
The SMV system

�

for SMV version 2.5.4

K. L. M
Millan

m
millan�
s.
mu.edu

Original: February 2, 1992

Last updated: November 19, 2001

The SMV system is a tool for
he
king �nite state systems against spe
i�
ations in the

temporal logi
 CTL. The input language of SMV is designed to allow the des
ription of

�nite state systems that range from
ompletely syn
hronous to
ompletely asyn
hronous,

and from the detailed to the abstra
t. One
an readily spe
ify a system as a syn
hronous

Mealy ma
hine, or as an asyn
hronous network of abstra
t, nondeterministi
 pro
esses. The

language provides for modular hierar
hi
al des
riptions, and for the de�nition of reusable

omponents. Sin
e it is intended to des
ribe �nite state ma
hines, the only data types in the

language are �nite ones { Booleans, s
alars and �xed arrays. Stati
, stru
tured data types

an also be
onstru
ted. The logi
 CTL allows a ri
h
lass of temporal properties, in
luding

safety, liveness, fairness and deadlo
k freedom, to be spe
i�ed in a
on
ise syntax. SMV

uses the OBDD-based symboli
 model
he
king algorithm to eÆ
iently determine whether

spe
i�
ations expressed in CTL are satis�ed.

The primary purpose of the SMV input language is to des
ribe the transition relation of

a �nite Kripke stru
ture. Any expression in the propositional
al
ulus
an be used to de-

s
ribe this relation. This provides a great deal of
exibility, and at the same time a
ertain

danger of in
onsisten
y. For example, the presen
e of a logi
al
ontradi
tion
an result in a

deadlo
k { a state or states with no su

essor. This
an make some spe
i�
ations va
uously

true, and makes the des
ription unimplementable. While the model
he
king pro
ess
an

be used to
he
k for deadlo
ks, it is best to avoid the problem when possible by using a re-

stri
ted des
ription style. The SMV system supports this by providing a parallel-assignment

syntax. The semanti
s of assignment in SMV is similar to that of single assignment data

ow languages. By
he
king programs for multiple parallel assignments to the same variable,

ir
ular assignments, and type errors, the interpreter insures that a program using only the

assignment me
hanism is implementable. Consequently, this fragment of the language
an

be viewed as a hardware des
ription language, or a programming language. The SMV system

is by no means the last word on symboli
 model
he
king te
hniques, nor is it intended to be

a
omplete hardware des
ription language. It is simply an experimental tool for exploring

�

L

A

T

E

X sour
es restored by Tatsuhiro Tsu
hiya, Dept. of Informati
s and Mathemati
al S
ien
e, Osaka

University, Japan, t-tutiya�i
s.es.osaka-u.a
.jp. Edited and updated by Sergey Berezin, Carnegie

Mellon University, berez�
s.
mu.edu

1

the possible appli
ations of symboli
 model
he
king to hardware veri�
ation.

This do
ument des
ribes the syntax and semanti
s of the SMV input language, and the

fun
tion of the SMV model
he
ker. It also des
ribes some optional features of the model

he
ker whi
h
an be used to �ne tune the performan
e, and gives some examples of its

appli
ation. All of the examples in this do
ument are made available with the software. For

a des
ription of all the model
he
ker options, see the UNIX programmer's manual entry for

SMV, whi
h is also in
luded with the software.

1 The input language

Before delving into the syntax and semanti
s of the language, let us �rst
onsider a few

simple examples that illustrate the basi

on
epts. Consider the following short program in

the language.

MODULE main

VAR

request : boolean;

state : {ready,busy};

ASSIGN

init(state) := ready;

next(state) :=
ase

state = ready & request : busy;

1 : {ready,busy};

esa
;

SPEC

AG(request -> AF state = busy)

The input �le des
ribes both the model and the spe
i�
ation. The model is a Kripke

stru
ture, whose state is de�ned by a
olle
tion of state variables, whi
h may be of Boolean

or s
alar type. The variable request is de
lared to be a Boolean in the above program,

while the variable state is a s
alar, whi
h
an take on the symboli
 values ready or busy.

The value of a s
alar variable is en
oded by the interpreter using a
olle
tion of Boolean

variables, so that the transition relation maybe represented by an OBDD. This en
oding is

invisible to the user, however.

The transition relation of the Kripke stru
ture, and its initial state (or states), are deter-

mined by a
olle
tion of parallel assignments, whi
h are introdu
ed by the keyword ASSIGN.

In the above program, the initial value of the variable state is set to ready. The next value

of state is determined by the
urrent state of the system by assigning it the value of the

expression

ase

state = ready & request : busy;

1 : {ready,busy};

esa
;

The value of a
ase expression is determined by the �rst expression on the right hand

side of a : su
h that the
ondition on the the left hand side is true. Thus, if state =

2

ready & request is true, then the result of the expression is busy, otherwise, it is the set

fready,busyg. When a set is assigned to a variable, the result is a non-deterministi

hoi
e

among the values in the set. Thus, if the value of status is not ready, or request is false

(in the
urrent state), the value of state in the next state
an be either ready or busy. Non-

deterministi

hoi
es are useful for des
ribing systems whi
h are not yet fully implemented

(ie:, where some design
hoi
es are left to the implementor), or abstra
t models of
omplex

proto
ols, where the value of some state variables
annot be
ompletely determined.

Noti
e that the variable request is not assigned in this program. This leaves the SMV

system free to
hoose any value for this variable, giving it the
hara
teristi
s of an un
on-

strained input to the system.

The spe
i�
ation of the system appears as a formula in CTL under the keyword SPEC.

The SMV model
he
ker veri�es that all possible initial states satisfy the spe
i�
ation. In

this
ase, the spe
i�
ation is that invariantly if request is true, then inevitably the value of

state is busy.

The following program illustrates the de�nition of reusable modules and expressions. It

is a model of a 3 bit binary
ounter
ir
uit. Noti
e that the module name \main" has spe
ial

meaning in SMV, in the same way that it does in the C programming language. The order

of module de�nitions in the input �le is in
onsequential.

