: Law Enforcement Employment Database

Domain: 1,000,000 possible IDs in database (19.9 bits)
Case study: Law Enforcement Employment Database

Domain: 1,000,000 possible IDs in database (19.9 bits)

MAX-SMT

- Attack tree depth: 17
- Incomplete attack: leaks at most 12.5 out of 19.9 bits
- Running time: 18m 31s
Case study: Law Enforcement Employment Database

Domain: 1,000,000 possible IDs in database (19.9 bits)

<table>
<thead>
<tr>
<th>MAX-SMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Attack tree depth: 17</td>
</tr>
<tr>
<td>➤ Incomplete attack: leaks at most 12.5 out of 19.9 bits</td>
</tr>
<tr>
<td>➤ Running time: 18m 31s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric Entropy Maximization</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Attack tree depth: 11</td>
</tr>
<tr>
<td>➤ Incomplete attack: leaks 10.0 out of 19.9 bits</td>
</tr>
<tr>
<td>➤ Running time: 15m 8s</td>
</tr>
<tr>
<td>Method</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>MAX-SMT</td>
</tr>
<tr>
<td>Numeric Entropy Maximization</td>
</tr>
<tr>
<td>Max SAT Subsets</td>
</tr>
</tbody>
</table>

Does not scale to this domain.
More Case Studies

We synthesized attacks for:

- ModPow used in RSA
- Compression Ratio Information Leak Made Easy (CRIME)
- `java.util.Arrays.equal()` (segment oracle attack)
Conclusions

- Symbolic execution of adversary model to get constraint tree.
- Solve optimization problem to get low inputs to maximize leakage: attack tree.
- MAX-SMT
 Symbolic Model Counting + Numeric Maximization
 Max-SAT-Subsets
- Experimentally validated our approach.
Questions?

Thank you.