CS 267: Automated Verification

Lectures 14, 15: Alloy Analyzer

Instructor: Tevfik Bultan

Alloy: A Modeling Language

Alloy is a formal modeling language
Alloy has formal syntax and semantics

Alloy specifications are written in ASCII

— There is also a visual representation (similar to UML class
diagrams and entity-relationship diagrams) but the visual
representation does not have the expressiveness of the whole
language

Alloy has a verification tool called Alloy Analyzer which can be used
to automatically analyze properties of Alloy models

Alloy: A Modeling Language

Alloy targets formal specification of object oriented data models

It can be used for data modeling in general

— It is good at specifying classes objects, the associations among
them, and constraints on those associations

It is most similar to UML class diagrams combined with OCL (Object
Constraint Language)

— However, it has a simpler and cleaner semantics than UML/OCL
and it is also supported by a verification tool (Alloy Analyzer)

Alloy Analyzer

« Alloy Analyzer is a verification tool that analyzes Alloy specifications

|t uses bounded verification

— It limits the number of objects in each class to a fixed number and
checks assertions about the specification within that bound

« It uses a SAT-solver to answer verification queries

— It converts verification queries to satisfiability of Boolean logic
formulas and calls a SAT solver to answer them

Alloy and Alloy Analyzer

Alloy and Alloy Analyzer were developed by Daniel Jackson’ s group
at MIT

References

— “Alloy: A Lightweight Object Modeling Notation”
Daniel Jackson, ACM Transactions on Software Engineering and

Methodology (TOSEM), Volume 11, Issue 2 (April 2002), pp. 256-
290.

— “Software Abstractions: Logic, Language and Analysis” by Daniel
Jackson. MIT Press, 20006.

Unfortunately, the TOSEM paper is based on the old syntax of Alloy

— The syntax of the Alloy language is different in the more recent
versions of the tool

— Documentation about the current version of Alloy is available
here: http://alloy.mit.edu/

— My slides are based on the following tutorial
http://alloy.mit.edu/alloy/tutorials/online

An Alloy Object Model for a Family Tree

Married

siblings

l

Person

abstract

Ohusband

Name

name !
fatii;/::::/ \\:::\Qi:her

wife °?

»

Woman

Basics of Alloy Semantics

« Each box denotes a set of objects (atoms)
— Corresponds to an object class in UML/OCL
— In Alloy these are called signatures

* An object is an abstract, atomic and unchanging entity

* The state of the model is determined by
— the relationships among objects and
— the membership of objects in sets
— these can change in time

Subclasses are subsets

An arrow with unfilled head denotes a subset Z>
— Man, Woman, Married are subsets of Person

— This corresponds to sub-classes in UML/OCL

The keyword extends indicates disjoint subsets

— This is the default, if a subset is not labeled, then it is assumed to
extend

— Man and Woman are disjoint sets (their intersection is empty)
* There is no Person who is a Woman and a Man

The keyword in indicates subsets, not necessarily disjoint from each
other (or other subsets that extend)

— Married and Man are not disjoint
— Married and Woman are not disjoint

Signatures

In Alloy sets of atoms such as Man, Woman, Married, Person are
called signatures

— Signatures correspond to object classes

A signature that is not subset of another signature is a top-level
signature

Top-level signatures are implicitly disjoint
— Person and Name are top-level signatures
* They represent disjoint sets of objects
Extensions of a signature are also disjoint
— Man and Woman are disjoint sets

An abstract signature has no elements except those belonging to its
extensions

— There is no Person who is not a Man or a Woman

Class associations are relations

Arrows with a small filled arrow head denote relations T

For example, name is a relation that maps Person to Name

« Relations are expressed as fields of signatures
— These correspond to associations in UML-OCL

— They express relations between object classes

Multiplicity

« Markings at the ends of relation arrows denote the multiplicity
constraints

— * means zero or more (default, keyword set)
— ? means zero or one (keyword lone)

— ! means exactly one (keyword one)

— 4+ means one or more (keyword some)

— If there is no marking, the multiplicity is *

« name mMaps each Person to exactly one Name (based on the mark
at the Name end of the arrow denoting the name relationship)

« name mMmaps zero or more members of Person to each Name
(based on the omission of the mark at the Person end)

Textual Representation

* Alloy is a textual language

— The graphical notation is just a useful way of visualizing the
specifications but it is not how you write an Alloy model

