CS 267: Automated Verification

Lectures 14, 15: Alloy Analyzer

Instructor: Tevfik Bultan

Alloy: A Modeling Language

- Alloy is a formal modeling language
- Alloy has formal syntax and semantics
- Alloy specifications are written in ASCII
 - There is also a visual representation (similar to UML class diagrams and entity-relationship diagrams) but the visual representation does not have the expressiveness of the whole language
- Alloy has a verification tool called Alloy Analyzer which can be used to automatically analyze properties of Alloy models

Alloy: A Modeling Language

- Alloy targets formal specification of object oriented data models
- It can be used for data modeling in general
 - It is good at specifying classes objects, the associations among them, and constraints on those associations
- It is most similar to UML class diagrams combined with OCL (Object Constraint Language)
 - However, it has a simpler and cleaner semantics than UML/OCL and it is also supported by a verification tool (Alloy Analyzer)

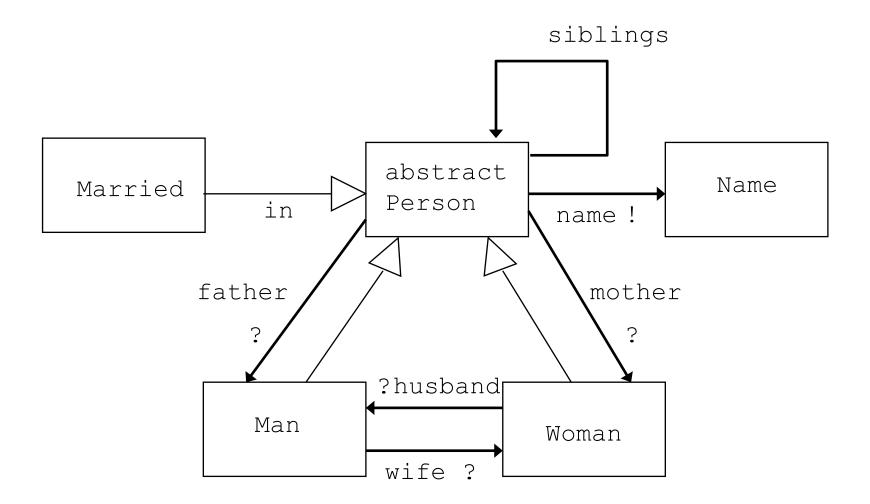
Alloy Analyzer

- Alloy Analyzer is a verification tool that analyzes Alloy specifications
- It uses bounded verification
 - It limits the number of objects in each class to a fixed number and checks assertions about the specification within that bound
- It uses a SAT-solver to answer verification queries
 - It converts verification queries to satisfiability of Boolean logic formulas and calls a SAT solver to answer them

Alloy and Alloy Analyzer

- Alloy and Alloy Analyzer were developed by Daniel Jackson's group at MIT
- References
 - "Alloy: A Lightweight Object Modeling Notation"
 Daniel Jackson, ACM Transactions on Software Engineering and Methodology (TOSEM), Volume 11, Issue 2 (April 2002), pp. 256-290.
 - "Software Abstractions: Logic, Language and Analysis" by Daniel Jackson. MIT Press, 2006.
- Unfortunately, the TOSEM paper is based on the old syntax of Alloy
 - The syntax of the Alloy language is different in the more recent versions of the tool
 - Documentation about the current version of Alloy is available here: http://alloy.mit.edu/
 - My slides are based on the following tutorial http://alloy.mit.edu/alloy/tutorials/online

An Alloy Object Model for a Family Tree



Basics of Alloy Semantics

- Each box denotes a set of objects (atoms)
 - Corresponds to an object class in UML/OCL
 - In Alloy these are called signatures
- An object is an abstract, atomic and unchanging entity
- The state of the model is determined by
 - the relationships among objects and
 - the membership of objects in sets
 - these can change in time

Subclasses are subsets

- An arrow with unfilled head denotes a subset
 - Man, Woman, Married are subsets of Person
 - This corresponds to sub-classes in UML/OCL
- The keyword **extends** indicates disjoint subsets
 - This is the default, if a subset is not labeled, then it is assumed to extend
 - Man and Woman are disjoint sets (their intersection is empty)
 - There is no Person who is a Woman and a Man
- The keyword in indicates subsets, not necessarily disjoint from each other (or other subsets that extend)
 - Married and Man are not disjoint
 - Married and Woman are not disjoint

- In Alloy sets of atoms such as Man, Woman, Married, Person are called signatures
 - Signatures correspond to object classes
- A signature that is not subset of another signature is a top-level signature
- Top-level signatures are implicitly disjoint
 - Person and Name are top-level signatures
 - They represent disjoint sets of objects
- Extensions of a signature are also disjoint
 - Man and Woman are disjoint sets
- An abstract signature has no elements except those belonging to its extensions
 - There is no Person who is not a Man or a Woman

