
The SMV system

�

for SMV version 2.5.4

K. L. MMillan

mmillan�s.mu.edu

Original: February 2, 1992

Last updated: November 19, 2001

The SMV system is a tool for heking �nite state systems against spei�ations in the

temporal logi CTL. The input language of SMV is designed to allow the desription of

�nite state systems that range from ompletely synhronous to ompletely asynhronous,

and from the detailed to the abstrat. One an readily speify a system as a synhronous

Mealy mahine, or as an asynhronous network of abstrat, nondeterministi proesses. The

language provides for modular hierarhial desriptions, and for the de�nition of reusable

omponents. Sine it is intended to desribe �nite state mahines, the only data types in the

language are �nite ones { Booleans, salars and �xed arrays. Stati, strutured data types

an also be onstruted. The logi CTL allows a rih lass of temporal properties, inluding

safety, liveness, fairness and deadlok freedom, to be spei�ed in a onise syntax. SMV

uses the OBDD-based symboli model heking algorithm to eÆiently determine whether

spei�ations expressed in CTL are satis�ed.

The primary purpose of the SMV input language is to desribe the transition relation of

a �nite Kripke struture. Any expression in the propositional alulus an be used to de-

sribe this relation. This provides a great deal of exibility, and at the same time a ertain

danger of inonsisteny. For example, the presene of a logial ontradition an result in a

deadlok { a state or states with no suessor. This an make some spei�ations vauously

true, and makes the desription unimplementable. While the model heking proess an

be used to hek for deadloks, it is best to avoid the problem when possible by using a re-

strited desription style. The SMV system supports this by providing a parallel-assignment

syntax. The semantis of assignment in SMV is similar to that of single assignment data

ow languages. By heking programs for multiple parallel assignments to the same variable,

irular assignments, and type errors, the interpreter insures that a program using only the

assignment mehanism is implementable. Consequently, this fragment of the language an

be viewed as a hardware desription language, or a programming language. The SMV system

is by no means the last word on symboli model heking tehniques, nor is it intended to be

a omplete hardware desription language. It is simply an experimental tool for exploring

�

L

A

T

E

X soures restored by Tatsuhiro Tsuhiya, Dept. of Informatis and Mathematial Siene, Osaka

University, Japan, t-tutiya�is.es.osaka-u.a.jp. Edited and updated by Sergey Berezin, Carnegie

Mellon University, berez�s.mu.edu

1

the possible appliations of symboli model heking to hardware veri�ation.

This doument desribes the syntax and semantis of the SMV input language, and the

funtion of the SMV model heker. It also desribes some optional features of the model

heker whih an be used to �ne tune the performane, and gives some examples of its

appliation. All of the examples in this doument are made available with the software. For

a desription of all the model heker options, see the UNIX programmer's manual entry for

SMV, whih is also inluded with the software.

1 The input language

Before delving into the syntax and semantis of the language, let us �rst onsider a few

simple examples that illustrate the basi onepts. Consider the following short program in

the language.

MODULE main

VAR

request : boolean;

state : {ready,busy};

ASSIGN

init(state) := ready;

next(state) := ase

state = ready & request : busy;

1 : {ready,busy};

esa;

SPEC

AG(request -> AF state = busy)

The input �le desribes both the model and the spei�ation. The model is a Kripke

struture, whose state is de�ned by a olletion of state variables, whih may be of Boolean

or salar type. The variable request is delared to be a Boolean in the above program,

while the variable state is a salar, whih an take on the symboli values ready or busy.

The value of a salar variable is enoded by the interpreter using a olletion of Boolean

variables, so that the transition relation maybe represented by an OBDD. This enoding is

invisible to the user, however.

The transition relation of the Kripke struture, and its initial state (or states), are deter-

mined by a olletion of parallel assignments, whih are introdued by the keyword ASSIGN.