MODULE main

VAR

bit0 :
ounter_
ell(1);

bit1 :
ounter_
ell(bit0.
arry_out);

bit2 :
ounter_
ell(bit1.
arry_out);

SPEC

AG AF bit2.
arry_out

MODULE
ounter_
ell(
arry_in)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value) := value +
arry_in mod 2;

DEFINE

arry_out := value &
arry_in;

In this example, we see that a variable
an also be an instan
e of a user de�ned module.

The module in this
ase is
ounter
ell, whi
h is instantiated three times, with the names

bit0, bit1 and bit2. The
ounter
ell module has one formal parameter
arry in. In

the instan
e bit0, this formal parameter is given the a
tual value 1. In the instan
e bit1,

arry in is given the value of the expression bit0.
arry out. This expression is evaluated

in the
ontext of the main module. However, an expression of the form a:b denotes
omponent

b of module a, just as if the module a were a data stru
ture in a standard programming

language. Hen
e, the
arry in of module bit1 is the
arry out of module bit0. The

keyword DEFINE is used to assign the expression value &
arry in to the symbol
arry out.

3

De�nitions of this type are useful for des
ribing Mealy ma
hines. They are analogous to

ma
ro de�nitions, but noti
e that a symbol
an be referen
ed before it is de�ned.

The e�e
t of the DEFINE statement
ould have been obtained by de
laring a variable

and assigning its value, as follows:

VAR

arry_out : boolean;

ASSIGN

arry_out := value &
arry_in;

Noti
e that in this
ase, the
urrent value of the variable is assigned, rather than the next

value. De�ned symbols are sometimes preferable to variables, how ever, sin
e they don't

require introdu
ing a new variable into the BDD representation of the system. The weak-

ness of de�ned symbols is that they
annot be given values non-deterministi
ally. Another

di�eren
e between de�ned symbols and variables is that while variables are stati
ally typed,

de�nitions are not. This may be an advantage or a disadvantage, depending on our point of

view.

In a parallel-assignment language, the question arises: \What happens if a given variable

is assigned twi
e in parallel?" More seriously: \What happens in the
ase of an absurdity,

like a := a + 1; (as opposed to the sensible next(a) := a + 1;)." In the
ase of SMV,

the interpreter dete
ts both multiple assignments and
ir
ular referen
es in expressions, and

treats these as semanti
 errors, even in the
ase where the
orresponding system of equations

has a unique solution. Another way of putting this is that there must be a total order in whi
h

the assignments
an be exe
uted whi
h respe
ts all of their data dependen
ies. The same

logi
 applies to de�ned symbols. As a result, all legal SMV programs
an be implemented.

By default, all of the assignment statements in an SMV program are exe
uted in parallel

and simultaneously. It is possible, however, to de�ne a
olle
tion of parallel pro
esses, whose

a
tions are interleaved in the exe
ution sequen
e of the program. This is useful for des
rib-

ing
ommuni
ation proto
ols, or asyn
hronous
ir
uits, or other systems whose a
tions are

not syn
hronized (in
luding syn
hronous
ir
uits with more than one
lo
k region). This

te
hnique is illustrated by the following program, whi
h represents a ring of three inverting

gates.

MODULE main

VAR

gate1 : pro
ess inverter(gate3.output) ;

gate2 : pro
ess inverter(gate1.output) ;

gate3 : pro
ess inverter(gate2.output) ;

SPEC

(AG AF gate1.out) & (AG AF !gate1.out)

MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := !input;

4

A pro
ess is an instan
e of a module whi
h is introdu
ed by the keyword pro
ess. The

program exe
utes a step by non-deterministi
ally
hoosing a pro
ess, then exe
uting all of

the assignment statements in that pro
ess in parallel. It is impli
it that if a given variable

is not assigned by the pro
ess, then its value remains un
hanged. Be
ause the
hoi
e of

the next pro
ess to exe
ute is non-deterministi
, this program models the ring of inverters

independently of the speed of the gates. For ea
h gate, the spe
i�
ation of this program states

that the output of the gate os
illates (ie:, that its value is in�nitely often zero, and in�nitely

often 1). In fa
t, this spe
i�
ation is false, sin
e the system is not for
ed to eventually
hoose

a given pro
ess to exe
ute, hen
e the output of a given gate may remain
onstant, regardless

of its input.

In order to for
e a given pro
ess to exe
ute in�nitely often, we
an use a fairness

onstraint. A fairness
onstraint restri
ts the attention of the model
he
ker to only those

exe
ution paths along whi
h a given CTL formula is true in�nitely of ten. Ea
h pro
ess

has a spe
ial variable
alled running whi
h is true if and only if that pro
ess is
urrently

exe
uting. By adding the de
laration

FAIRNESS

running

to the module inverter, we
an e�e
tively for
e every instan
e of inverter to exe
ute

in�nitely often, thus making the spe
i�
ation true.

One advantage of using pro
esses to des
ribe a system is that it allows a parti
ularly

eÆ
ient OBDD representation of the transition relation. We observe that the set of states

rea
hable by one step of the program is the union of the sets of states rea
hable by ea
h

individual pro
ess. Hen
e, rather than
onstru
ting the transition relation of the entire

system, we
an use the transition relations of the individual pro
esses separately and
ombine

the results. This
an yield a substantial savings in spa
e in representing the transition

relation. O

asionally , however, the fa
t that two pro
esses
annot make simultaneous

transitions leads to in
reased
omplexity in representing the set of states rea
hable by n

steps.

The alternative to using pro
esses to model an asyn
hronous
ir
uit would be to have all

gates exe
ute simultaneously, but allow ea
h gate the non-deterministi

hoi
e of evaluating

its output, or keeping the same output value. Su
h a model of the inverter ring would look

like the following:

MODULE main

VAR

gate1 : inverter(gate3.output);

gate2 : inverter(gate2.output);

gate3 : inverter(gate1.output);

SPEC

(AG AF gate1.out) & (AG AF !gate1.out)

MODULE inverter(input)

VAR

output : boolean;

5

ASSIGN

init(output) := 0;

next(output) := !input union output;

The set union operator
oer
es its arguments to singleton sets as ne
essary. Thus, the next

output of ea
h gate
an be either its
urrent output, or the negation of its
urrent input {

ea
h gate
an
hoose non-deterministi
ally whether to delay or not. As a result, the number

of possible transitions from a given state
an be as high as 2

n

, where n is the number of

gates. This sometimes (but not always) makes it more expensive to represent the transition

relation.

