CS 267: Automated Verification

Lecture 1: Brief Introduction. Transition Systems. Temporal Logic LTL.

Instructor: Tevfik Bultan
What do these people have in common?

2013 Leslie Lamport
2007 Clarke, Edmund M
2007 Emerson, E Allen
2007 Sifakis, Joseph
1996 Pnueli, Amir
1991 Milner, Robin
1980 Hoare, C. Antony R.
1978 Floyd, Robert W
1972 Dijkstra, E. W.
State of the art in automated verification: Model Checking

- What is model checking?
 - Automated verification technique
 - Focuses on bug finding rather than proving correctness
 - The basic idea is to exhaustively search for bugs in software
 - Has many flavors
 - Explicit-state model checking
 - Symbolic model checking
 - Bounded model checking
Hardware to Software Model Checking

• In 90s model checking was mainly used in industry as a technique for analyzing hardware designs
 – Most hardware companies had their in house automated verification tools
• In the last ten years very promising results have been obtained in verification of software
 – Microsoft started using a model checker to verify device drivers
 • Based on a research project from Microsoft Research
 – Model checking tools found numerous bugs in Linux code
Is There More Research Left To Do?

• Model checking does not scale very well
 – To verify a program you need to investigate all possible states (configurations) of the program somehow
 – In theory: infinite state \Rightarrow undecidable
 – In practice: finite but large number of states \Rightarrow run out of memory
• We look for ways to reduce the state space while showing that properties we are interested are preserved in the transformed system
 – symbolic representations
 – modularity
 – abstraction
 – symmetry reduction, etc.
Beyond Model Checking

• Promising results obtained in the model checking area created a new interest in automated verification

• Nowadays, there is a wide spectrum of verification/analysis/testing techniques with varying levels of power and scalability
 – Bounded verification using SAT solvers
 – Symbolic execution using Satisfiability Modulo Theories (SMT) solvers
 – Dynamic symbolic execution (aka concolic execution)
 – Various types of symbolic analysis: shape analysis, string analysis, size analysis, etc.

• Taking this course should give you a better understanding of all these techniques
What to Verify

• Before we start talking about automated verification techniques, we need to identify what we want to verify

• It turns out that this is not a very simple question

• For the rest of this lecture we will discuss issues related to this question
A Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter a critical section without violating mutual exclusion

```
Process 1:
while (true) {
    out:  a := true; turn := true;
    wait: await (!b or !turn);
    cs:   a := false;
}
||
Process 2:
while (true) {
    out:  b := true; turn := false;
    wait: await (!a or turn);
    cs:   b := false;
}
```
Reactive Systems: A Very Simple Model

- We will use a very simple model for reactive systems

- A reactive system generates a set of *execution paths*

- An execution path is a concatenation of the states (configurations) of the system, starting from some *initial state*

- There is a *transition relation* which specifies the *next-state* relation, i.e., given a state what are the states that can follow that state
State Space

• The state space of a program can be captured by the valuations of the variables and the program counters

• For our example, we have
 – two program counters: \(pc_1, \; pc_2 \)
 domains of the program counters: \{out, wait, cs\}
 – three boolean variables: \(\text{turn}, \; a, \; b \)
 boolean domain: \{True, False\}

• Each \textit{state} of the program is a valuation of all the variables
State Space

• Each state can be written as a tuple
 \((pc_1, pc_2, turn, a, b)\)

• Initial states: \{ (o, o, F, F, F), (o, o, F, F, T), (o, o, F, T, F), (o, o, F, T, T), (o, o, T, F, F), (o, o, T, F, T), (o, o, T, T, F), (o, o, T, T, T) \}
 - initially: \(pc_1 = o\) and \(pc_2 = o\)

• How many states total?
 \(3 \times 3 \times 2 \times 2 \times 2 = 72\)
 exponential in the number of variables and the number of concurrent components
Transition Relation

- Transition Relation specifies the next-state relation, i.e., given a state what are the states that can come immediately after that state.
- For example, given the initial state \((o, o, F, F, F)\)

 Process 1 can execute:

  ```
  out:  a := true; turn := true;
  ```
 or Process 2 can execute:

  ```
  out:  b := true; turn := false;
  ```

- If process 1 executes, the next state is \((w, o, T, T, F)\)
- If process 2 executes, the next state is \((o, w, F, F, T)\)
- So the state pairs \(((o, o, F, F, F), (w, o, T, T, F))\) and \(((o, o, F, F, F), (o, w, F, F, T))\) are included in the transition relation.
Transition Relation

The transition relation is like a graph, edges represent the next-state relation:

- Transition from (o, o, F, F, F) to (o, w, F, F, T)
- Transition from (o, o, F, F, F) to (o, c, F, F, T)
- Transition from (w, o, T, T, F) to (w, w, T, T, T)
Transition System

• A *transition system* $T = (S, I, R)$ consists of
 – a set of states S
 – a set of initial states $I \subseteq S$
 – and a transition relation $R \subseteq S \times S$

• A common assumption in model checking
 – R is total, i.e., for all $s \in S$, there exists s' such that $(s, s') \in R$
Execution Paths