« The textual representation represents the Alloy model completely

— I.e., the graphical representation is redundant, it can be used to
visualize a model but it is not used to specify a model

Alloy Object Model for a Family Tree

module language/Family
sig Name { }

abstract sig Person ({
name: one Name,
siblings: Person,
father: lone Man,
mother: lone Woman
}

sig Man extends Person {
wife: lone Woman

}

sig Woman extends Person
husband: lone Man
}

sig Married in Person {

}

Signatures

Textual representation starts with sig declarations defining the
signatures (sets of atoms)

— You can think of signatures as object classes, each signature
represents a set of objects

Multiplicity:
— set Zero or more
- one exactly one

— lone Zero or one
— some one or more

extends and in are used to denote which signature is subset of
which other signature

— Corresponding to arrow with unfilled head
— extends denotes disjoint subsets

Signatures

sig A {}
set of atoms A

intersection
sig A {}
sig B {} j
disfoint sets A and B. As an Alloy expression we can write: no A & B
(Alloy expressions are discussed in later slides)

sig A, B {}

same as above subset
sig B extends A {} l
set B is a subset of A. As an Alloy epxression: B in A
i logical and
sig B extends A {}
sig C extends A {} l

B and C are disjoint subsets of A: B in A && C in A && no B & C

sig B, C extends A {}
same as above

Signatures

abstract sig A {}

union
sig B extends A {} j
sig C extends A {}
A partitioned by disjoint subsets Band C: no B & C && A = (B + C)

sig B in A {}
B is a subset of A, not necessatrily disjoint from any other set

sig C in A + B {}
C is a subset of the union of Aand B: ¢ in A + B

one sig A {}

lone sig B {}

some sig C {}
A is a singleton set
B is a singleton or empty
C is a non-empty set

Fields are Relations

* The fields define relations among the signatures

— Similar to a field in an object class that establishes a relation
between objects of two classes

— Similar to associations in UML/OCL

» Visual representation of a field is an arrow with a small filled arrow T
head

Fields Are Relations

sig A {f: e}
fis a binary relation with domain A and range given by expression e
each element of A is associated with exactly one element from e
(i.e., the default cardinality is one)

all a: A | a.f: one e

sig A {
fl: one el,
f2: lone e2,
f3: some e3,
f4: set e4
}

Multiplicities correspond to the following constraint, where m could be
one, lone, some, Or set

all a: A | a.f : m e

Fields

sig A {f, g: e}
two fields with the same constraint

sig A {f: el m -> n e2}

a field can declare a ternary relation, each tuple in the relation f has
three elements (one from A, one from e1 and one from e2), m and
n denote the cardinalities of the sets

all a: A | a.f : el m -> n e?

sig AdressBook {
names: set Name,
addrs: names -> Addr

}

In definition of one field you can use another field defined earlier
(these are called dependent fields)

(all b: AddressBook | b.addrs: b.names -> Addr)

Alloy Object Model for a Family Tree

module language/Family

sig Name { }

abstract sig Person {
name: one Name,
siblings: Person,
father: lone Man,
mother: lone Woman
}

sig Man extends Person {
wife: lone Woman
}

sig Woman extends Person
husband: lone Man

}

sig Married extends Person {

}

transitive closure
fact { z///
no p: Person | p in p.” (mother + father)
wife = ~husband

} \

transpose

Facts

After the signatures and their fields, facts are used to express
constraints that are assumed to always hold

Facts are not assertions, they are constraints that restrict the model
— Facts are part of our specification of the system

— Any configuration that is an instance of the specification has to
satisfy all the facts

Facts

fact { F }

fact £ { F }
Facts can be written as separate paragraphs and can be named.

SigA { ... }{ F }
Facts about a signature can be written immediately after the signature

Signature facts are implicitly quantified over the elements of the
signature

It is equivalent to:
fact {all a: A | F}
where any field of A in F is replaced with a.field in F’

Facts

sig Host {}
sig Link {from, to: Host}

fact {all x: Link | x.from != x.to}
no links from a host to itself

fact noSelflinks {all x: Link | x.from != x.to}

same as above

sig Link {from, to: Host} {from != to}
same as above, with implicit 'this.’