As a se
ond example of pro
esses, the following program uses a variable semaphore to

implement mutual ex
lusion between two asyn
hronous pro
esses. Ea
h pro
ess has four

states: idle, entering,
riti
al and exiting. The entering state indi
ates that the

pro
ess wants to enter its
riti
al region. If the variable semaphore is zero, it goes to the

riti
al state, and sets semaphore to one. On exiting its
riti
al region, the pro
ess sets

semaphore to zero again.

MODULE main

VAR

semaphore : boolean;

pro
1 : pro
ess user;

pro
2 : pro
ess user;

ASSIGN

init(semaphore) := 0;

SPEC

AG !(pro
1.state =
riti
al & pro
2.state =
riti
al)

MODULE user

VAR

state : {idle,entering ,
riti
al,exiting};

ASSIGN

init(state) := idle;

next(state) :=

ase

state = idle : {idle,entering};

state = entering & !semaphore :
riti
al;

state =
riti
al : {
riti
al,exiting};

state = exiting : idle;

1 : state;

esa
;

next(semaphore) :=

ase

state = entering : 1;

state = exiting : 0;

1 : semaphore;

6

esa
;

FAIRNESS

running

If any of the spe
i�
ation is false, the SMV model
he
ker attempts to produ
e a
oun-

terexample, proving that the spe
i�
ation is false. This is not always possible, sin
e formulas

pre
eded by existential path quanti�ers
annot be proved false by showing a single exe
ution

path. Similarly, subformulas pre
eded by universal path quanti�er
annot be proved true

by showing a single exe
ution path. In addition, some formulas require in�nite exe
ution

paths as
ounterexamples. In this
ase, the model
he
ker outputs a looping path up to and

in
luding the �rst repetition of a state.

In the
ase of the semaphore program, suppose that the spe
i�
ation were
hanged to

AG (pro
1.state = entering -> AF pro
1.state =
riti
al)

In other words, we spe
ify that if pro
1 wants to enter its
riti
al region, it eventually does.

The output of the model
he
ker in this
ase is shown in Figure 1. The
ounterexample

shows a path with pro
1 going to the entering state, followed by a loop in whi
h pro
2

repeatedly enters its
riti
al region and returns to its idle state, with pro
1 only exe
uting

only while pro
2 is in its
riti
al region. This path shows that the spe
i�
ation is false, sin
e

pro
1 never enters its
riti
al region. Note that in the printout of an exe
ution sequen
e,

only the values of variables that
hange are printed, to make it easier to follow the a
tion in

systems with a large number of variables.

Although the parallel assignment me
hanism should be suitable to most purposes, it is

possible in SMV to spe
ify the transition relation dire
tly as a propositional formula in terms

of the
urrent and next values of the state variables. Any
urrent/next state pair is in the

transition relation if and only if the value of the formula is one. Similarly, it is possible to

give the set of possible initial states as a formula in terms of only the
urrent state variables.

These two fun
tions are a

omplished by the TRANS and INIT statements respe
tively. As

an example, here is a des
ription the three inverter ring using only TRANS and INIT:

MODULE main

VAR

gate1 : inverter(gate3.output);

gate2 : inverter(gate1.output);

gate3 : inverter(gate2.output);

SPEC

(AG AF gate1.out)& (AG AF !gate1.out)

MODULE inverter(input)

VAR

output : boolean;

INIT

output = 0

TRANS

next(output) = !input | next(output) = output

7

spe
ifi
ation is false

AG (pro
1.state = entering -> AF pro
1.s... is false:

.semaphore = 0

.pro
1.state = idle

.pro
2.state = idle

next state:

[exe
uting pro
ess.pro
1℄

next state:

.pro
1.state = entering

AF pro
1.state =
riti
al is false:

[exe
uting pro
ess .pro
2℄

next state:

[exe
uting pro
ess .pro
2℄

.pro
2.state = entering

next state:

[exe
uting pro
ess .pro
1℄

.semaphore = 1

.pro
2.state =
riti
al

next state:

[exe
uting pro
ess .pro
2℄

next state:

[exe
uting pro
ess .pro
2℄

.pro
2.state = exiting

next state:

.semaphore = 0

.pro
2.state = idle

Figure 1: Model
he
ker output for semaphore example.

8

A

ording to the TRANS de
laration, for ea
h inverter, the next value of the output is equal

either to the negation of the input, or to the
urrent value of the output. Thus, in e�e
t,

ea
h gate
an
hoose non-deterministi
ally whether or not to delay.

Similarly, one
an use the INVAR de
laration to spe
ify invariants that every state in the

transition system must satisfy, whi
h results in restri
ting the transition relation to only

those states. The INVAR
lause
orresponds to the normal assignments. For example,

ASSIGN

x := y + 1;

an be written as

INVAR

x = y + 1

The use of TRANS, INVAR and INIT is not re
ommended, sin
e logi
al absurdities in these

de
larations
an lead to unimplementable des
riptions. For example, one
ould de
lare

the logi
al
onstant 0 to represent the transition relation, resulting in a system with no

transitions at all. However, the
exibility of these me
hanisms may be useful for those

writing translators from other languages to SMV.

To summarize, the SMV language is designed to be
exible in terms of the styles of

models it
an des
ribe. It is possible to fairly
on
isely des
ribe syn
hronous or asyn
hronous

systems, to des
ribe detailed deterministi
 models or abstra
t nondeterministi
 models, and

to exploit the modular stru
ture of a system to make the des
ription more
on
ise. It is also

possible to write logi
al absurdities if one desires to, and also sometimes if one does not desire

to, using the TRANS and INIT de
larations. By using only the parallel assignment me
hanism,

however, this problem
an be avoided. The language is designed to exploit the
apabilities

of the symboli
 model
he
king te
hnique. As a result the available data types are all stati

and �nite. No attempt has been made to support a parti
ular model of
ommuni
ation

between
on
urrent pro
esses. In addition, there is no expli
it support for some features of

ommuni
ating pro
ess models su
h as sequential
omposition. Sin
e the full generality of

the symboli
 model
he
king te
hnique is available through the SMV language, it is possible

that translators from various languages, pro
ess models, and intermediate formats
ould

be
reated. In parti
ular, existing sili
on
ompilers
ould be used to translate high level

languages with ri
h feature sets into a low level form (su
h as a Mealy ma
hine) that
ould

be readily translated into the SMV language.