In the above program, the initial value of the variable state is set to ready. The next value

of state is determined by the urrent state of the system by assigning it the value of the

expression

ase

state = ready & request : busy;

1 : {ready,busy};

esa;

The value of a ase expression is determined by the �rst expression on the right hand

side of a : suh that the ondition on the the left hand side is true. Thus, if state =

2

ready & request is true, then the result of the expression is busy, otherwise, it is the set

fready,busyg. When a set is assigned to a variable, the result is a non-deterministi hoie

among the values in the set. Thus, if the value of status is not ready, or request is false

(in the urrent state), the value of state in the next state an be either ready or busy. Non-

deterministi hoies are useful for desribing systems whih are not yet fully implemented

(ie:, where some design hoies are left to the implementor), or abstrat models of omplex

protools, where the value of some state variables annot be ompletely determined.

Notie that the variable request is not assigned in this program. This leaves the SMV

system free to hoose any value for this variable, giving it the harateristis of an unon-

strained input to the system.

The spei�ation of the system appears as a formula in CTL under the keyword SPEC.

The SMV model heker veri�es that all possible initial states satisfy the spei�ation. In

this ase, the spei�ation is that invariantly if request is true, then inevitably the value of

state is busy.

The following program illustrates the de�nition of reusable modules and expressions. It

is a model of a 3 bit binary ounter iruit. Notie that the module name \main" has speial

meaning in SMV, in the same way that it does in the C programming language. The order

of module de�nitions in the input �le is inonsequential.

MODULE main

VAR

bit0 : ounter_ell(1);

bit1 : ounter_ell(bit0.arry_out);

bit2 : ounter_ell(bit1.arry_out);

SPEC

AG AF bit2.arry_out

MODULE ounter_ell(arry_in)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value) := value + arry_in mod 2;

DEFINE

arry_out := value & arry_in;

In this example, we see that a variable an also be an instane of a user de�ned module.

The module in this ase is ounter ell, whih is instantiated three times, with the names

bit0, bit1 and bit2. The ounter ell module has one formal parameter arry in. In

the instane bit0, this formal parameter is given the atual value 1. In the instane bit1,

arry in is given the value of the expression bit0.arry out. This expression is evaluated

in the ontext of the main module. However, an expression of the form a:b denotes omponent

b of module a, just as if the module a were a data struture in a standard programming

language. Hene, the arry in of module bit1 is the arry out of module bit0. The

keyword DEFINE is used to assign the expression value & arry in to the symbol arry out.

3

De�nitions of this type are useful for desribing Mealy mahines. They are analogous to

maro de�nitions, but notie that a symbol an be referened before it is de�ned.

The e�et of the DEFINE statement ould have been obtained by delaring a variable

and assigning its value, as follows:

VAR

arry_out : boolean;

ASSIGN

arry_out := value & arry_in;

Notie that in this ase, the urrent value of the variable is assigned, rather than the next

value. De�ned symbols are sometimes preferable to variables, how ever, sine they don't

require introduing a new variable into the BDD representation of the system. The weak-

ness of de�ned symbols is that they annot be given values non-deterministially. Another

di�erene between de�ned symbols and variables is that while variables are statially typed,

de�nitions are not. This may be an advantage or a disadvantage, depending on our point of

view.

In a parallel-assignment language, the question arises: \What happens if a given variable

is assigned twie in parallel?" More seriously: \What happens in the ase of an absurdity,

like a := a + 1; (as opposed to the sensible next(a) := a + 1;)." In the ase of SMV,

the interpreter detets both multiple assignments and irular referenes in expressions, and

treats these as semanti errors, even in the ase where the orresponding system of equations

has a unique solution. Another way of putting this is that there must be a total order in whih

the assignments an be exeuted whih respets all of their data dependenies. The same

logi applies to de�ned symbols. As a result, all legal SMV programs an be implemented.

By default, all of the assignment statements in an SMV program are exeuted in parallel

and simultaneously. It is possible, however, to de�ne a olletion of parallel proesses, whose

ations are interleaved in the exeution sequene of the program. This is useful for desrib-

ing ommuniation protools, or asynhronous iruits, or other systems whose ations are

not synhronized (inluding synhronous iruits with more than one lok region). This

tehnique is illustrated by the following program, whih represents a ring of three inverting

gates.