Functions

fun f[(x1l: el, ..., xXn: en] : e { E }

« A function is a named expression with zero or more arguments

— When it is used, the arguments are replaced with the instantiating
expressions

fun grandpas|[p: Person] : set Person {
p. (mother + father) .father

}

Predicates

pred pl[xl: el, ..., xn: en] { F }

« A predicate is a named constraint with zero or more arguments

— When it is used, the arguments are replaced with the instantiating
expressions

fun grandpas|[p: Person] : set Person {

let parent = mother + father + father.wife +
mother.husband | p.parent.parent & Man

}

pred ownGrandpal[p: Person] {
p in grandpas|[p]
}

Assertions

assert a { F }

Assertions are constraints that were intended to follow from facts of the
model

You can use Alloy analyzer to check the assertions

sig Node {
children: set Node
}
one sig Root extends Node {}
fact { reflexive transitive closure
Node in Root.*children
}
// 1invalid assertion:
assert someParent {
all n: Node | some children.n
}
// valid assertion:
assert someParent {
all n: Node - Root | some children.n

}

Assertions

In Alloy, assertions are used to specify properties about the
specification

Assertions state the properties that we expect to hold

After stating an assertion we can check if it holds using the Alloy
analyzer (within a given scope)

Check command

assert a { F }
check a scope

« Assert instructs Alloy analyzer to search for counterexample to
assertion within scope

— Looking for counter-example means looking for a solution to
M && !'F where M is the formula representing the model

check a
top-level sigs bound by 3
check a for default
top-level sigs bound by default
check a for default but list
default overridden by bounds in list
check a for Ilist

sigs bound in list

Check Command

abstract sig Person {}
sig Man extends Person {}
sig Woman extends Person ({}

sig Grandpa extends Man {}

check a

check a for 4

check a for 4 but 3 Woman

check a for 4 but 3 Man, 5 Woman
check a for 4 Person

check a for 4 Person, 3 Woman

check a for 3 Man, 4 Woman

check a for 3 Man, 4 Woman, 2 Grandpa

Check Example

fact {
no p: Person | p 1in p.” (mother + father)
no (wife + husband) & ~ (mother + father)
wife = ~husband
}

assert noSelfFather {
no m: Man | m = m.father

}
check noSelfFather

Run Command

pred plix: X, y: Y, ...] { F }
run p scope
Instructs analyzer to search for instance of a predicate within scope

If the model is represented with formula M, run finds solution to
M && (some x: X, y: Y, ... | F)

fun f[x: X, y: Y, ...] : R { E }

run f scope
Instructs analyzer to search for instance of function within scope
If model is represented with formula M, run finds solution to

M && (some x: X, y: Y, ., result: R | result = E)

Alloy Object Model for a Family Tree

module language/Family

sig Name { }

abstract sig Person {
name: one Name,
siblings: Person,
father: lone Man,
mother: lone Woman
}

sig Man extends Person {
wife: lone Woman
}

sig Woman extends Person
husband: lone Man
}

sig Married extends Person {

}
fact {

no p: Person | p in p.” (mother + father)
no (wife + husband) & * (mother + father)
wife = ~husband

Predicate Simulation

fun grandpas|[p: Person] : set Person {

let parent = mother + father + father.wife +
mother.husband | p.parent.parent & Man

}

pred ownGrandpal[p: Person] {
P in grandpas|[p]
}

run ownGrandpa for 4 Person

Predicate Simulation

fun grandpas|[p: Person] : set Person {

let parent = mother + father + father.wife +
mother.husband | p.parent.parent & Man

}

pred ownGrandpal[p: Person] {
P in grandpas|[p]
}

run ownGrandpa for 4 Person

mother

ownGrandpa father

Alloy Expressions

Expressions in Alloy are expressions in Alloy’s logic

atoms are Alloy's primitive entities
— indivisible, immutable, uninterpreted

relations associate atoms with one another
— set of tuples, tuples are sequences of atoms

every value in Alloy logic is a relation!
— relations, sets, scalars are all the same thing

Everything is a relation

sets are unary (1 column) relations
Person = {(PO), (P1l), (P2)}
Name = {(NO), (N1), (N2), (N3)}

scalars are singleton sets
myName = { (N1) }
yourName = { (N2) }

binary relation
name = { (PO, NO), (P1, NO), (P2, N2)}

Alloy also allows relations with higher arity (like ternary relations)

Constants

none
univ

iden

Person

Name
none
univ

iden

N1),

{ (NO)
{}
{ (PO)

{ (PO,
(NZ,

emply set
universal set
identity relation

, (P1), (P2),
pO), (P1, P1),

N2), (N3,N3)