Class associations are relations

- Arrows with a small filled arrow head denote relations
- For example, name is a relation that maps Person to Name
- Relations are expressed as fields of signatures
 - These correspond to associations in UML-OCL
 - They express relations between object classes

Multiplicity

- Markings at the ends of relation arrows denote the multiplicity constraints
 - * means zero or more (default, keyword set)
 - ? means zero or one (keyword lone)
 - ! means exactly one (keyword one)
 - + means one or more (keyword some)
 - If there is no marking, the multiplicity is *
- name maps each Person to exactly one Name (based on the mark at the Name end of the arrow denoting the name relationship)
- name maps zero or more members of Person to each Name (based on the omission of the mark at the Person end)

Textual Representation

- Alloy is a textual language
 - The graphical notation is just a useful way of visualizing the specifications but it is not how you write an Alloy model
- The textual representation represents the Alloy model completely
 - i.e., the graphical representation is redundant, it can be used to visualize a model but it is not used to specify a model

Alloy Object Model for a Family Tree

```
module language/Family
sig Name { }
abstract sig Person {
  name: one Name,
  siblings: Person,
  father: lone Man,
  mother: lone Woman
  }
sig Man extends Person {
  wife: lone Woman
sig Woman extends Person {
  husband: lone Man
sig Married in Person {
  }
```

- Textual representation starts with **sig** declarations defining the signatures (sets of atoms)
 - You can think of signatures as object classes, each signature represents a set of objects
- Multiplicity:
 - set zero or more
 - one exactly one
 - lone zero or one
 - some one or more
- extends and in are used to denote which signature is subset of which other signature
 - Corresponding to arrow with unfilled head \angle
 - **extends** denotes disjoint subsets

sig A { }	
set of atoms A	
<pre>sig A { } sig B { } disjoint sets A and B. As an Alloy expression we can write (Alloy expressions are discussed in later slides)</pre>	intersection
sig A, B { } same as above subset	
<pre>sig B extends A {} set B is a subset of A. As an Alloy epxression: B in A</pre>	
<pre>sig B extends A {} sig C extends A {} B and C are disjoint subsets of A: B in A && C in A</pre>	gical and ↓ && no B & C
<pre>sig B, C extends A { } same as above</pre>	

```
abstract sig A {}
sig B extends A {}
sig C extends A {}
A partitioned by disjoint subsets B and C: no B & C & A = (B + C)
```

```
sig B in A {}
B is a subset of A, not necessarily disjoint from any other set
```

```
sig C in A + B {}
  C is a subset of the union of A and B: C in A + B
one sig A {}
lone sig B {}
```

```
some sig C { }
A is a singleton set
B is a singleton or empty
C is a non-empty set
```

Fields are Relations

- The fields define relations among the signatures
 - Similar to a field in an object class that establishes a relation between objects of two classes
 - Similar to associations in UML/OCL
- Visual representation of a field is an arrow with a small filled arrow head

Fields Are Relations

```
sig A {f: e}
```

f is a binary relation with domain A and range given by expression e each element of A is associated with exactly one element from e (i.e., the default cardinality is one) all a: A | a.f: one e

sig A {

- f1: one e1,
 f2: lone e2,
- f3: some e3,

```
f4: set e4
```

}

Multiplicities correspond to the following constraint, where m could be

```
one, lone, some, or set
all a: A | a.f : m e
```

Fields

sig A {f, g: e}

two fields with the same constraint

```
sig A {f: e1 m -> n e2}
```

a field can declare a ternary relation, each tuple in the relation f has three elements (one from A, one from e1 and one from e2), m and n denote the cardinalities of the sets

all a: $A \mid a.f : e1 m \rightarrow n e2$

```
sig AdressBook {
    names: set Name,
    addrs: names -> Addr
  }
  In definition of one field you can use another field defined earlier
    (these are called dependent fields)
```

(all b: AddressBook | b.addrs: b.names -> Addr)

Alloy Object Model for a Family Tree

```
module language/Family
sig Name { }
abstract sig Person {
  name: one Name,
  siblings: Person,
  father: lone Man,
  mother: lone Woman
sig Man extends Person {
  wife: lone Woman
sig Woman extends Person {
  husband: lone Man
sig Married extends Person {
                               transitive closure
fact {
  no p: Person | p in p.^ (mother + father)
  wife = ~husband
}
         transpose
```

Facts

- After the signatures and their fields, facts are used to express constraints that are assumed to always hold
- Facts are not assertions, they are constraints that restrict the model
 - Facts are part of our specification of the system
 - Any configuration that is an instance of the specification has to satisfy all the facts

Facts

```
fact \{ F \}
```

```
fact f { F }
```

Facts can be written as separate paragraphs and can be named.