2 Syntax and Semanti
s

This se
tion des
ribes the syntax and semanti
s of the SMV input language in detail.

2.1 Lexi
al
onventions

An atom in the syntax des
ribed below may be any sequen
e of
hara
ters in the set

fA-Z,a-z,0-9, ,-g, beginning with an alphabeti

hara
ter. All
hara
ters in a name are

signi�
ant, and
ase is signi�
ant. Whitespa
e
hara
ters are spa
e, tab and newline. Any

9

string starting with two dashes ("--") and ending with a new line is a
omment. A number

is any sequen
e of digits. Any other tokens re
ognized by the parser are en
losed in quotes

in the syntax expressions below.

2.2 Expressions

Expressions are
onstru
ted from variables,
onstants, and a
olle
tion of operators, in
luding

Boolean
onne
tives, integer arithmeti
 operators, and
ase expressions. The syntax of

expressions is as follows.

expr ::

atom ;; a symboli

onstant

| number ;; a numeri

onstant

| id ;; a variable identifier

| "!" expr ;; logi
al not

| expr1 "&" expr2 ;; logi
al and

| expr1 "|" expr2 ;; logi
al or

| expr1 "->" expr2 ;; logi
al impli
ation

| expr1 "<->" expr2 ;; logi
al equivalen
e

| expr1 "=" expr2 ;; equality

| expr1 "!=" expr2 ;; disequality

| expr1 "<" expr2 ;; less than

| expr1 ">" expr2 ;; greater than

| expr1 "<=" expr2 ;; less that or equal

| expr1 ">=" expr2 ;; greater than or equal

| expr1 "+" expr2 ;; integer addition

| expr1 "-" expr2 ;; integer subtra
tion

| expr1 "*" expr2 ;; integer multipli
ation

| expr1 "/" expr2 ;; integer division

| expr1 "mod" expr2 ;; integer remainder

| "next" "(" id ")" ;; next value

| set_expr ;; a set expression

|
ase_expr ;; a
ase expression

An id, or identi�er, is a symbol or expression whi
h identi�es an obje
t, su
h as a variable

or de�ned symbol. Sin
e an id
an be an atom, there is a possible ambiguity if a variable

or de�ned symbol has the same name as a symboli

onstant. Su
h an ambiguity is
agged

by the interpreter as an error. The expression next(x) refers to the value of identi�er x in

next state (see se
tion 2.5). The order of parsing pre
eden
e from high to low is

*,/

+,-

mod

=,!=,<,>,<=,>=

!

&

10

|

->,<->

Operators of equal pre
eden
e asso
iate to the left, ex
ept for the impli
ation ->, whi
h

asso
iates to the right. Parentheses may be used to group expressions.

A
ase expression has the syntax

ase_expr ::

"
ase"

expr_a1 ":" expr_b1 ";"

expr_a2 ":" expr_b2 ";"

...

expr_an ":" expr_bn ";"

"esa
"

A
ase expression returns the value of the �rst expression on the right hand side, su
h that

the
orresponding
ondition on the left hand side is true. Thus, if expr a1 is true, then the

result is expr b1. Otherwise, if expr a2 is true, then the result is expr b2, et
. If none of

the expressions on the left hand side is true, the result of the
ase expression is the numeri

value 1. It is an error for any expression on the left hand side to return a value other than

the truth values 0 or 1.

A set expression has the syntax

set_expr ::

"{" val1 "," ... "," valn "}"

| expr1 "in" expr2 ;; set in
lusion predi
ate

| expr1 "union" expr2 ;; set union

A set
an be de�ned by enumerating its elements inside
urly bra
es. The elements of the set

an be numbers or symboli

onstants. The in
lusion operator tests a value for membership

in a set. The union operator takes the union of two sets. If either argument is a number or

symboli
 value instead of a set, it is
oer
ed to a singleton set.

2.3 State variables

A state of the model is an assignment of values to a set of state variables. These variables

(and also instan
es of modules) are de
lared by the notation

de
l :: "VAR"

atom1 ":" type1 ";"

atom2 ":" type2 ";"

...

The type asso
iated with a variable de
laration
an be either a Boolean, a s
alar, a user

de�ned module, or an array of any of these (in
luding arrays of arrays). A type spe
i�er has

the syntax

11

type :: boolean

| "{" val1 "," val2 "," ... valn "}"

| "array" expr1 ".." expr2 "of" type

| atom ["(" expr1 "," expr2 "," ... exprn ")" ℄

| "pro
ess" atom ["(" expr1 "," expr2 "," ... exprn ")" ℄

val :: atom | number

A variable of type boolean
an take on the numeri
al values 0 and 1 (representing false

and true, respe
tively). In the
ase of a list of values en
losed in quotes (where atoms are

taken to be symboli

onstants), the variable is a s
alar whi
h take any these values. In

the
ase of an array de
laration, the expression expr1 is the lower bound on the subs
ript,

and the expression expr2 is the upper bound. Both of these expressions must evaluate to

integer
onstants. Finally, an atom optionally followed by a list of expressions in parentheses

indi
ates an instan
e of module atom (see se
tion 2.10). The keyword pro
ess
auses the

module to be instantiated as an asyn
hronous pro
ess (see 2.13).

2.4 The ASSIGN de
laration

An assignment de
laration has the form

de
l :: "ASSIGN"

dest1 ":=" expr1 ";"

dest2 ":=" expr2 ";"

...

dest :: atom

| "init" "(" atom ")"

| "next" "(" atom ")"

On the left hand side of the assignment, atom denotes the
urrent value of a variable,

init(atom) denotes its initial value, and next(atom) denotes its value in the next state.

If the expression on the right hand side evaluates to an integer or symboli

onstant, the

assignment simply means that the left hand side is equal to the right hand side. On the other

hand, if the expression evaluates to a set, then the assignment means that the left hand side

is
ontained in that set. It is an error if the value of the expression is not
ontained in the

range of the variable on the left hand side.