MODULE main

VAR

gate1 : proess inverter(gate3.output) ;

gate2 : proess inverter(gate1.output) ;

gate3 : proess inverter(gate2.output) ;

SPEC

(AG AF gate1.out) & (AG AF !gate1.out)

MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := !input;

4

A proess is an instane of a module whih is introdued by the keyword proess. The

program exeutes a step by non-deterministially hoosing a proess, then exeuting all of

the assignment statements in that proess in parallel. It is impliit that if a given variable

is not assigned by the proess, then its value remains unhanged. Beause the hoie of

the next proess to exeute is non-deterministi, this program models the ring of inverters

independently of the speed of the gates. For eah gate, the spei�ation of this program states

that the output of the gate osillates (ie:, that its value is in�nitely often zero, and in�nitely

often 1). In fat, this spei�ation is false, sine the system is not fored to eventually hoose

a given proess to exeute, hene the output of a given gate may remain onstant, regardless

of its input.

In order to fore a given proess to exeute in�nitely often, we an use a fairness

onstraint. A fairness onstraint restrits the attention of the model heker to only those

exeution paths along whih a given CTL formula is true in�nitely of ten. Eah proess

has a speial variable alled running whih is true if and only if that proess is urrently

exeuting. By adding the delaration

FAIRNESS

running

to the module inverter, we an e�etively fore every instane of inverter to exeute

in�nitely often, thus making the spei�ation true.

One advantage of using proesses to desribe a system is that it allows a partiularly

eÆient OBDD representation of the transition relation. We observe that the set of states

reahable by one step of the program is the union of the sets of states reahable by eah

individual proess. Hene, rather than onstruting the transition relation of the entire

system, we an use the transition relations of the individual proesses separately and ombine

the results. This an yield a substantial savings in spae in representing the transition

relation. Oasionally , however, the fat that two proesses annot make simultaneous

transitions leads to inreased omplexity in representing the set of states reahable by n

steps.

The alternative to using proesses to model an asynhronous iruit would be to have all

gates exeute simultaneously, but allow eah gate the non-deterministi hoie of evaluating

its output, or keeping the same output value. Suh a model of the inverter ring would look

like the following:

MODULE main

VAR

gate1 : inverter(gate3.output);

gate2 : inverter(gate2.output);

gate3 : inverter(gate1.output);

SPEC

(AG AF gate1.out) & (AG AF !gate1.out)

MODULE inverter(input)

VAR

output : boolean;

5

ASSIGN

init(output) := 0;

next(output) := !input union output;

The set union operator oeres its arguments to singleton sets as neessary. Thus, the next

output of eah gate an be either its urrent output, or the negation of its urrent input {

eah gate an hoose non-deterministially whether to delay or not. As a result, the number

of possible transitions from a given state an be as high as 2

n

, where n is the number of

gates. This sometimes (but not always) makes it more expensive to represent the transition

relation.

As a seond example of proesses, the following program uses a variable semaphore to

implement mutual exlusion between two asynhronous proesses. Eah proess has four

states: idle, entering, ritial and exiting. The entering state indiates that the

proess wants to enter its ritial region. If the variable semaphore is zero, it goes to the

ritial state, and sets semaphore to one. On exiting its ritial region, the proess sets

semaphore to zero again.

MODULE main

VAR

semaphore : boolean;

pro1 : proess user;

pro2 : proess user;

ASSIGN

init(semaphore) := 0;

SPEC

AG !(pro1.state = ritial & pro2.state = ritial)

MODULE user

VAR

state : {idle,entering ,ritial,exiting};

ASSIGN

init(state) := idle;

next(state) :=

ase

state = idle : {idle,entering};

state = entering & !semaphore : ritial;

state = ritial : {ritial,exiting};

state = exiting : idle;

1 : state;

esa;

next(semaphore) :=

ase

state = entering : 1;

state = exiting : 0;

1 : semaphore;

6

esa;

FAIRNESS

running

If any of the spei�ation is false, the SMV model heker attempts to produe a oun-

terexample, proving that the spei�ation is false. This is not always possible, sine formulas

preeded by existential path quanti�ers annot be proved false by showing a single exeution

path. Similarly, subformulas preeded by universal path quanti�er annot be proved true

by showing a single exeution path. In addition, some formulas require in�nite exeution

paths as ounterexamples. In this ase, the model heker outputs a looping path up to and

inluding the �rst repetition of a state.