Sig A { ... } { F }

Facts about a signature can be written immediately after the signature

Signature facts are implicitly quantified over the elements of the signature

It is equivalent to:

fact {all a: A | F' }

where any field of A in F is replaced with a field in F'

Facts

sig Host {}

sig Link {from, to: Host}

fact {all x: Link | x.from != x.to}
 no links from a host to itself

fact noSelfLinks {all x: Link | x.from != x.to}
 same as above

sig Link {from, to: Host} {from != to}
same as above, with implicit 'this.'

fun f[x1: e1, ..., xn: en] : e { E }

- A function is a named expression with zero or more arguments
 - When it is used, the arguments are replaced with the instantiating expressions

```
fun grandpas[p: Person] : set Person {
   p.(mother + father).father
   }
```


pred p[x1: e1, ..., xn: en] { F }

- A predicate is a named constraint with zero or more arguments
 - When it is used, the arguments are replaced with the instantiating expressions

```
fun grandpas[p: Person] : set Person {
    let parent = mother + father + father.wife +
    mother.husband | p.parent.parent & Man
    }
pred ownGrandpa[p: Person] {
    p in grandpas[p]
    }
```

Assertions

```
assert a { F }
   Assertions are constraints that were intended to follow from facts of the
      model
   You can use Alloy analyzer to check the assertions
sig Node {
  children: set Node
one sig Root extends Node {}
fact {
                       reflexive transitive closure
  Node in Root.*children
// invalid assertion:
assert someParent {
  all n: Node | some children.n
```

// valid assertion:

```
assert someParent {
   all n: Node - Root | some children.n
   }
```

Assertions

- In Alloy, assertions are used to specify properties about the specification
- Assertions state the properties that we expect to hold
- After stating an assertion we can check if it holds using the Alloy analyzer (within a given scope)

Check command

```
assert a { F }
check a scope
```

- Assert instructs Alloy analyzer to search for counterexample to assertion within scope
 - Looking for counter-example means looking for a solution to
 - M & & !F where M is the formula representing the model

```
check a
   top-level sigs bound by 3
check a for default
   top-level sigs bound by default
check a for default but list
   default overridden by bounds in list
check a for list
   sigs bound in list
```

Check Command

abstract sig Person {} sig Man extends Person {} sig Woman extends Person {} sig Grandpa extends Man {} check a check a for 4 check a for 4 but 3 Woman check a for 4 but 3 Man, 5 Woman check a for 4 Person check a for 4 Person, 3 Woman check a for 3 Man, 4 Woman check a for 3 Man, 4 Woman, 2 Grandpa

Check Example

```
fact {
   no p: Person | p in p.^(mother + father)
   no (wife + husband) & ^(mother + father)
   wife = ~husband
   }
assert noSelfFather {
   no m: Man | m = m.father
   }
check noSelfFather
```

Run Command

```
pred p[x: X, y: Y, ...] { F }
```

run p scope

Instructs analyzer to search for instance of a predicate within scope If the model is represented with formula M, run finds solution to M && (some x: X, y: Y, ... | F)

fun f[x: X, y: Y, ...] : R { E }

```
run f scope
```

Instructs analyzer to search for instance of function within scope If model is represented with formula M, run finds solution to M && (some x: X, y: Y, ..., result: R | result = E)

Alloy Object Model for a Family Tree

```
module language/Family
sig Name { }
abstract sig Person {
  name: one Name,
  siblings: Person,
  father: lone Man,
  mother: lone Woman
  }
sig Man extends Person {
  wife: lone Woman
sig Woman extends Person {
  husband: lone Man
sig Married extends Person {
fact {
  no p: Person | p in p.^ (mother + father)
  no (wife + husband) & ^ (mother + father)
  wife = \sim husband
}
```

Predicate Simulation

```
fun grandpas[p: Person] : set Person {
    let parent = mother + father + father.wife +
    mother.husband | p.parent.parent & Man
    }
pred ownGrandpa[p: Person] {
    p in grandpas[p]
    }
run ownGrandpa for 4 Person
```

Predicate Simulation

```
fun grandpas[p: Person] : set Person {
  let parent = mother + father + father.wife +
  mother.husband | p.parent.parent & Man
  }
pred ownGrandpa[p: Person] {
  p in grandpas[p]
                                               W1
  }
                                                  mother
run ownGrandpa for 4 Person
                                                 W0
                               wife
                                        husband
                                                     wife
                                           husband
                                M0
                                                    M1
                           ownGrandpa
                                          father
```

Alloy Expressions

- Expressions in Alloy are expressions in Alloy's logic
- atoms are Alloy's primitive entities
 - indivisible, immutable, uninterpreted
- relations associate atoms with one another
 - set of tuples, tuples are sequences of atoms
- every value in Alloy logic is a relation!
 - relations, sets, scalars are all the same thing