In order for a program to be implementable, there must be some order in whi
h the

assignments
an be exe
uted su
h that no variable is assigned after its value is referen
ed.

This is not the
ase if there is a
ir
ular dependen
y among the assignments in any given

pro
ess. Hen
e, su
h a
ondition is an error. In addition, it is an error for a variable to be

assigned a value more than on
e at any given time. To be pre
ise, it is an error if:

1. the next or
urrent value of a variable is assigned more than on
e in a given pro
ess,

or

2. the initial value of a variable is assigned more than on
e in the program, or

12

3. the
urrent value and the initial value of a variable are both assigned in the program,

or

4. the
urrent value and the next value of a variable are both assigned in the program

2.5 The TRANS de
laration

The transition relation R of the model is a set of
urrent state/next state pairs. Whether or

not a given pair is in this set is determined by a Boolean valued expression T , introdu
ed

by the TRANS keyword. The syntax of a TRANS de
laration is

de
l :: "TRANS" expr

It is an error for the expression to yield any value other than 0 or 1. If there is more than

one TRANS de
laration, the transition relation is the
onjun
tion of all of TRANS de
larations.

2.6 The INIT de
laration

The set of initial states of the model is determined by a Boolean expression under the INIT

keyword. The syntax of an INIT de
laration is

de
l :: "INIT" expr

It is an error for the expression to
ontain the next() operator, or to yield any value other

than 0 or 1. If there is more than one INIT de
laration, the initial set is the
onjun
tion of

all of the INIT de
larations.

2.7 The INVAR de
laration

The set of all states of the model is restri
ted to those that satisfy a Boolean expression

under the INVAR keyword. Thus, INVAR de�nes an invariant on the transition system. The

syntax of an INVAR de
laration is

de
l :: "INVAR" expr

As in the
ase of INIT, it is an error for the expression to
ontain the next() operator, or to

yield any value other than 0 or 1. If there is more than one INVAR de
laration, the invariant

is the
onjun
tion of all of the INVAR de
larations.

2.8 The SPEC de
laration

The system spe
i�
ation is given as a formula in the temporal logi
 CTL, introdu
ed by the

keyword SPEC. The syntax of this de
laration is

de
l :: "SPEC"
tlform

A CTL formula has the syntax

13

tlform ::

expr ;; a Boolean expression

| "!"
tlform ;; logi
al not

|
tlform1 "&"
tlform2 ;; logi
al and

|
tlform1 "|"
tlform2 ;; logi
al or

|
tlform1 "->"
tlform2 ;; logi
al implies

|
tlform1 "<->"
tlform2 ;; logi
al equivalen
e

| "E" pathform ;; existential path quantifier

| "A" pathform ;; universal path quantifier

The syntax of a path formula is

pathform ::

"X"
tlform ;; next time

"F"
tlform ;; eventually

"G"
tlform ;; globally

"["
tlform1 "U"
tlform2 "℄" ;; until

"BF" number ".." number
tlform ;; buonded eventually

"BG" number ".." number
tlform ;; bounded globally

tlform1 "BU" number ".." number
tlform2 ;; bounded until

The order of pre
eden
e of operators is (from high to low)

E,A,X,F,G,U,BF,BG,BU

!

&

|

->,<->

Operators of equal pre
eden
e asso
iate to the left, ex
ept for the impli
ation ->, whi
h

asso
iates to the right. Parentheses may be used to group expressions. It is an error for an

expression in a CTL formula to
ontain a next() operator or to return a value other than 0

or 1. If there is more than one SPEC de
laration, the spe
i�
ation is the
onjun
tion of all of

the SPEC de
larations. However, ea
h of the SPEC formulas is evaluated and the results are

reported separately, one by one, in the order of the SPEC de
lations in the program text.

2.9 The FAIRNESS de
laration

A fairness
onstraint is a CTL formula whi
h is assumed to be true in�nitely often in all

fair exe
ution paths. When evaluating spe
i�
ations, the model
he
ker
onsiders path

quanti�ers to apply only to fair paths. Fairness
onstraints are de
lared using the following

syntax:

de
l:: "FAIRNESS"
tlform

A path is
onsidered fair if and only if all fairness
onstraints de
lared in this manner are

true in�nitely often.

14

2.10 The PRINT de
laration

Sometimes it is desired to �nd out whi
h states satisfy a parti
ular spe
i�
ation, rather

than
he
king whether all of the rea
hable states satisfy it. The PRINT de
laration evaluates

a spe
i�
ation and prints a formula des
ribing the set of rea
hable states that satisfy this

formula. In parti
ular,

PRINT 1

prints a formula des
ribing the set of all rea
hable states.

de
l:: "PRINT"
tlform

| "PRINT" header ":"
tlform

where the header tells SMV whi
h variables should appear in the formula:

header:: "hide" id1 "," id2 "," ... idn

| "expose" id1 "," id2 "," ... idn

For example,

PRINT expose x, y: x = y | y = z

will print a formula des
ribing all possible values of x and y variables in all the rea
hable

states satisfying the formula x = y | y = z. If the expose keyword is
hanged to hide,

then the formula will
ontain all of the state variables ex
ept x and y.

2.11 The DEFINE de
laration

In order to make des
riptions more
on
ise, a symbol
an be asso
iated with a
ommonly

used expression. The syntax for this de
laration is

de
l :: "DEFINE"

atom1 ":=" expr1 ";"

atom2 ":=" expr2 ";"

...

atomn ":=" expr3 ";"

When every identi�er referring to the symbol on the left hand side o

urs in an expression,

it is repla
ed by the expression on the right hand side. The expression on the right hand side

is always evaluated in its original
ontext, however (see the next se
tion for an explanation

of
ontexts). Forward referen
es to de�ned symbols are allowed, but
ir
ular de�nitions are

not allowed, and result in an error.