In the ase of the semaphore program, suppose that the spei�ation were hanged to

AG (pro1.state = entering -> AF pro1.state = ritial)

In other words, we speify that if pro1 wants to enter its ritial region, it eventually does.

The output of the model heker in this ase is shown in Figure 1. The ounterexample

shows a path with pro1 going to the entering state, followed by a loop in whih pro2

repeatedly enters its ritial region and returns to its idle state, with pro1 only exeuting

only while pro2 is in its ritial region. This path shows that the spei�ation is false, sine

pro1 never enters its ritial region. Note that in the printout of an exeution sequene,

only the values of variables that hange are printed, to make it easier to follow the ation in

systems with a large number of variables.

Although the parallel assignment mehanism should be suitable to most purposes, it is

possible in SMV to speify the transition relation diretly as a propositional formula in terms

of the urrent and next values of the state variables. Any urrent/next state pair is in the

transition relation if and only if the value of the formula is one. Similarly, it is possible to

give the set of possible initial states as a formula in terms of only the urrent state variables.

These two funtions are aomplished by the TRANS and INIT statements respetively. As

an example, here is a desription the three inverter ring using only TRANS and INIT:

MODULE main

VAR

gate1 : inverter(gate3.output);

gate2 : inverter(gate1.output);

gate3 : inverter(gate2.output);

SPEC

(AG AF gate1.out)& (AG AF !gate1.out)

MODULE inverter(input)

VAR

output : boolean;

INIT

output = 0

TRANS

next(output) = !input | next(output) = output

7

speifiation is false

AG (pro1.state = entering -> AF pro1.s... is false:

.semaphore = 0

.pro1.state = idle

.pro2.state = idle

next state:

[exeuting proess.pro1℄

next state:

.pro1.state = entering

AF pro1.state = ritial is false:

[exeuting proess .pro2℄

next state:

[exeuting proess .pro2℄

.pro2.state = entering

next state:

[exeuting proess .pro1℄

.semaphore = 1

.pro2.state = ritial

next state:

[exeuting proess .pro2℄

next state:

[exeuting proess .pro2℄

.pro2.state = exiting

next state:

.semaphore = 0

.pro2.state = idle

Figure 1: Model heker output for semaphore example.

8

Aording to the TRANS delaration, for eah inverter, the next value of the output is equal

either to the negation of the input, or to the urrent value of the output. Thus, in e�et,

eah gate an hoose non-deterministially whether or not to delay.

Similarly, one an use the INVAR delaration to speify invariants that every state in the

transition system must satisfy, whih results in restriting the transition relation to only

those states. The INVAR lause orresponds to the normal assignments. For example,

ASSIGN

x := y + 1;

an be written as

INVAR

x = y + 1

The use of TRANS, INVAR and INIT is not reommended, sine logial absurdities in these

delarations an lead to unimplementable desriptions. For example, one ould delare

the logial onstant 0 to represent the transition relation, resulting in a system with no

transitions at all. However, the exibility of these mehanisms may be useful for those

writing translators from other languages to SMV.

To summarize, the SMV language is designed to be exible in terms of the styles of

models it an desribe. It is possible to fairly onisely desribe synhronous or asynhronous

systems, to desribe detailed deterministi models or abstrat nondeterministi models, and

to exploit the modular struture of a system to make the desription more onise. It is also

possible to write logial absurdities if one desires to, and also sometimes if one does not desire

to, using the TRANS and INIT delarations. By using only the parallel assignment mehanism,

however, this problem an be avoided. The language is designed to exploit the apabilities

of the symboli model heking tehnique. As a result the available data types are all stati

and �nite. No attempt has been made to support a partiular model of ommuniation

between onurrent proesses. In addition, there is no expliit support for some features of

ommuniating proess models suh as sequential omposition. Sine the full generality of

the symboli model heking tehnique is available through the SMV language, it is possible

that translators from various languages, proess models, and intermediate formats ould

be reated. In partiular, existing silion ompilers ould be used to translate high level

languages with rih feature sets into a low level form (suh as a Mealy mahine) that ould

be readily translated into the SMV language.