Everything is a relation

```
sets are unary (1 column) relations
Person = { (P0), (P1), (P2) }
Name = { (N0), (N1), (N2), (N3) }
```

scalars are singleton sets

myName = { (N1) }
yourName = { (N2) }

binary relation

name = $\{(P0, N0), (P1, N0), (P2, N2)\}$

Alloy also allows relations with higher arity (like ternary relations)

Constants

- none empty set
- **univ** universal set
- iden identity relation

```
Person = { (P0), (P1), (P2) }
Name = { (N0), (N1), (N2), (N3) }
none = { }
univ = { (P0), (P1), (P2), (N0), (N1), (N2), (N3) }
iden = { (P0, P0), (P1, P1), (P2, P2), (N0, N0), (N1, N1), (N2, N2), (N3,N3) }
```

Set Declarations

x: m e x is a subset of e and its cardinality (size) is restricted to be m

m can be:

- set any number
- one exactly one (default)
- lone zero or one
- some one or more
- x: e is equivalent to x: one e

SomePeople: set Person SomePeople is a subset of the set Person

Set Operators

- + union
- *& intersection*
- difference
- in subset
- = equality

Product Operator

```
-> cross product
```

```
Person = { (P0), (P1) }
Name = { (N0), (N1) }
Address = { (A0) }
```

```
Person -> Name =
  {(P0, N0), (P0, N1), (P1, N0), (P1, N1)}
```

```
Person -> Name -> Adress =
{(P0, N0, A0), (P0, N1, A0), (P1, N0, A0),
    (P1, N1, A0)}
```

Relation Declarations with Multiplicity

- r: A m > n B cross product with multiplicity constraints m and n can be one, lone, some, set
- r: A > B is equivalent to (default multiplicity is set)
- r: A set > set B

```
r: A m > n B is equivalent to:
r: A > B
all a: A | n a.r
all b: B | m r.b
```

Relation Declarations with Multiplicity

r: A > one B

r is a function with domain A

r: A one > B

r is an injective relation with range B

r: A > lone B

r is a function that is partial over the domain A

r: A one > one B

r is an injective function with domain A and range B (a bijection from A to B)

r: A some > some B

r is a relation with domain A and range B

Relational Join (aka navigation)

p.q

dot is the relational join operator

Given two tuples $(p_1, ..., p_n)$ in p and $(q_1, ..., q_m)$ in q where $p_n = q_1$ p.q contains the tuple $(p_1, ..., p_{n-1}, q_2, ..., q_m)$

```
 \{ (N0) \} . \{ (N0, D0) \} = \{ (D0) \} 
 \{ (N0) \} . \{ (N1, D0) \} = \{ \} 
 \{ (N0) \} . \{ (N0, D0), (N0, D1) \} \} = \{ (D0), (D1) \} 
 \{ (N0), (N1) \} . \{ (N0, D0), (N1, D1), (N2, D3) \} \} = \{ (D0), (D1) \} 
 \{ (N0, A0) \} . \{ (A0, D0) \} = \{ (N0, D0) \}
```

Box join

[]

box join, box join can be defined using dot join

e1[e2] = e2.e1

a.b.c[d] = d.(a.b.c)

Unary operations on relations

- ~ transpose
- ^ transitive closure
- reflexive transitive closure
 these apply only to binary relations

^r = r + r.r + r.r.r + ...

```
*r = iden + ^r
```

wife = { (M0,W1), (M1, W2) }
~wife = husband = { (W1,M0), (W2, M1) }

Relation domain, range, restriction

domainreturns the domain of a relationrangereturns the range of a relation<:</td>domain restriction (restricts the domain of a relation):>range restriction (restricts the range of a relation)

```
name = { (P0,N1), (P1,N2), (P3,N4), (P4, N2) }
domain(name) = { (P0), (P1), (P3), (P4) }
range(name) = { (N1), (N2), (N4) }
```

```
somePeople = { (P0), (P1) }
someNames = { (N2), (N4) }
```

```
name :> someNames = { (P1,N2), (P3,N4), (P4,N2) }
```

```
somePeople <: name= {(P0,N1), (P1,N2)}</pre>
```

Relation override

- ++ override
- p ++ q = p (domain(q) <: p) + q

m' = m ++ (k > v)

update map m with key-value pair (k, v)

Boolean operators

! not	negation
&& and	conjunction
or	disjunction
=> implies	implication
else	alternative
<=> iff	bi-implication

four equivalent constraints:

F => G else H
F implies G else H
(F && G) || ((!F) && H)
(F and G) or ((not F) and H)

Quantifiers

- all **F holds for every x in e**
- some F holds for at least one x in e
- no F holds for no x in e
- lone F holds for at most one x in e
- one F holds for exactly one x in e

A File System Model in Alloy

```
// File system objects
abstract sig FSObject { }
sig File, Dir extends FSObject { }
```

