CS 267: Automated Verification

Instructor: Tevfik Bultan
Linear Time vs. Branching Time

- In linear time logics we look at the execution paths individually.
- In branching time logics we view the computation as a tree.
 - computation tree: unroll the transition relation.
Computation Tree Logic (CTL)

• In CTL we quantify over the paths in the computation tree

• We use the same four temporal operators: X, G, F, U

• However we attach path quantifiers to these temporal operators:
 – A : for all paths
 – E : there exists a path

• We end up with eight temporal operators:
 – AX, EX, AG, EG, AF, EF, AU, EU
CTL Semantics

Given a state s and CTL properties p and q

\[s \models p \quad \text{iff} \quad L(s, p) = \text{True}, \text{where } p \in \text{AP} \]

\[s \models \neg p \quad \text{iff} \quad \text{not } s \models p \]

\[s \models p \land q \quad \text{iff} \quad s \models p \text{ and } s \models q \]

\[s \models p \lor q \quad \text{iff} \quad s \models p \text{ or } s \models q \]

\[s_0 \models \text{EX } p \quad \text{iff} \quad \text{there exists a path } s_0, s_1, s_2, \ldots \text{ such that } s_1 \models p \]

\[s_0 \models \text{AX } p \quad \text{iff} \quad \text{for all paths } s_0, s_1, s_2, \ldots, s_1 \models p \]
CTL Semantics

$s_0 |= EG p \iff$ there exists a path s_0, s_1, s_2, \ldots such that for all $i \geq 0$, $s_i |= p$

$s_0 |= AG p \iff$ for all paths s_0, s_1, s_2, \ldots, for all $i \geq 0$, $s_i |= p$

$s_0 |= EF p \iff$ there exists a path s_0, s_1, s_2, \ldots such that there exists an $i \geq 0$ such that $s_i |= p$

$s_0 |= AF p \iff$ for all paths s_0, s_1, s_2, \ldots, there exists an $i \geq 0$, such that, $s_i |= p$

$s_0 |= p \text{ EU } q \iff$ there exists a path s_0, s_1, s_2, \ldots, such that, there exists an $i \geq 0$ such that $s_i |= q$ and for all $0 \leq j < i$, $s_j |= p$

$s_0 |= p \text{ AU } q \iff$ for all paths s_0, s_1, s_2, \ldots, there exists an $i \geq 0$ such that $s_i |= q$ and for all $0 \leq j < i$, $s_j |= p$
CTL Properties

Transition System

s1 → s2 → s3 → s4

P

Computation Tree

s3

s1

s2

s4

s3

p

s3 |= p
s4 |= p
s1 |= ¬ p
s2 |= ¬ p
s3 |= EX p
s3 |= EX ¬ p
s3 |= ¬ AX p
s3 |= ¬ AX ¬ p
s3 |= EG p
s3 |= ¬ EG ¬ p
s3 |= AF p
s3 |= EF ¬ p
s3 |= ¬ AF ¬ p

p
CTL Equivalences

- CTL basis: EX, EU, EG

\[AX \ p = \neg \ EX \ \neg p \]
\[AG \ p = \neg \ EF \ \neg p \]
\[AF \ p = \neg \ EG \ \neg p \]
\[p \ AU \ q = \neg ((\neg q \ EU (\neg p \land \neg q)) \lor EG \neg q) \]
\[EF \ p = True \ EU \ p \]

- Another CTL basis: EX, EU, AU
CTL Model Checking

• Given a transition system $T = (S, I, R)$ and a CTL property p
 $\models T |= p$ iff for all initial state $s \in I$, $s |= p$

Model checking problem: Given a transition system T and a CTL property p, determine if T is a model for p (i.e., if $T |= p$)

For example:

$T |=? AG (\neg (pc1=c \land pc2=c))$

$T |=? AG(pc1=w \Rightarrow AF(pc1=c)) \land AG(pc2=w \Rightarrow AF(pc2=c))$

• Question: Are CTL and LTL equivalent?
CTL vs. LTL

• CTL and LTL are not equivalent
 – There are properties that can be expressed in LTL but cannot be expressed in CTL
 • For example: \(\text{FG} \ p \)
 – There are properties that can be expressed in CTL but cannot be expressed in LTL
 • For example: \(\text{AG} \ (\text{EF} \ p) \)

• Hence, expressive power of CTL and LTL are not comparable
CTL*

- CTL* is a temporal logic which is strictly more powerful than CTL and LTL

- CTL* also uses the temporal operators X, F, G, U and the path quantifiers A and E, but temporal operators can also be used without path quantifiers
CTL*

• CTL and CTL* correspondence
 – Since and CTL property is also a CTL* property, CTL* is clearly as expressive as CTL
• Any LTL f property corresponds to the CTL* property $A f$
 – i.e., LTL properties have an implicit “for all paths” quantifier in front of them
 – Note that, according to our definition, an LTL property f holds for a transition system T, if and only if, for all execution paths of T, f holds
 – So, LTL property f holds for the transition system T if and only if the CTL* property $A f$ holds for all initial states of $T
CTL*

-CTL* is more expressive than CTL and LTL

- Following CTL* property cannot be expressed in CTL or LTL
 - $A(FG \ p) \lor AG(EF \ p)$
Model Checking Algorithm for Finite State Systems
[Clarke and Emerson 81], [Queille and Sifakis 82]

CTL Model checking problem: Given a transition system $T = (S, I, R)$, and a CTL formula f, does the transition system satisfy the property?