}

{(PO), (P1), (P2)}
, (N1), (N2),

(N3) }

(NO) ,
(P2,

(N1),
P2),

(N2) ,

(NO,

NO) ,

(N3) }

(N1,

Set Declarations

X: m e X is a subset of e and its cardinality
(size) is restricted to be m

m can be:
set any number
one exactly one (default)

lone zero or one
some one or more

x: e Isequivalentto x: one e

SomePeople: set Person
SomePeople is a subset of the set Person

|

in

Set Operators

union
intersection
difference
subset

equality

Product Operator

-> cross product

Person = {(P0O), (P1l)}
Name = {(NO), (N1)}
Address = { (AQ) }

Person -> Name =
{(p0O, NO), (PO, NI1), (P1, NO), (P1, NI)}

Person -> Name -> Adress =
{(pO, NO, AO), (PO, N1, AO), (P1, NO, AO0),
(P1, N1, AO0)}

Relation Declarations with Multiplicity

r: Am > n B cross product with multiplicity constraints
m and n can be one, lone, some, set

r: A > B is equivalent to (default multiplicity is set)
r: A set > set B

r: A m > n B Iisequivalent to:

r: A > B
all a: A | n a.r
all b: B | m r.b

Relation Declarations with Multiplicity

: A > one B

ris a function with domain A

: A one > B

ris an injective relation with range B

: A > lone B

ris a function that is partial over the domain A
: A one > one B

ris an injective function with domain A and range B (a bijection from
A to B)

: A some > some B
ris a relation with domain A and range B

Relational Join (aka navigation)

p-9
dot is the relational join operator

Given two tuples (p1, ..., pp) inp and (qy, ..., 9y) in g where p,, = g
p.q contains the tuple (p4, ..., Pn-1, 92,---,0m)

(NO,DO) } = {(DO)}

(N1,DO)} = {}

(NO,DO), (NO,D1)}} = {(DO), (D1)}
1)}.{(NO,DO), (N1,D1), (N2,D3)}} = {(DO), (D1)}
). { (a0, DO)} = {(NO, DO)}

Box join
box join, box join can be defined using dot join

el[e2] = e2.el

a.b.c[d] = d. (a.b.c)

Unary operations on relations

~ transpose
A transitive closure
* reflexive transitive closure

these apply only to binary relations

r = rr + r.r + r.r.r + ...

*r = iden + “r

wife = {(MO,Wl), (M1, W2)}
{(wl,M0), (wz, M)}

~wife = husband

Relation domain, range, restriction

domain returns the domain of a relation

range returns the range of a relation

<: domain restriction (restricts the domain of a relation)
1> range restriction (restricts the range of a relation)

name = {(PO,N1), (P1,N2), (P3,N4), (P4, N2)}
domain (name) = { (PO), (P1l), (P3), (P4)}
range (name) = {(N1), (N2), (N4)}

somePeople = {(PO), (P1)}
someNames

I
—
Z
N
~
AN
—

name :> someNames = { (P1,N2), (P3,N4), (P4,N2)}

somePeople <: name= {(PO,N1), (P1,N2)}

Relation override

++ override
p ++ g = p - (domain(qg) <: p) + g

m' =m ++ (k > v)

update map m with key-value pair (k, v)

Boolean operators

I not negation

&& and conjunction

|| or disjunction

=> implies implication
else alternative

<=> 1iff bi-implication

four equivalent constraints:

F'=> G else H

F implies G else H

(F && G) || ((!'F) && H)

(F and G) or ((not F) and H)

Quantifiers

all x: e | F

all x: el, y: e2 | F

all x, y: e | F

all disj x, y: e | F F holds on distinct x and y

all F holds for every x in e

some F holds for at least one xin e
no F holds forno x in e

lone F holds for at most one x in e
one F holds for exactly one x in e

A File System Model in Alloy

// File system objects
abstract sig FSObject { }
sig File, Dir extends FSObject { }

// A File System
sig FileSystem ({
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: Dir -> FSObject

// live objects are reachable from the root
live in root.*contents

// parent 1is the inverse of contents
parent = ~contents

An Instance of the File System Specification

FileSystem = { (FSO0)}

FSObject = {(FO0), (F1), (F2), (F4), (DO), (D1)}
File = {(FO), (Fl1), (F2), (F4)}