// A File System

}

```
sig FileSystem {
    live: set FSObject,
    root: Dir & live,
    parent: (live - root) -> one (Dir & live),
    contents: Dir -> FSObject
}
{
    // live objects are reachable from the root
    live in root.*contents
    // parent is the inverse of contents
    parent = ~contents
```

An Instance of the File System Specification

```
FileSystem = {(FS0)}
FSObject = {(F0), (F1), (F2), (F4), (D0), (D1)}
File = {(F0), (F1), (F2), (F4)}
Dir = {(D0), (D1)}
```

A File System Model in Alloy

}

```
// Move x to directory d
pred move [fs, fs': FileSystem, x: FSObject, d: Dir]{
    // precondition
    (x + d) in fs.live
    // postcondition
    fs'.parent = fs.parent - x->(x.(fs.parent)) + x->d
```

File System Model in Alloy

```
// Delete the file or empty directory x
pred remove [fs, fs': FileSystem, x: FSObject] {
  x in (fs.live - fs.root)
  fs'.root = fs.root
  fs'.parent = fs.parent - x -> (x.(fs.parent))
}
// Recursively delete the directory x
pred removeAll [fs, fs': FileSystem, x: FSObject] {
  x in (fs.live - fs.root)
  fs'.root = fs.root
```

let subtree = x.*(fs.contents) |

fs'.parent = fs.parent - subtree->(subtree.(fs.parent))

}

File System Model in Alloy

// Moving doesn't add or delete any file system objects
moveOkay: check {

all fs, fs': FileSystem, x: FSObject, d:Dir |
 move[fs, fs', x, d] => fs'.live = fs.live
} for 5

// remove removes exactly the specified file or directory
removeOkay: check {

all fs, fs': FileSystem, x: FSObject |
 remove[fs, fs', x] => fs'.live = fs.live - x
} for 5

File System Model in Alloy

```
// removeAll removes exactly the specified subtree
removeAllOkay: check {
  all fs, fs': FileSystem, d: Dir |
    removeAll[fs, fs', d] =>
    fs'.live = fs.live - d.*(fs.contents)
} for 5
```

// remove and removeAll has the same effects on files
removeAllSame: check {
 all fs, fs1, fs2: FileSystem, f: File |
 remove[fs, fs1, f] && removeAll[fs, fs2, f] =>
 fs1.live = fs2.live
} for 5

Alloy Kernel

- Alloy is based on a small kernel language
- The language as a whole is defined by the translation to the kernel
- It is easier to define and understand the formal syntax and semantics of the kernel language

Alloy Kernel Syntax

formula ::= elemFormula compFormula quantFormula	formula syntax elementary formulas compound formulas quantified formulas	expr ::= rel var none expr binop	expression syntax relation quantified variable empty set expr
elemFormula ::=		unop expr	CAPI
expr in expr	subset		
expr = expr	equality	binop ::=	binary operators
		+	union
compFormula ::=		&	intersection
not formula	negation (not)	-	difference
formula and formula	conjunction (and)	.	join
		->	product
quantFormula ::=			
all var : expr forr	mula universal quantification	unop ::=	unary operators
		~	transpose
		^	transitive closure

Alloy Kernel Semantics

- Alloy kernel semantics is defined using denotational semantics
- There are two meaning functions in the semantic definitions
 - M: which interprets a formula as true or false
 - M: Formula, Instance \rightarrow Boolean
 - E: which interprets an expression as a relation value
 - E: Expression, Instance \rightarrow RelationValue
- Interpretation is given with respect to an instance that assigns a relational value to each declared relation
- Meaning functions take a formula or an expression and the instance as arguments and return a Boolean value or a relation value

- Possible problems with a specification
 - The specification is over-constrained: There is no model for the specification
 - The specification is under-constrained: The specification allows some unintended behaviors
- Alloy analyzer has automated support for finding both over-constraint and under-constraint errors

- Remember that the Alloy specifications define formulas and given an environment (i.e., bindings to the variables in the specification) the semantics of Alloy maps a formula to true or false
- An environment for which a formula evaluates to true is called a model (or instance or solution) of the formula
- If a formula has at least one model then the formula is *consistent* (i.e., *satisfiable*)
- If every (well-formed) environment is a model of the formula, then the formula is *valid*
- The negation of a valid formula is inconsistent

- Given a assertion we can check it as follows:
 - Negate the assertion and conjunct it with the rest of the specification
 - Look for a model for the resulting formula, if there exists such a model (i.e., the negation of the formula is consistent) then we call such a model a *counterexample*
- Bad news
 - Validity and consistency checking for Alloy is undecidable
 - The domains are not restricted to be finite, they can be infinite, and there is quantification