2 Syntax and Semantis

This setion desribes the syntax and semantis of the SMV input language in detail.

2.1 Lexial onventions

An atom in the syntax desribed below may be any sequene of haraters in the set

fA-Z,a-z,0-9, ,-g, beginning with an alphabeti harater. All haraters in a name are

signi�ant, and ase is signi�ant. Whitespae haraters are spae, tab and newline. Any

9

string starting with two dashes ("--") and ending with a new line is a omment. A number

is any sequene of digits. Any other tokens reognized by the parser are enlosed in quotes

in the syntax expressions below.

2.2 Expressions

Expressions are onstruted from variables, onstants, and a olletion of operators, inluding

Boolean onnetives, integer arithmeti operators, and ase expressions. The syntax of

expressions is as follows.

expr ::

atom ;; a symboli onstant

| number ;; a numeri onstant

| id ;; a variable identifier

| "!" expr ;; logial not

| expr1 "&" expr2 ;; logial and

| expr1 "|" expr2 ;; logial or

| expr1 "->" expr2 ;; logial impliation

| expr1 "<->" expr2 ;; logial equivalene

| expr1 "=" expr2 ;; equality

| expr1 "!=" expr2 ;; disequality

| expr1 "<" expr2 ;; less than

| expr1 ">" expr2 ;; greater than

| expr1 "<=" expr2 ;; less that or equal

| expr1 ">=" expr2 ;; greater than or equal

| expr1 "+" expr2 ;; integer addition

| expr1 "-" expr2 ;; integer subtration

| expr1 "*" expr2 ;; integer multipliation

| expr1 "/" expr2 ;; integer division

| expr1 "mod" expr2 ;; integer remainder

| "next" "(" id ")" ;; next value

| set_expr ;; a set expression

| ase_expr ;; a ase expression

An id, or identi�er, is a symbol or expression whih identi�es an objet, suh as a variable

or de�ned symbol. Sine an id an be an atom, there is a possible ambiguity if a variable

or de�ned symbol has the same name as a symboli onstant. Suh an ambiguity is agged

by the interpreter as an error. The expression next(x) refers to the value of identi�er x in

next state (see setion 2.5). The order of parsing preedene from high to low is

*,/

+,-

mod

=,!=,<,>,<=,>=

!

&

10

|

->,<->

Operators of equal preedene assoiate to the left, exept for the impliation ->, whih

assoiates to the right. Parentheses may be used to group expressions.

A ase expression has the syntax

ase_expr ::

"ase"

expr_a1 ":" expr_b1 ";"

expr_a2 ":" expr_b2 ";"

...

expr_an ":" expr_bn ";"

"esa"

A ase expression returns the value of the �rst expression on the right hand side, suh that

the orresponding ondition on the left hand side is true. Thus, if expr a1 is true, then the

result is expr b1. Otherwise, if expr a2 is true, then the result is expr b2, et. If none of

the expressions on the left hand side is true, the result of the ase expression is the numeri

value 1. It is an error for any expression on the left hand side to return a value other than

the truth values 0 or 1.

A set expression has the syntax

set_expr ::

"{" val1 "," ... "," valn "}"

| expr1 "in" expr2 ;; set inlusion prediate

| expr1 "union" expr2 ;; set union

A set an be de�ned by enumerating its elements inside urly braes. The elements of the set

an be numbers or symboli onstants. The inlusion operator tests a value for membership

in a set. The union operator takes the union of two sets. If either argument is a number or

symboli value instead of a set, it is oered to a singleton set.