Dir = {(DO), (D1l)}

live = {(FSO,F0O), (FSO,F1), (FSO,F2), (FSsO,DO), (FSO,D1)}
root = {(FS0,DO0)}

parent = { (FsSO,¥0,DO), (FSO,D1,DO0),
(FsO,F1,D1), (FSO,F2,D1)}

contents = {(FsO,DO0,F0), (FSsO,DO,D1),
(FsO,D1,F1), (FSO,D1,F2)}

A File System Model in Alloy

// Move x to directory d

pred move [fs, fs': FileSystem, x: FSObject, d: Dir] {
// precondition
(x + d) in fs.live
// postcondition

fs'.parent = fs.parent - x->(x. (fs.parent)) + x->d

File System Model in Alloy

// Delete the file or empty directory x
pred remove [fs, fs': FileSystem, x: FSObject] {
X in (fs.live - fs.root)

fs'.root = fs.root

fs'.parent = fs.parent - x->(x. (fs.parent))

// Recursively delete the directory X

pred removeAll [fs, fs': FileSystem, x: FSObject] {
X in (fs.live - fs.root)
fs'.root = fs.root
let subtree = x.*(fs.contents) |

fs'.parent = fs.parent - subtree->(subtree. (fs.parent))

File System Model in Alloy

// Moving doesn't add or delete any file system objects
moveQOkay: check {
all fs, fs': FileSystem, x: FSObject, d:Dir |
move[fs, fs', x, d] => fs'.live = fs.live

} for 5

// remove removes exactly the specified file or directory

removeOkay: check ({
all fs, fs': FileSystem, x: FSObject |

remove[fs, fs', x] => fs'.live = fs.live - x

} for 5

File System Model in Alloy

// removeAll removes exactly the specified subtree

removeAllOkay: check {
all fs, fs': FileSystem, d: Dir |
removeAll[fs, £s', d] =>
fs'.live = fs.live - d.*(fs.contents)

} for 5

// remove and removeAll has the same effects on files

removeAllSame: check {
all fs, fsl, fs2: FileSystem, f: File |
remove[fs, fsl, f] && removeAll[fs, £f£s2, f] =>
fsl.live = f£s2.1live

} for 5

Alloy Kernel

Alloy is based on a small kernel language
The language as a whole is defined by the translation to the kernel

It is easier to define and understand the formal syntax and semantics
of the kernel language

Alloy Kernel Syntax

formula ::=
elemFormula
| compFormula
| quantFormula

elemFormula ::=
expr 1in expr
expr = expr

compFormula ::=
not formula

formula syntax

elementary formulas
compound formulas
quantified formulas

subset
equality

negation (not)

formula and formula conjunction (and)

quantFormula ::=
all var : expr

formula wuniversal quantification

expr
re

D= expression syntax
1 relation
var quantified variable
none empty set

expr binop expr
unop expr

binary operators
union
& Intersection
- difference
join
-> product
D= unary operators

transpose
transitive closure

Alloy Kernel Semantics

Alloy kernel semantics is defined using denotational semantics

There are two meaning functions in the semantic definitions
— M: which interprets a formula as true or false
 M: Formula, Instance — Boolean
— E: which interprets an expression as a relation value
« E: Expression, Instance — RelationValue

Interpretation is given with respect to an instance that assigns a
relational value to each declared relation

Meaning functions take a formula or an expression and the instance
as arguments and return a Boolean value or a relation value

Analyzing Specifications

* Possible problems with a specification

— The specification is over-constrained: There is no model for the
specification

— The specification is under-constrained: The specification allows
some unintended behaviors

« Alloy analyzer has automated support for finding both over-constraint
and under-constraint errors

Analyzing Specifications

Remember that the Alloy specifications define formulas and given an
environment (i.e., bindings to the variables in the specification) the
semantics of Alloy maps a formula to true or false

An environment for which a formula evaluates to true is called a
model (or instance or solution) of the formula

If a formula has at least one model then the formula is consistent
(i.e., satisfiable)

If every (well-formed) environment is a model of the formula, then the
formula is valid

The negation of a valid formula is inconsistent

Analyzing Specifications

« Given a assertion we can check it as follows:

— Negate the assertion and conjunct it with the rest of the
specification
— Look for a model for the resulting formula, if there exists such a

model (i.e., the negation of the formula is consistent) then we call
such a model a counterexample

« Bad news
— Validity and consistency checking for Alloy is undecidable

 The domains are not restricted to be finite, they can be infinite,
and there is quantification

Analyzing Specifications

« Alloy analyzer provides two types of analysis:

— Simulation, in which consistency of an invariant or an operation is
demonstrated by generating an environment that models it

e Simulations can be used to check over-constraint errors: To
make sure that the constraints in the specification is so
restrictive that there is no environment which satisfies them

 The run command in Alloy analyzer corresponds to simulation

— Checking, in which a consequence of the specification is tested by
attempting to generate a counter-example

 The check command in Alloy analyzer corresponds to
checking

« Simulation is for determining consistency (i.e., satisfiability) and
Checking is for determining validity

— And these problems are undecidable for Alloy specifications

Trivial Example

« Consider checking the theorem
all x:X | some y:Y¥Y | X.r =y

« To check this formula we formulate its negation as a problem
r: X —>Y
'all x:X | some y:Y¥Y | Xx.r =y

 The Alloy analyzer will generate an environment such as
X = {X0, X1}

Y = {YO, Y1}
r = { (X0, Y0), (X0, Y1)}
x = {X1}

which is a model for the negated formula. Hence this environment is
a counterexample to the claim that the original formula is valid
The value X1 for the quantified variable x is called a Skolem

constant and it acts as a witness to the to the invalidity of the
original formula

Sidestepping Undecidability

Alloy analyzer restricts the simulation and checking operations to a
finite scope

— where a scope gives a finite bound on the sizes of the domains in

the specification (which makes everything else in the specification
also finite)

 Here is another way to put it:

— Alloy analyzer rephrases the consistency problem as: Does there

exist an environment within the given scope that is a model for
the formula

— Alloy analyzer rephrases the validity problem as: Are all the well-
formed environments within the scope a model for the formula

Validity and consistency problem within a finite scope are decidable
problems

— Simple algorithm: just enumerate all the environments and

evaluate the formula on all environments using the semantic
function

Simulation: Consistency within a Scope

If the Alloy analyzer finds a model within a given scope then we know
that the formula is consistent!

On the other hand, if the Alloy analyzer cannot find a model within a
given scope does not prove that the formula is inconsistent

— General problem is is undecidable

However, the fact that there is no model within a given scope shows
that the formula might be inconsistent

— which would prompt the designer to look at the specification to
understand why the formula is inconsistent within that scope

Checking: Validity within a given Scope

If the formula is not valid within a given scope then we are sure that
the formula is not valid

— Alloy analyzer would generate a counter-example and the
designer can look at this counter-example to figure out the
problem with the specification.

On the other hand, the fact that Alloy analyzer shows that a formula is
valid within a given scope does not prove that the formula is valid in
general

— Again, the problem is undecidable

However, the fact that the formula is valid within a given scope gives
the designer a lot of confidence about the specification

Alloy Analyzer

Alloy analyzer converts the simulation and checking queries to
boolean satisfiability problems (SAT) and uses a SAT solver to solve
the satisfiability problem

Here are the steps of analysis steps for the Alloy analyzer:
1. Conversion to negation normal form and skolemization

2. Formula is translated for a chosen scope to a boolean formula
along with a mapping between relational variables and the
boolean variables used to encode them. This boolean formula is
constructed so that it has a model exactly when the relational
formula has a model in the given scope

3. The boolean formula is converted to a conjunctive normal form,
(the preferred input format for most SAT solvers)

4. The boolean formula is presented to the SAT solver

5. If the solver finds a model, a model of the relational formula is
then reconstructed from it using the mapping produced in step 2

Data Modeling with Alloy

A natural way to represent the data model for a web application is to
use entity-relationship diagrams or UML class diagrams

Entity-relationship diagrams and UML class diagrams can be
converted to Alloy specifications

Once we write the data model in Alloy we can check assertions about
the data model

A Book Store Data Model in UML

Book
Category

User

1

0..1

Shopping
Cart

RBook Edition

1

Order Line

Alloy Specification of Book Store Data Model

sig BookCategory {
books: set Book
}
sig Book {
category: one BookCategory,
edition: set BookEdition,
similar: set Book
}
sig BookEdition {
book: one Book
}
sig OrderLine {
order: one BookEdition
}
sig ShoppingCart {
contents: set OrderlLine
}
sig User {
cart: lone ShoppingCart

Alloy Specification (Cont.)