- Alloy analyzer provides two types of analysis:
 - Simulation, in which consistency of an invariant or an operation is demonstrated by generating an environment that models it
 - Simulations can be used to check over-constraint errors: To make sure that the constraints in the specification is so restrictive that there is no environment which satisfies them
 - The run command in Alloy analyzer corresponds to simulation
 - Checking, in which a consequence of the specification is tested by attempting to generate a counter-example
 - The check command in Alloy analyzer corresponds to checking
- Simulation is for determining consistency (i.e., satisfiability) and Checking is for determining validity
 - And these problems are undecidable for Alloy specifications

Trivial Example

Consider checking the theorem

all x:X | some y:Y | x.r = y

- To check this formula we formulate its negation as a problem
 r: X -> Y
 !all x:X | some y:Y | x.r = y
- The Alloy analyzer will generate an environment such as

```
X = {X0, X1}
Y = {Y0, Y1}
r = {(X0, Y0), (X0, Y1)}
x = {X1}
```

which is a model for the negated formula. Hence this environment is a counterexample to the claim that the original formula is valid
The value X1 for the quantified variable x is called a Skolem constant and it acts as a witness to the to the invalidity of the original formula

Sidestepping Undecidability

- Alloy analyzer restricts the simulation and checking operations to a finite scope
 - where a scope gives a finite bound on the sizes of the domains in the specification (which makes everything else in the specification also finite)
- Here is another way to put it:
 - Alloy analyzer rephrases the consistency problem as: Does there exist an environment within the given scope that is a model for the formula
 - Alloy analyzer rephrases the validity problem as: Are all the wellformed environments within the scope a model for the formula
- Validity and consistency problem within a finite scope are decidable problems
 - Simple algorithm: just enumerate all the environments and evaluate the formula on all environments using the semantic function

Simulation: Consistency within a Scope

- If the Alloy analyzer finds a model within a given scope then we know that the formula is consistent!
- On the other hand, if the Alloy analyzer cannot find a model within a given scope does not prove that the formula is inconsistent
 - General problem is is undecidable
- However, the fact that there is no model within a given scope shows that the formula might be inconsistent
 - which would prompt the designer to look at the specification to understand why the formula is inconsistent within that scope

Checking: Validity within a given Scope

- If the formula is not valid within a given scope then we are sure that the formula is not valid
 - Alloy analyzer would generate a counter-example and the designer can look at this counter-example to figure out the problem with the specification.
- On the other hand, the fact that Alloy analyzer shows that a formula is valid within a given scope does not prove that the formula is valid in general
 - Again, the problem is undecidable
- However, the fact that the formula is valid within a given scope gives the designer a lot of confidence about the specification

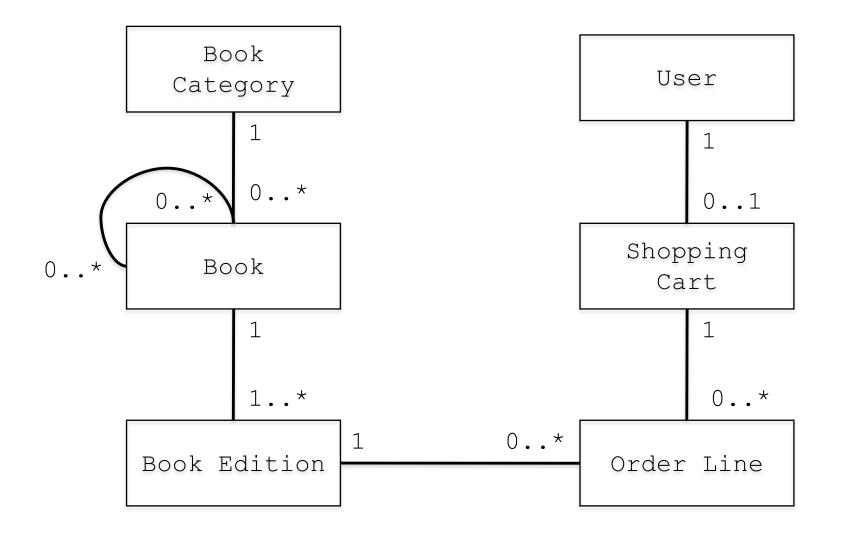
Alloy Analyzer

- Alloy analyzer converts the simulation and checking queries to boolean satisfiability problems (SAT) and uses a SAT solver to solve the satisfiability problem
- Here are the steps of analysis steps for the Alloy analyzer:
 - 1. Conversion to negation normal form and skolemization
 - 2. Formula is translated for a chosen scope to a boolean formula along with a mapping between relational variables and the boolean variables used to encode them. This boolean formula is constructed so that it has a model exactly when the relational formula has a model in the given scope
 - 3. The boolean formula is converted to a conjunctive normal form, (the preferred input format for most SAT solvers)
 - 4. The boolean formula is presented to the SAT solver
 - 5. If the solver finds a model, a model of the relational formula is then reconstructed from it using the mapping produced in step 2