2.3 State variables

A state of the model is an assignment of values to a set of state variables. These variables

(and also instanes of modules) are delared by the notation

del :: "VAR"

atom1 ":" type1 ";"

atom2 ":" type2 ";"

...

The type assoiated with a variable delaration an be either a Boolean, a salar, a user

de�ned module, or an array of any of these (inluding arrays of arrays). A type spei�er has

the syntax

11

type :: boolean

| "{" val1 "," val2 "," ... valn "}"

| "array" expr1 ".." expr2 "of" type

| atom ["(" expr1 "," expr2 "," ... exprn ")" ℄

| "proess" atom ["(" expr1 "," expr2 "," ... exprn ")" ℄

val :: atom | number

A variable of type boolean an take on the numerial values 0 and 1 (representing false

and true, respetively). In the ase of a list of values enlosed in quotes (where atoms are

taken to be symboli onstants), the variable is a salar whih take any these values. In

the ase of an array delaration, the expression expr1 is the lower bound on the subsript,

and the expression expr2 is the upper bound. Both of these expressions must evaluate to

integer onstants. Finally, an atom optionally followed by a list of expressions in parentheses

indiates an instane of module atom (see setion 2.10). The keyword proess auses the

module to be instantiated as an asynhronous proess (see 2.13).

2.4 The ASSIGN delaration

An assignment delaration has the form

del :: "ASSIGN"

dest1 ":=" expr1 ";"

dest2 ":=" expr2 ";"

...

dest :: atom

| "init" "(" atom ")"

| "next" "(" atom ")"

On the left hand side of the assignment, atom denotes the urrent value of a variable,

init(atom) denotes its initial value, and next(atom) denotes its value in the next state.

If the expression on the right hand side evaluates to an integer or symboli onstant, the

assignment simply means that the left hand side is equal to the right hand side. On the other

hand, if the expression evaluates to a set, then the assignment means that the left hand side

is ontained in that set. It is an error if the value of the expression is not ontained in the

range of the variable on the left hand side.

In order for a program to be implementable, there must be some order in whih the

assignments an be exeuted suh that no variable is assigned after its value is referened.

This is not the ase if there is a irular dependeny among the assignments in any given

proess. Hene, suh a ondition is an error. In addition, it is an error for a variable to be

assigned a value more than one at any given time. To be preise, it is an error if:

1. the next or urrent value of a variable is assigned more than one in a given proess,

or

2. the initial value of a variable is assigned more than one in the program, or

12

3. the urrent value and the initial value of a variable are both assigned in the program,

or

4. the urrent value and the next value of a variable are both assigned in the program

2.5 The TRANS delaration

The transition relation R of the model is a set of urrent state/next state pairs. Whether or

not a given pair is in this set is determined by a Boolean valued expression T , introdued

by the TRANS keyword. The syntax of a TRANS delaration is

del :: "TRANS" expr

It is an error for the expression to yield any value other than 0 or 1. If there is more than

one TRANS delaration, the transition relation is the onjuntion of all of TRANS delarations.

2.6 The INIT delaration

The set of initial states of the model is determined by a Boolean expression under the INIT

keyword. The syntax of an INIT delaration is

del :: "INIT" expr

It is an error for the expression to ontain the next() operator, or to yield any value other

than 0 or 1. If there is more than one INIT delaration, the initial set is the onjuntion of

all of the INIT delarations.

2.7 The INVAR delaration

The set of all states of the model is restrited to those that satisfy a Boolean expression

under the INVAR keyword. Thus, INVAR de�nes an invariant on the transition system. The

syntax of an INVAR delaration is

del :: "INVAR" expr

As in the ase of INIT, it is an error for the expression to ontain the next() operator, or to

yield any value other than 0 or 1. If there is more than one INVAR delaration, the invariant

is the onjuntion of all of the INVAR delarations.