fact {
books = ~category
book = ~edition
all el, e2: BookEdition | el != e2 => el.book != e2.book
all bl, b2: Book | bl in b2.similar => bl.category = b2.category
all ul, u2: User | ul.cart = u2.cart => ul = u2
all o:0rderLine, cl, c2:ShoppingCart |
(0 1n cl.contents && o 1in c2.contents) => cl = c2

pred addCart[u, u’ : User, o : OrderlLine] {
'!'(o 1n u.cart.contents)
u'.cart.contents = u.cart.contents + o

pred removeCart[u, u’ : User, o : OrderLine] {
O 1n u.cart.contents
u'.cart.contents = u.cart.contents - o

Checking the Alloy Specification

assert category {
all bl, b2 : Book | bl.category != b2.category => bl !in b2.similar

assert categoryl {
no b: Book, el, e2:BookEdition | el != e2 && el.book=b && e2.book=b
run addCart
run removeCart
run emptyCart
check category

check categoryl

Analyzing Specifications

* Possible problems with a specification

— The specification is over-constrained: There is no model for the
specification

— The specification is under-constrained: The specification allows
some unintended behaviors

« Alloy analyzer has automated support for finding both over-constraint
and under-constraint errors

Analyzing Specifications

Remember that the Alloy specifications define formulas and given an
environment (i.e., bindings to the variables in the specification) the
semantics of Alloy maps a formula to true or false

An environment for which a formula evaluates to true is called a
model (or instance or solution) of the formula

If a formula has at least one model then the formula is consistent
(i.e., satisfiable)

If every (well-formed) environment is a model of the formula, then the
formula is valid

The negation of a valid formula is inconsistent

Analyzing Specifications

« Given a assertion we can check it as follows:

— Negate the assertion and conjunct it with the rest of the
specification
— Look for a model for the resulting formula, if there exists such a

model (i.e., the negation of the formula is consistent) then we call
such a model a counterexample

« Bad news
— Validity and consistency checking for Alloy is undecidable

 The domains are not restricted to be finite, they can be infinite,
and there is quantification

Analyzing Specifications

« Alloy analyzer provides two types of analysis:

— Simulation, in which consistency of an invariant or an operation is
demonstrated by generating an environment that models it

e Simulations can be used to check over-constraint errors: To
make sure that the constraints in the specification is so
restrictive that there is no environment which satisfies them

 The run command in Alloy analyzer corresponds to simulation

— Checking, in which a consequence of the specification is tested by
attempting to generate a counter-example

 The check command in Alloy analyzer corresponds to
checking

« Simulation is for determining consistency (i.e., satisfiability) and
Checking is for determining validity

— And these problems are undecidable for Alloy specifications

Trivial Example

« Consider checking the theorem
all x:X | some y:Y¥Y | X.r =y

« To check this formula we formulate its negation as a problem
r: X —>Y
'all x:X | some y:Y¥Y | Xx.r =y

 The Alloy analyzer will generate an environment such as
X = {X0, X1}

Y = {YO, Y1}
r = { (X0, Y0), (X0, Y1)}
x = {X1}

which is a model for the negated formula. Hence this environment is
a counterexample to the claim that the original formula is valid
The value X1 for the quantified variable x is called a Skolem

constant and it acts as a witness to the to the invalidity of the
original formula

Sidestepping Undecidability

Alloy analyzer restricts the simulation and checking operations to a
finite scope

— where a scope gives a finite bound on the sizes of the domains in

the specification (which makes everything else in the specification
also finite)

 Here is another way to put it:

— Alloy analyzer rephrases the consistency problem as: Does there

exist an environment within the given scope that is a model for
the formula

— Alloy analyzer rephrases the validity problem as: Are all the well-
formed environments within the scope a model for the formula

Validity and consistency problem within a finite scope are decidable
problems

— Simple algorithm: just enumerate all the environments and

evaluate the formula on all environments using the semantic
function

Simulation: Consistency within a Scope

If the Alloy analyzer finds a model within a given scope then we know
that the formula is consistent!

On the other hand, if the Alloy analyzer cannot find a model within a
given scope does not prove that the formula is inconsistent

— General problem is is undecidable

However, the fact that there is no model within a given scope shows
that the formula might be inconsistent

— which would prompt the designer to look at the specification to
understand why the formula is inconsistent within that scope

Checking: Validity within a given Scope

If the formula is not valid within a given scope then we are sure that
the formula is not valid

— Alloy analyzer would generate a counter-example and the
designer can look at this counter-example to figure out the
problem with the specification.