Data Modeling with Alloy

- A natural way to represent the data model for a web application is to use entity-relationship diagrams or UML class diagrams
- Entity-relationship diagrams and UML class diagrams can be converted to Alloy specifications
- Once we write the data model in Alloy we can check assertions about the data model

A Book Store Data Model in UML



Alloy Specification of Book Store Data Model

```
sig BookCategory {
       books: set Book
siq Book {
   category: one BookCategory,
   edition: set BookEdition,
   similar: set Book
sig BookEdition {
  book: one Book
sig OrderLine {
   order: one BookEdition
}
sig ShoppingCart {
  contents: set OrderLine
siq User {
  cart: lone ShoppingCart
}
```

Alloy Specification (Cont.)

```
fact {
 books = ~category
 book = ~edition
  all e1, e2: BookEdition | e1 != e2 => e1.book != e2.book
  all b1, b2: Book | b1 in b2.similar => b1.category = b2.category
  all u1, u2: User | u1.cart = u2.cart => u1 = u2
  all o:OrderLine, c1, c2:ShoppingCart
                (o in cl.contents && o in c2.contents) => c1 = c2
}
pred addCart[u, u' : User, o : OrderLine]{
  ! (o in u.cart.contents)
  u'.cart.contents = u.cart.contents + o
}
pred removeCart[u, u' : User, o : OrderLine]{
  o in u.cart.contents
  u'.cart.contents = u.cart.contents - o
```

Checking the Alloy Specification

```
assert category {
  all b1, b2 : Book | b1.category != b2.category => b1 !in b2.similar
}
assert category1 {
  no b: Book, e1, e2:BookEdition | e1 != e2 && e1.book=b && e2.book=b
}
run addCart
run removeCart
run emptyCart
check category
```

check category1

- Possible problems with a specification
 - The specification is over-constrained: There is no model for the specification
 - The specification is under-constrained: The specification allows some unintended behaviors
- Alloy analyzer has automated support for finding both over-constraint and under-constraint errors

- Remember that the Alloy specifications define formulas and given an environment (i.e., bindings to the variables in the specification) the semantics of Alloy maps a formula to true or false
- An environment for which a formula evaluates to true is called a model (or instance or solution) of the formula
- If a formula has at least one model then the formula is *consistent* (i.e., *satisfiable*)
- If every (well-formed) environment is a model of the formula, then the formula is *valid*
- The negation of a valid formula is inconsistent

- Given a assertion we can check it as follows:
 - Negate the assertion and conjunct it with the rest of the specification
 - Look for a model for the resulting formula, if there exists such a model (i.e., the negation of the formula is consistent) then we call such a model a *counterexample*
- Bad news
 - Validity and consistency checking for Alloy is undecidable
 - The domains are not restricted to be finite, they can be infinite, and there is quantification

- Alloy analyzer provides two types of analysis:
 - Simulation, in which consistency of an invariant or an operation is demonstrated by generating an environment that models it
 - Simulations can be used to check over-constraint errors: To make sure that the constraints in the specification is so restrictive that there is no environment which satisfies them
 - The run command in Alloy analyzer corresponds to simulation
 - Checking, in which a consequence of the specification is tested by attempting to generate a counter-example
 - The check command in Alloy analyzer corresponds to checking
- Simulation is for determining consistency (i.e., satisfiability) and Checking is for determining validity
 - And these problems are undecidable for Alloy specifications

Trivial Example

Consider checking the theorem

all x:X | some y:Y | x.r = y

- To check this formula we formulate its negation as a problem
 r: X -> Y
 !all x:X | some y:Y | x.r = y
- The Alloy analyzer will generate an environment such as

```
X = {X0, X1}
Y = {Y0, Y1}
r = {(X0, Y0), (X0, Y1)}
x = {X1}
```

which is a model for the negated formula. Hence this environment is a counterexample to the claim that the original formula is valid
The value X1 for the quantified variable x is called a Skolem constant and it acts as a witness to the to the invalidity of the original formula

Sidestepping Undecidability

- Alloy analyzer restricts the simulation and checking operations to a finite scope
 - where a scope gives a finite bound on the sizes of the domains in the specification (which makes everything else in the specification also finite)
- Here is another way to put it:
 - Alloy analyzer rephrases the consistency problem as: Does there exist an environment within the given scope that is a model for the formula
 - Alloy analyzer rephrases the validity problem as: Are all the wellformed environments within the scope a model for the formula
- Validity and consistency problem within a finite scope are decidable problems
 - Simple algorithm: just enumerate all the environments and evaluate the formula on all environments using the semantic function

Simulation: Consistency within a Scope

- If the Alloy analyzer finds a model within a given scope then we know that the formula is consistent!
- On the other hand, if the Alloy analyzer cannot find a model within a given scope does not prove that the formula is inconsistent
 - General problem is is undecidable
- However, the fact that there is no model within a given scope shows that the formula might be inconsistent
 - which would prompt the designer to look at the specification to understand why the formula is inconsistent within that scope