• A **path** in $T = (S, I, R)$ is an infinite sequence of states
 $x = s_0, s_1, s_2, ...$
 such that for all $i \geq 0$, $(s_i, s_{i+1}) \in R$

Notation: For any path x

x_i denotes the i'th state on the path (i.e., s_i)
x^i denotes the i'th suffix of the path (i.e., $s_i, s_{i+1}, s_{i+2}, ...$)

• An **execution path** in $T = (S, I, R)$ is a path x in $T = (S, I, R)$
 where $x_0 \in I$
Execution Paths

A possible execution path:

\[
\left((\circ, \circ, F, F, F), \ (\circ, w, F, F, T), \ (\circ, c, F, F, T) \right)^\omega
\]

(\omega means repeat the above three states infinitely many times)
Temporal Logics

• Pnueli proposed using temporal logics for reasoning about the properties of reactive systems

• Temporal logics are a type of modal logics
 – Modal logics were developed to express modalities such as “necessity” or “possibility”
 – Temporal logics focus on the modality of temporal progression

• Temporal logics can be used to express, for example, that:
 – an assertion is an invariant (i.e., it is true all the time)
 – an assertion eventually becomes true (i.e., it will become true sometime in the future)
Temporal Logics

• We will assume that there is a set of basic (atomic) properties called AP
 – These are used to write the basic (non-temporal) assertions about the program
 – Examples: \(a = \text{true}, \ pc0 = c, \ x = y + 1 \)

• We will use the usual boolean connectives: \(\neg, \land, \lor \)

• We will also use four temporal operators:
 - **Invariant** \(p \) : \(G \ p \) (aka \(\square p \)) (Globally)
 - **Eventually** \(p \) : \(F \ p \) (aka \(\Diamond p \)) (Future)
 - **Next** \(p \) : \(X \ p \) (aka \(\bigcirc p \)) (neXt)
 - **Until** \(p \) ** Until ** \(q \) : \(p \ U \ q \)
Atomic Properties

• In order to define the semantics we will need a function L which evaluates the truth of atomic properties on states:

\[L : S \times AP \to \{ \text{True, False} \} \]

\[L((o,o,F,F,F), pc1=o) = \text{True} \]
\[L((o,o,F,F,F), pc1=w) = \text{False} \]
\[L((o,o,F,F,F), \text{turn}) = \text{False} \]
\[L((o,o,F,F,F), \text{turn=false}) = \text{True} \]
Linear Time Temporal Logic (LTL) Semantics

Given a path \(x \) and LTL properties \(p \) and \(q \)

\[
\begin{align*}
x |\ =\ p & \iff L(x_0, p) = \text{True}, \text{ where } p \in AP \\
x |\ =\ \neg p & \iff \text{not } x |\ =\ p \\
x |\ =\ p \land q & \iff x |\ =\ p \text{ and } x |\ =\ q \\
x |\ =\ p \lor q & \iff x |\ =\ p \text{ or } x |\ =\ q \\
x |\ =\ X p & \iff x^1 |\ =\ p \\
x |\ =\ G p & \iff \text{for all } i \geq 0, \ x^i |\ =\ p \\
x |\ =\ F p & \iff \text{there exists an } i \geq 0 \text{ such that } x^i |\ =\ p \\
x |\ =\ p \lor U q & \iff \text{there exists an } i \geq 0 \text{ such that } x^i |\ = q \text{ and } \\
& \text{for all } 0 \leq j < i, \ x^j |\ = p
\end{align*}
\]
LTL Properties

- $X p$
- $G p$
- $F p$
- $p U q$
Example Properties

mutual exclusion: $G\ (\neg (pc1=c \land pc2=c))$

starvation freedom:

$G(pc1=w \Rightarrow F(pc1=c)) \land G(pc2=w \Rightarrow F(pc2=c))$

Given the execution path:

$x = ((o, o, F, F, F), (o, w, F, F, T), (o, c, F, F, T))^{\omega}$

$x |= pc1=o$
$x |= X (pc2=w)$
$x |= F (pc2=c)$
$x |= (\neg turn) U (pc2=c \land b)$
$x |= G (\neg (pc1=c \land pc2=c))$
$x |= G(pc1=w \Rightarrow F(pc1=c)) \land G(pc2=w \Rightarrow F(pc2=c))$
LTL Equivalences

• We do not really need all four temporal operators
 – X and U are enough (i.e., X, U, AP and boolean connectives form a basis for LTL)

\[F p = \text{true} U p \]

\[G p = \neg (F \neg p) = \neg (\text{true} U \neg p) \]
LTL Model Checking

- Given a transition system T and an LTL property p
 \[T |= p \iff \text{for all execution paths } x \text{ in } T, \ x |= p \]

For example:
\[T |=? G (\neg (pc1=c \land pc2=c)) \]
\[T |=? G(pc1=w \Rightarrow F(pc1=c)) \land G(pc2=w \Rightarrow F(pc2=c)) \]

Model checking problem: Given a transition system T and an LTL property p, determine if T is a model for p (i.e., if $T |= p$)