On the other hand, the fact that Alloy analyzer shows that a formula is
valid within a given scope does not prove that the formula is valid in
general

— Again, the problem is undecidable

However, the fact that the formula is valid within a given scope gives
the designer a lot of confidence about the specification

Alloy Analyzer

Alloy analyzer converts the simulation and checking queries to
boolean satisfiability problems (SAT) and uses a SAT solver to solve
the satisfiability problem

Here are the steps of analysis steps for the Alloy analyzer:
1. Conversion to negation normal form and skolemization

2. Formula is translated for a chosen scope to a boolean formula
along with a mapping between relational variables and the
boolean variables used to encode them. This boolean formula is
constructed so that it has a model exactly when the relational
formula has a model in the given scope

3. The boolean formula is converted to a conjunctive normal form,
(the preferred input format for most SAT solvers)

4. The boolean formula is presented to the SAT solver

5. If the solver finds a model, a model of the relational formula is
then reconstructed from it using the mapping produced in step 2

Translation Overview

* In negation normal form only elementary formulas are negated

— To convert to negation normal form push negations inwards using
de Morgan’ s laws

Translation Overview

 For example
'all x: X | some y: Y | x.r=y
IS converted to

some x: X | all y: Y | !x.r=y

which is converted to the problem

r: X->Y
X: X
all y:Y| !x.r=y

some zZ:X | z=x

Translation Overview

« Skolemization eliminates existentially quantified variables.

— If the existential quantification is not within a universal
quantification the quantified variable is replaced with a constant
and an additional constraint that such a constant exists

— If the existential quantification is within a universal quantification
the existentially quantified variable is replaced with a function

Translation Overview

« Forexample
all x: X | some y: Y | xX.r=y
IS converted to
all x: X | x.r=y[x]

by replacing y with the function
y: X->one Y

« This method generalizes to arbitrary number of universal quantifiers
by creating functions indexed by as many types as necessary

Translation Overview

 Once a scope is fixed a value of a relation from S to T can be
represented as a bit matrix with a 1 in the ith row of jth column when

the ith atom in S is related to the jth atom in T and 0 otherwise
— Such matrices encode all possible relations from Sto T

» Hence, collection of possible values of a relation can be expressed by
a matrix of boolean variables

« Any constraint on a relation can be expressed as a formula in these
boolean variables and a relational formula as a whole can be similarly
expressed by introducing boolean variables for each relational

variables

Translation Overview

For example
all y: Y | !'x.r=y

using a scope of 2 would be translated as follows
First let’ s look at the negation of the formula

some y: Y | X.r=y

Generate a vector [xO x1] for x and a matrix [rO0 rO1, r10 r11] forr

The expression x.r corresponds to the vector
[XOATOOvXTATr10O X0 ATr01vx1Ari]

Translation Overview

 Given,
Xr = [XOAr00vx1 Art0 x0 Ar01 v x1AaArit]
andy = [y0 y1], we get
Xr=y =
(YO > (XOAT00 v XTAr10)) A(yl <> (XOATOT Vv XTATT))
A (YO A =yT v =y0 Ayl

 Then the boolean logic translation for some y: Y | x.r=y is
true <> (X0 A r00 v X1 A r10) A false <> (XO A 01 v X1 AT11)

v false <> (X0 A r00 v X1 A r10) A true <> (XO A 101 v X1 AT11)
=(XOAT00vxX1TAr0)A = (XOATOT Vv XTATr1)
vV a(XOAT00 v XTAr10) A (XOAT01 v X1 ATT)

Translation Overview

 Hence, the formula some y: Y | x.r=y is satisfiable within a scope
of 2 if and only if the following boolean logic formula is satisfiable
(XOATO0OvXTAT0) A= (XOATOT v X1 ATl
v = (XOAT00 v XTATr10) A (XOAT0T v X1 A1)

* Note that we can also generate the boolean logic formula for
checking the satisfiability of
all y: Y | !'x.r=y = — (some y: Y | X.r=y)
within the scope of 2 by negating the boolean logic formula above:

—((XOAT00 vx1 Ar10) A = (XOAT01 v x1 AT11)
v = (XOAT00 v XTATr10)A (XOATOT Vv XTATT))

Translation Overview

The generated boolean satisfiability problem (SAT) is an NP-
complete problem

Alloy analyzer implements an efficient translation in the sense that the
problem instance presented to the SAT solver is as small as possible

— It will take the SAT solver exponential time in the worst case to
solve the boolean satisfiability problem