15

2.12 Modules

A module is an en
apsulated
olle
tion of de
larations. On
e de�ned, a module
an be reused

as many times as ne
essary. Modules
an also be parameterized, so that ea
h instan
e of a

module
an refer to di�erent data values. A module
an
ontain instan
es of other modules,

allowing a stru
tural hierar
hy to be built. The syntax of a module is as follows.

module ::

"MODULE" atom ["(" atom1 "," atom2 "," ... atomn ")" ℄

de
l1

de
l2

...

de
l3

The atom immediately following the keyword "MODULE" is the name asso
iated with the

module. Module names are drawn from a separate name spa
e from other names in the

program, and hen
e may
lash with names of variables and de�nitions. The optional list of

atoms in parentheses are the formal parameters of the module. Whenever these parameters

o

ur in expressions within the module, they are repla
ed by the a
tual parameters whi
h

are supplied when the module is instantiated (see below).

An instan
e of a module is
reated using the VAR de
laration (see se
tion 2.3) This

de
laration supplies a name for the instan
e, and also a list of a
tual parameters, whi
h are

assigned to the formal parameters in the module de�nition. An a
tual parameter
an be any

legal expression. It is an error is the number of a
tual parameters is di�erent from the number

of formal parameters. The semanti
s of module instantiation is similar to
all-by-referen
e.

For example, in the following program fragment:

...

VAR

a : boolean;

b : foo(a);

...

MODULE foo(x)

ASSIGN

x := 1;

the variable b is assigned the value 1. This distinguishes the
all-by-referen
e me
hanism

from a
all-by-value s
heme. Now
onsider the following program:

...

DEFINE

a := 0;

VAR

b : bar(a);

...

MODULE bar(x)

DEFINE

16

a := 1;

y := x;

In this program, the value of y is 0. On the other hand, using a
all-by-name me
hanism,

the value of y would be 1, sin
e a would be substituted as an expression for x.

Forward referen
es to module names are allowed, but
ir
ular referen
es are not, and

result in an error.

2.13 Identi�ers

An id, or identi�er, is an expression whi
h referen
es an obje
t. Obje
ts are instan
es of

modules, variables, and de�ned symbols. The syntax of an identi�er is as follows.

id ::

atom

| id "." atom

| id "[" expr "℄"

An atom identi�es the obje
t of that name as de�ned in a VAR or DEFINE de
laration. If a

identi�es an instan
e of a module, then the expression a:b identi�es the
omponent obje
t

named b of instan
e a. This is pre
isely analogous to a

essing a
omponent of a stru
tured

data type. Note that an a
tual parameter of module instan
e a
an identify another module

instan
e b, allowing a to a

ess
omponents of b, as in the following example:

...

VAR

a : foo(b);

b : bar(a);

...

MODULE foo(x)

DEFINE

 := x.p | x.q;

MODULE bar(x)

VAR

p : boolean;

q : boolean;

Here, the value of
 is the logi
al or of p and q.

If a identi�es an array, the expression a[b℄ identi�es element b of array a. It is an error

for the expression b to evaluate to a number outside the subs
ript bounds of array a, or to

a symboli
 value.

17

2.14 The main module

The syntax of an SMV program is

program ::

module1

module2

...

modulen

There must be one module with the name main and no formal parameters. The module

main is the one evaluated by the interpreter.

2.15 Pro
esses

Pro
esses are used to model interleaving
on
urren
y. A pro
ess is a module whi
h is in-

stantiated using the keyword pro
ess (see se
tion 2.3). The program exe
utes a step by

non-deterministi
ally
hoosing a pro
ess, then exe
uting all of the assignment statements in

that pro
ess in parallel. It is impli
it that if a given variable is not assigned by the pro
ess,

then its value remains un
hanged. Ea
h instan
e of a pro
ess has a spe
ial Boolean variable

asso
iated with it
alled running. The value of this variable is 1 if and only if the pro
ess

instan
e is
urrently sele
ted for exe
ution.

3 Examples

In this se
tion, we look at the performan
e of the SMV symboli
 model
he
ker for two

hardware examples { a syn
hronous fair bus arbiter, and an asyn
hronous distributed mutual

ex
lusion ring
ir
uit (the one studied by David Dill in his thesis [Dil89℄ and designed by

Alain Martin [Mar85℄).

3.1 Syn
hronous arbiter

The syn
hronous arbiter
ir
uit is an example of a syn
hronous �nite state ma
hine. It is

omposed of a \daisy
hain" of arbiter
ells depi
ted in Figure 2. Under normal operation,

the arbiter grants the bus on ea
h
lo
k
y
le to the requester with the highest priority.

Ea
h arbiter
ell re
eives a \bus grant" input from the next higher priority
ell. If this

signal is true, and the
ell's \request" input is true, then the
ell a
tivates its \a
knowledge"

output, and negates \bus grant" to the next lower priority
ell. On the other hand, if the

\request" input is false, then the \bus grant" input is passed along to the next
ell via the

\bus grant" output. Despite this priority s
heme, the bus arbiter is designed to insure that

every requester eventually is granted the bus. During light bus traÆ
, the priority s
heme

is used, but as the bus approa
hes saturation, the arbiter reverts to a round-robin s
heme.

This is a

omplished by means of a \token", whi
h is passed in a
y
li
 manner from the

�rst
ell down to the last, and then ba
k to the �rst. The \token" moves on
e ea
h
lo
k

y
le. When the \token" passes a
ell whose \request" is a
tive, it sets a
ag \waiting".

The \waiting"
ag remains set as long as the request persists. When the token returns to

18

W

T

req in

token out

token in

override in

override out grant in

grant out

ack out

Figure 2: Cell of syn
hronous arbiter
ir
uit.

that
ell, if the \waiting"
ag is still set, the
ell re
eives immediate highest priority. This is

a

omplished by asserting an output
alled \override". This signal propagates to the highest

priority
ell and negates its \bus grant" input.

The spe
i�
ations for the arbiter
ir
uit are as follows:

1. No two a
knowledge outputs are asserted simultaneously.

2. Every persistent request is eventually a
knowledged.

3. A
knowledge is not asserted without request.

Expressed in CTL, they are:

1. 8i 6= j : AG :(a
k

i

^ a
k

j

)

2. 8i : AG AF (req

i

) a
k

i

)

3. 8i : AG (a
k

i

) req

i

)

The quanti�ers are bounded to range over the �nite set of
ells, so these quanti�ed formulas

an be expanded into �nite CTL formulas. Figure 3 gives the SMV des
ription of a �ve
ell

arbiter and its spe
i�
ation.