CTL model checking problem can be solved in $O(|f| \times (|S|+|R|))$

Note that the complexity is linear in the size of the formula and the transition system

- Recall that the size of the transition system is exponential in the number of variables and concurrent components (this is called the state space explosion problem)
CTL Model Checking Algorithm

• Translate the formula to a formula which uses the basis
 – \(\text{EX} \ p, \ \text{EG} \ p, \ p \ \text{EU} \ q \)

• Start from the innermost subformulas
 – *Label the states in the transition system with the subformulas that hold in that state*
 • Initially states are labeled with atomic properties

• Each (temporal or boolean) operator has to be processed once

• Processing of each operator takes \(O(|S| + |R|) \)
CTL Model Checking Algorithm

• Boolean operators are easy

 – \(\neg p \): Each state which is not labeled with \(p \) should be labeled with \(\neg p \)

 – \(p \wedge q \): Each state which is labeled with both \(p \) and \(q \) should be labeled with \(p \wedge q \)

 – \(p \vee q \): Each state which is labeled with \(p \) or \(q \) should be labeled with \(p \vee q \)
CTL Model Checking Algorithm: EX p

- EX p is easy to do in $O(|S|+|R|)$
 - All the nodes which have a next state labeled with p should be labeled with EX p
CTL Model Checking Algorithm: p EU q

- p EU q: Find the states which are the source of a path where p U q holds
 - Find the nodes that reach a node that is labeled with q by a path where each node is labeled with p
 - Label such nodes with p EU q
 - It is a reachability problem which can be solved in O(|S| + |R|)
 - First label the nodes which satisfy q with p EU q
 - For each node labeled with p EU q, label all its previous states that are labeled with p with p EU q
CTL Model Checking Algorithm: $p \text{ EU } q$

\[s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \]

$p, p \text{ EU } q$

$q, p \text{ EU } q$
CTL Model Checking Algorithm: EG p

- EG p: Find infinite paths where each node on the path is labeled with p, and label nodes in such paths with EG p
 - First remove all the states which do not satisfy p from the transition graph
 - Compute the strongly connected components of the remaining graph, and then find the nodes which can reach the strongly connected components (both of which can be done in $O(|S|+|R|)$)
 - Label the nodes in the strongly connected components and the nodes that can reach the strongly connected components with EG p
CTL Model Checking Algorithm: $\text{EG } p$

A strongly connected component
Verification vs. Falsification

• Verification:
 – Show: initial states \subseteq truth set of p

• Falsification:
 – Find: a state \in initial states \cap truth set of $\neg p$
 – Generate a counter-example starting from that state

• Model checking algorithms can be modified to generate a counter-example paths if the property is not satisfied
 – without increasing the complexity

• The ability to find counter-examples is one of the biggest strengths of the model checkers
Counter-Example Generation

• Remember: Given a transition system $T = (S, I, R)$ and a CTL property p $T \models p$ iff for all initial state $s \in I$, $s \models p$

• Verification vs. Falsification
 – Verification:
 • Show: initial states \subseteq truth set of p
 – Falsification:
 • Find: a state \in initial states \cap truth set of $\neg p$
 • Generate a counter-example starting from that state

• The ability to find counter-examples is one of the biggest strengths of the model checkers
General Idea

• We can define two temporal logics using subsets of CTL operators
 – ACTL: CTL formulas which only use the temporal operators AX, AG, AF and AU and all the negations appear only in atomic properties (there are no negations outside of temporal operators)
 – ECTL: CTL formulas which only use the temporal operators EX, EG, EF and EU and all the negations appear only in atomic properties

• Given an ACTL property its negation is an ECTL property
An Example

• If we wish to check the property $AG(p)$

• We can use the equivalence:
 $$AG(p) \equiv \neg EF(\neg p)$$

If we can find an initial state which satisfies $EF(\neg p)$, then we know that the transition system T, does not satisfy the property $AG(p)$
Another Example

• If we wish to check the property $AF(p)$

• We can use the equivalence:
 \[AF(p) \equiv \neg EG(\neg p) \]

If we can find an initial state which satisfies $EG(\neg p)$, then we know that the transition system T, does not satisfy the property $AF(p)$
Counter-Example Generation for ACTL

• Given an ACTL property p, we negate it and compute the set of states which satisfy it is negation $\neg p$
 – $\neg p$ is an ECTL property

• If we can find an initial state which satisfies $\neg p$ then we generate a counter-example path for p starting from that initial state by following the states that are marked with $\neg p$
 – Such a path is called a witness for the ECTL property $\neg p$
Counter-example generation for ACTL

- In general the counter-example for an ACTL property (equivalently a witness to an ECTL property) is not a single path
- For example, the counter example for the property $AF(AGp)$ would be a witness for the property $EG(EF \neg p)$
 - It is not possible to characterize the witness for $EG(EF \neg p)$ as a single path
- However it is possible to generate tree-like transition graphs containing counter-example behaviors as a counter-example:
 - Edmund M. Clarke, Somesh Jha, Yuan Lu, Helmut Veith: “Tree-Like Counterexamples in Model Checking”. LICS 2002: 19-29
Counter-example generation for LTL

- Recall that, an LTL property f holds for a transition system T, if and only if, for all execution paths of T, f holds.

- Then, to generate a counter-example for an LTL property f, we need to show that there exists an execution path for which $\neg f$ holds.
 - Given an LTL property f, a counter-example is an execution path for which $\neg f$ holds.
What About LTL and CTL* Model Checking?

• The complexity of the model checking problem for LTL and CTL* are:
 – $(|S|+|R|) \times 2^{O(|f|)}$

• Typically the size of the formula is much smaller than the size of the transition system
 – So the exponential complexity in the size of the formula is not very significant in practice