Checking: Validity within a given Scope

- If the formula is not valid within a given scope then we are sure that the formula is not valid
 - Alloy analyzer would generate a counter-example and the designer can look at this counter-example to figure out the problem with the specification.
- On the other hand, the fact that Alloy analyzer shows that a formula is valid within a given scope does not prove that the formula is valid in general
 - Again, the problem is undecidable
- However, the fact that the formula is valid within a given scope gives the designer a lot of confidence about the specification

Alloy Analyzer

- Alloy analyzer converts the simulation and checking queries to boolean satisfiability problems (SAT) and uses a SAT solver to solve the satisfiability problem
- Here are the steps of analysis steps for the Alloy analyzer:
 - 1. Conversion to negation normal form and skolemization
 - 2. Formula is translated for a chosen scope to a boolean formula along with a mapping between relational variables and the boolean variables used to encode them. This boolean formula is constructed so that it has a model exactly when the relational formula has a model in the given scope
 - 3. The boolean formula is converted to a conjunctive normal form, (the preferred input format for most SAT solvers)
 - 4. The boolean formula is presented to the SAT solver
 - 5. If the solver finds a model, a model of the relational formula is then reconstructed from it using the mapping produced in step 2

- In negation normal form only elementary formulas are negated
 - To convert to negation normal form push negations inwards using de Morgan's laws

• For example

!all x: X | some y: Y | x.r=y

is converted to

```
some x: X | all y: Y | !x.r=y
```

which is converted to the problem

r: X->Y
x: X
all y:Y| !x.r=y
some z:X | z=x

- Skolemization eliminates existentially quantified variables.
 - If the existential quantification is not within a universal quantification the quantified variable is replaced with a constant and an additional constraint that such a constant exists
 - If the existential quantification is within a universal quantification the existentially quantified variable is replaced with a function

• For example

all x: X | some y: Y | x.r=y
is converted to
all x: X | x.r=y[x]
by replacing y with the function
y: X->one Y

• This method generalizes to arbitrary number of universal quantifiers by creating functions indexed by as many types as necessary

 Once a scope is fixed a value of a relation from S to T can be represented as a bit matrix with a 1 in the ith row of jth column when the ith atom in S is related to the jth atom in T and 0 otherwise

Such matrices encode all possible relations from S to T

- Hence, collection of possible values of a relation can be expressed by a matrix of boolean variables
- Any constraint on a relation can be expressed as a formula in these boolean variables and a relational formula as a whole can be similarly expressed by introducing boolean variables for each relational variables

• For example

all y: Y | !x.r=y

using a scope of 2 would be translated as follows

- First let's look at the negation of the formula
 some y: Y | x.r=y
- Generate a vector [x0 x1] for x and a matrix [r00 r01, r10 r11] for r
- The expression x.r corresponds to the vector $[x0 \land r00 \lor x1 \land r10 \quad x0 \land r01 \lor x1 \land r11]$

• Then the boolean logic translation for some y: Y | x.r=y is true \leftrightarrow (x0 \land r00 \lor x1 \land r10) \land false \leftrightarrow (x0 \land r01 \lor x1 \land r11) \lor false \leftrightarrow (x0 \land r00 \lor x1 \land r10) \land true \leftrightarrow (x0 \land r01 \lor x1 \land r11) \equiv (x0 \land r00 \lor x1 \land r10) \land \neg (x0 \land r01 \lor x1 \land r11) \lor \neg (x0 \land r00 \lor x1 \land r10) \land (x0 \land r01 \lor x1 \land r11)

- Hence, the formula some y: Y | x.r=y is satisfiable within a scope of 2 if and only if the following boolean logic formula is satisfiable (x0 ∧ r00 ∨ x1 ∧ r10) ∧ ¬ (x0 ∧ r01 ∨ x1 ∧ r11) ∨ ¬ (x0 ∧ r00 ∨ x1 ∧ r10) ∧ (x0 ∧ r01 ∨ x1 ∧ r11)
- Note that we can also generate the boolean logic formula for checking the satisfiability of

all y: Y | $!x.r=y \equiv \neg$ (some y: Y | x.r=y)

within the scope of 2 by negating the boolean logic formula above: $\neg((x0 \land r00 \lor x1 \land r10) \land \neg (x0 \land r01 \lor x1 \land r11)$ $\lor \neg (x0 \land r00 \lor x1 \land r10) \land (x0 \land r01 \lor x1 \land r11))$

- The generated boolean satisfiability problem (SAT) is an NPcomplete problem
- Alloy analyzer implements an efficient translation in the sense that the problem instance presented to the SAT solver is as small as possible
 - It will take the SAT solver exponential time in the worst case to solve the boolean satisfiability problem