To run the symboli
 model
he
ker on this example, we use the
ommand

smv -f syn
arb.smv

The option -f indi
ates that a forward sear
h of the state spa
e of the model should be

made before
he
king the spe
i�
ations. This te
hnique will be dealt with shortly.

Figure 4 plots the performan
e of the symboli
 model
he
king pro
edure for this example

in terms of several measures. First, the size of the transition relation in OBDD nodes.

Se
ond, the total run time (on a Sun3, running an implementation in the C language), and

19

third, the maximum number of OBDD nodes used at any given time. The latter number

should be regarded as being a

urate only to within a fa
tor of two, sin
e the garbage

olle
tor in the implementation s
avenges for unreferen
ed nodes only when the number of

nodes doubles. We observe that as the number of
ells in the
ir
uit in
reases, the size of

the transition relation in
reases linearly. The exe
ution time is well �t by a quadrati

urve.

To obtain polynomial performan
e for this example, it was ne
essary to add a wrinkle

to the symboli
 model
he
king algorithm (the -f option. It is often the
ase that
ir
uits

are \well behaved" in the part of their state spa
e whi
h is rea
hable from the initial state,

but not otherwise. In the
ase of the syn
hronous arbiter, only states with one token in

the ring are rea
hable. However, the symboli
 model
he
king te
hnique
onsiders all states,

in
luding states with multiple tokens. This be
omes a problem when we
onsider the highest

priority
ell, whi
h is granted the bus by default when no other requesters override. If we

ompute the set of states in whi
h this
ell ne
essarily grants the bus in k steps, we obtain

the set in whi
h, for every waiting
ell i, there is no token at
ell i� k mod n (hen
e a token

does not rea
h
ell i in k steps). Unfortunately, this is not a set whi
h
an be
ompa
tly

represented as an OBDD. This is analogous to the problem of representing a shifter
ir
uit

using OBDDs { there is no variable ordering whi
h produ
es a
ompa
t OBDD for all shift

distan
es k. As a result, the time required to
ompute AFa
k

0

is exponential, roughly

doubling with ea
h added
ell.

On the other hand, if we �rst
ompute the set of rea
hable states, and then restri
t the

evaluation of the temporal operators to that set, the result is un
hanged, but the veri�
ation

time be
omes polynomial. When we restri
t to states with only one token, we only have to

represent the set of states where
ell i + k mod n is not waiting, where i is the position of

the single token.

3.2 Asyn
hronous state ma
hines

An asyn
hronous �nite state ma
hine
an be viewed as a
olle
tion of parallel pro
esses

whose a
tions are interleaved arbitrarily. This allows us to make an important optimization

in the symboli
 model
he
king te
hnique: we observe that the set of states rea
hable by one

step of the system is the union of the sets of states rea
hable by one step of ea
h individual

pro
ess. Using this fa
t, we
an avoid
omputing the transition relation of the system and

instead use only the transition relations of the individual pro
esses.

Our example of an asyn
hronous state ma
hine is the distributed mutual ex
lusion (DME)

ir
uit of Alain Martin [Mar85℄. It is a speed-independent
ir
uit and makes use of spe
ial

two-way mutual ex
lusion
ir
uits as
omponents. Figure 5 is a diagram of a single
ell of

the distributed mutual-ex
lusion ring (DME). The
ir
uit works by passing a token around

the ring, via the request and a
knowledge signals RR and RA. A user of the DME gains

ex
lusive a

ess to the resour
e via the request and a
knowledge signals UR and UA.

The spe
i�
ations of the DME
ir
uit are as follows:

1. No two users are a
knowledged simultaneously.

2. An a
knowledgment is not output without a request.

3. An a
knowledgment is not removed while a request persists.

20

MODULE arbiter-element(above,below,init-token)

VAR

Persistent : boolean;

Token : boolean;

Request : boolean;

ASSIGN

init(Token) := init-token;

next(Token) := token-in;

init(Persistent) := 0;

next(Persistent) := Request & (Persistent | Token);

DEFINE

above.token-in := Token;

override-out := above.override-out | (Persistent & Token);

grant-out := !Request & below.grant-out;

a
k-out := Request & (Persistent & Token | below.grant-out);

SPEC

AG ((a
k-out -> Request) & AF (!Request | a
k-out))

MODULE main

VAR

e5 : arbiter-element(self,e4,0);

e4 : arbiter-element(e5,e3,0);

e3 : arbiter-element(e4,e2,0);

e2 : arbiter-element(e3,e1,0);

e1 : arbiter-element(e2,self,1);

DEFINE

grant-in := 1;

e1.token-in := token-in;

override-out := 0;

grant-out := grant-in & !e1.override-out;

SPEC

AG (

!(e1.a
k-out & e2.a
k-out)

& !(e1.a
k-out & e3.a
k-out)

& !(e2.a
k-out & e3.a
k-out)

& !(e1.a
k-out & e4.a
k-out)

& !(e2.a
k-out & e4.a
k-out)

& !(e3.a
k-out & e4.a
k-out)

& !(e1.a
k-out & e5.a
k-out)

& !(e2.a
k-out & e5.a
k-out)

& !(e3.a
k-out & e5.a
k-out)

& !(e4.a
k-out & e5.a
k-out)

)

Figure 3: SMV program for syn
hronous arbiter example.

21

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

S
ec

on
ds

2

4

6

8

10

12

0

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

R
ea

ch
ab

le
 s

ta
te

s

1×103

1×104

1×105

1×106

1×107

1×108

1×109

1×102

0

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

O
B

D
D

 n
od

es

500

1000

1500

2000

2500

0

Total OBDD nodes used
Transition relation

Figure 4: Performan
e { syn
hronous arbiter example.

22

Figure 5: One
ell of the DME
ir
uit.

