1. Consider a transition system with two states encoded using a single boolean variable x, where the initial state is x and the transition relation is defined as $x \land \neg x' \lor \neg x \land x'$.

(a) Show the Boolean logic formula that corresponds to unrolling the above transition system twice starting from the initial state.

(b) Assume that we would like to check the property $EX(EX(\neg x))$. Using the result from part (a), construct a boolean logic formula F that is satisfiable if the initial state satisfies the property. Give a satisfying assignment to the variables in the formula F if F is satisfiable.

(c) Now, assume that we would like to check the property $EF(x)$. Again, using the result from part (a), construct a boolean logic formula F that is satisfiable if the initial state satisfies the formula $EF(x)$ within two steps of execution. Give a satisfying assignment to the variables in the formula F if F is satisfiable.

2. Given the following piece of code:

```plaintext
x=y;
while (x < z) {
    x++;
}
assert(x == z);
```

demonstrate the verification approach used by the CBMC model checker by 1) converting it to a loop free code by unwinding the loop 2 times, 2) converting the resulting code the static single assignment form, 3) generating the constraint for the verification of the assertion. Determine if the generated constraint is satisfiable and give a satisfying assignment if it is.

3. Consider the following two transition systems:

$M_1 = (AP, S, R, S_0, L)$ with the set of states $S = \{0, 1, 2, 3\}$, the initial set of states $S_0 = \{0\}$, the transition relation $R = \{(0, 1), (1, 2), (2, 3), (1, 0), (3, 2)\}$, the set of atomic propositions $AP = \{p, q\}$ and the labeling function $L : S \rightarrow 2^{AP}$ where $L(0) = \{p\}$, $L(1) = \{p\}$, $L(2) = \{q\}$, and $L(3) = \{q\}$.

$M_2 = (AP, S, R, S_0, L)$ with the set of states $S = \{0, 1\}$, the initial set of states $S_0 = \{0\}$, the transition relation $R = \{(0, 0), (0, 1), (1, 1)\}$, the set of atomic propositions $AP = \{p, q\}$ and the labeling function $L : S \rightarrow 2^{AP}$ where $L(0) = \{p\}$, and $L(1) = \{q\}$.

Is there a simulation relation between M_2 and M_1? If there is, show the relation.

Determine if M_2 satisfies AGp, AGq, AFp, AFq by identifying the states of M_2 that satisfy these properties. Given these results, can you determine if M_1 satisfies these properties?
4. Assume that you are given the statement “\(y := x + 1 \)” and two predicates \(y > x \) and \(y > 0 \). Show how predicate abstraction technique would abstract this statement by 1) computing the preconditions, 2) checking the implications, and 3) generating the abstract code. (Assume that \(x \) and \(y \) are unbounded integer variables). In the second step (checking the implications) use the web interface for the Z3 theorem prover which is available at: http://rise4fun.com/z3

In addition to results of the steps 1, 2 and 3, turn in the formulas that you checked with Z3.

5. Consider the following two papers:

Briefly explain the verification techniques used in these papers. Compare and contrast the verification techniques used in these papers and discuss their advantages and disadvantages.