4. All requests are eventually a
knowledged.

We will
onsider only the �rst spe
i�
ation, regarding mutual ex
lusion. The others are

easily formulated in CTL, although the last requires the use of fairness
onstraints (see

se
tion 2.8) to guarantee that all gate delays are �nite. The formalization of the mutual

ex
lusion spe
i�
ation is

80 � i; j < n; i 6= j : AG :(a
k

i

^ a
k

j

)

We examine the performan
e of the symboli
 model
he
king algorithm in verifying this

spe
i�
ation using three di�ering approa
hes. In method 1, we use a single pro
ess to

model the entire system. Arbitrary delay of the gates is introdu
ed by allowing ea
h gate

to
hoose non-deterministi
ally whether to reevaluate its state or remain un
hanged. The

SMV des
ription of this model is given in Figure 6. In method 2, we model ea
h DME
ell

by a separate pro
ess (sin
e there are 18 gates per
ell, making a separate pro
ess for ea
h

gate is prohibitive). In method 3, we use the same model as in method 1, but reevaluate

the the transition relation at ea
h step of the forward sear
h, restri
ting the evaluation to

those transitions beginning in a state on the sear
h frontier. This results in a sequen
e of

approximations to the transition relation whi
h are substantially more
ompa
t than the

omplete transition relation, at the expense of many reevaluations of the transition relation.

This method of
al
ulation is invoked by using the -i option to the model
he
ker. The

OBDD fun
tion Restri
t of Coudert, Madre and Berthet is used to restri
t the transition

relation. In all three methods, we use the -f option to restri
t the
omputation to the

rea
hable states, sin
e the state spa
e of this
ir
uit is quite sparse.

The performan
e
urves for the three methods are shown in Figure 7. The disjun
tive

transition relation method requires O(n

4

) time, while the two
onjun
tive methods { with

23

MODULE and-gate(in1,in2)

VAR out : boolean;

ASSIGN init(out) := 0; next(out) := (in1 & in2) union out;

MODULE and-gate-init(in1,in2,init-out)

VAR out : boolean;

ASSIGN init(out) := init-out; next(out) := (in1 & in2) union out;

MODULE or-gate(in1,in2)

VAR out : boolean;

ASSIGN init(out) := 0; next(out) := (in1 | in2) union out;

MODULE
-element(in1,in2)

VAR out : boolean;

ASSIGN init(out) := 0;

next(out) :=
ase in1 = in2 : in1 union out; 1 : out; esa
;

MODULE mutex-half(inp,other-out)

VAR out : boolean;

ASSIGN init(out) := 0; next(out) := inp union out;

TRANS !(next(out) & next(other-out))

MODULE user

VAR req : boolean;

ASSIGN init(req) := 0; next(req) := (!a
k) union req;

MODULE
ell(left,right,token)

VAR q : and-gate(f.out,n.out); f :
-element(d.out,i.out);

d : and-gate(b.out,!u.a
k); b : mutex-half(left.req,a.out);

i : and-gate(h.out,!j.out); h :
-element(g.out,j.out);

n : and-gate-init(!e.out,!m.out,!token); u : user;

a : mutex-half(u.req,b.out);
 : and-gate(a.out,!left.a
k);

g : or-gate(
.out,d.out); e :
-element(
.out,i.out);

k : and-gate(g.out,!h.out); l : and-gate(k.out,m.out);

p : and-gate(k.out,n.out); m : and-gate-init(!f.out,!n.out,token);

r : and-gate(e.out,m.out); j : or-gate(l.out,a
k);

DEFINE req := p.out; left.a
k := q.out; u.a
k := r.out;

MODULE main

VAR e-3 :
ell(e-1,e-2,1); e-2 :
ell(e-3,e-1,0); e-1 :
ell(e-2,e-3,0);

SPEC AG (

!(e-1.u.a
k & e-2.u.a
k)

& !(e-1.u.a
k & e-3.u.a
k)

& !(e-2.u.a
k & e-3.u.a
k)

)

Figure 6: SMV program for DME
ir
uit example.

24

unrestri
ted and restri
ted transition relation { require O(n

3

) time. As a result, the restri
ted

transition relation method overtakes the disjun
tive method at about 8
ells. At this point,

the disadvantage of having to evaluate the transition relation at ea
h step is outweighed

by the better asymptoti
 performan
e. The di�eren
e in asymptoti
 performan
e
an be

explained by observing the growth in the OBDDs representing state sets in the forward

sear
h. The size of the largest su
h OBDDs as a fun
tion of the number of
ells is plotted in

Figure 7(
). As mentioned previously, the
orrelation between the number of steps taken by

ea
h pro
ess
an make the representation of the rea
hed state less eÆ
ient. Thus, the OBDD

size for the rea
hed state set runs linearly for methods 1 and 3, but quadrati
ally for method

2. The overall time
omplexity of O(n

3

) for methods 1 and 3 derives from three fa
tors: a

linear in
rease in the transition relation OBDD, a linear in
rease in the state set OBDD,

and a linear in
rease in the number of iterations. For method 2, the quadrati
 in
rease in

the state set OBDD results in an overall O(n

4

) time
omplexity. Note that the number of

rea
hable states in
reases roughly a fa
tor of ten with ea
h added
ell (see Figure 8).

Referen
es

[Dil89℄ D. L. Dill. Tra
e Theory for Automati
 Hierar
hi
al Veri�
ation of Speed-

Independent Cir
uits. ACM Distinguished Dissertations. MIT Press, 1989.

[Mar85℄ A. J. Martin. The design of a self-timed
ir
uit for distributed mutual ex
lusion.

In H. Fu
hs, editor, Pro
eedings of the 1985 Chapel Hill Conferen
e on Very Large

S
ale Integration, 1985.

25

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

S
ec

on
ds

5000

10000

15000

20000

25000

0

Method 3
Method 2

(a)

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

O
B

D
D

 n
od

es

50000

100000

150000

200000

250000

300000

0

Total OBDD nodes used
Total used, Method 2

(b)

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

O
B

D
D

 n
od

es

4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

2000
0

Transition relation, Method 3
Transition relation, Method 2

(
)

Figure 7: Performan
e for DME
ir
uit example.

26

4 5 6 7 8 9 10 11

5000

10000

15000

20000

25000

30000

35000

0
3

Reached state set, Method 2

(a)

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

R
ea

ch
ab

le
 s

ta
te

s

1×104
1×105
1×106
1×107
1×108
1×109
1×1010
1×1011
1×1012
1×1013

1×103

0

(b)

Figure 8: State set size for DME
ir
uit example.

27