2.8 The SPEC delaration

The system spei�ation is given as a formula in the temporal logi CTL, introdued by the

keyword SPEC. The syntax of this delaration is

del :: "SPEC" tlform

A CTL formula has the syntax

13

tlform ::

expr ;; a Boolean expression

| "!" tlform ;; logial not

| tlform1 "&" tlform2 ;; logial and

| tlform1 "|" tlform2 ;; logial or

| tlform1 "->" tlform2 ;; logial implies

| tlform1 "<->" tlform2 ;; logial equivalene

| "E" pathform ;; existential path quantifier

| "A" pathform ;; universal path quantifier

The syntax of a path formula is

pathform ::

"X" tlform ;; next time

"F" tlform ;; eventually

"G" tlform ;; globally

"[" tlform1 "U" tlform2 "℄" ;; until

"BF" number ".." number tlform ;; buonded eventually

"BG" number ".." number tlform ;; bounded globally

tlform1 "BU" number ".." number tlform2 ;; bounded until

The order of preedene of operators is (from high to low)

E,A,X,F,G,U,BF,BG,BU

!

&

|

->,<->

Operators of equal preedene assoiate to the left, exept for the impliation ->, whih

assoiates to the right. Parentheses may be used to group expressions. It is an error for an

expression in a CTL formula to ontain a next() operator or to return a value other than 0

or 1. If there is more than one SPEC delaration, the spei�ation is the onjuntion of all of

the SPEC delarations. However, eah of the SPEC formulas is evaluated and the results are

reported separately, one by one, in the order of the SPEC delations in the program text.

2.9 The FAIRNESS delaration

A fairness onstraint is a CTL formula whih is assumed to be true in�nitely often in all

fair exeution paths. When evaluating spei�ations, the model heker onsiders path

quanti�ers to apply only to fair paths. Fairness onstraints are delared using the following

syntax:

del:: "FAIRNESS" tlform

A path is onsidered fair if and only if all fairness onstraints delared in this manner are

true in�nitely often.

14

2.10 The PRINT delaration

Sometimes it is desired to �nd out whih states satisfy a partiular spei�ation, rather

than heking whether all of the reahable states satisfy it. The PRINT delaration evaluates

a spei�ation and prints a formula desribing the set of reahable states that satisfy this

formula. In partiular,

PRINT 1

prints a formula desribing the set of all reahable states.

del:: "PRINT" tlform

| "PRINT" header ":" tlform

where the header tells SMV whih variables should appear in the formula:

header:: "hide" id1 "," id2 "," ... idn

| "expose" id1 "," id2 "," ... idn

For example,

PRINT expose x, y: x = y | y = z

will print a formula desribing all possible values of x and y variables in all the reahable

states satisfying the formula x = y | y = z. If the expose keyword is hanged to hide,

then the formula will ontain all of the state variables exept x and y.

2.11 The DEFINE delaration

In order to make desriptions more onise, a symbol an be assoiated with a ommonly

used expression. The syntax for this delaration is

del :: "DEFINE"

atom1 ":=" expr1 ";"

atom2 ":=" expr2 ";"

...

atomn ":=" expr3 ";"

When every identi�er referring to the symbol on the left hand side ours in an expression,

it is replaed by the expression on the right hand side. The expression on the right hand side

is always evaluated in its original ontext, however (see the next setion for an explanation

of ontexts). Forward referenes to de�ned symbols are allowed, but irular de�nitions are

not allowed, and result in an error.

15

2.12 Modules

A module is an enapsulated olletion of delarations. One de�ned, a module an be reused

as many times as neessary. Modules an also be parameterized, so that eah instane of a

module an refer to di�erent data values. A module an ontain instanes of other modules,

allowing a strutural hierarhy to be built. The syntax of a module is as follows.

module ::

"MODULE" atom ["(" atom1 "," atom2 "," ... atomn ")" ℄

del1

del2

...

del3

The atom immediately following the keyword "MODULE" is the name assoiated with the

module. Module names are drawn from a separate name spae from other names in the

program, and hene may lash with names of variables and de�nitions. The optional list of

atoms in parentheses are the formal parameters of the module. Whenever these parameters

our in expressions within the module, they are replaed by the atual parameters whih

are supplied when the module is instantiated (see below).

An instane of a module is reated using the VAR delaration (see setion 2.3) This

delaration supplies a name for the instane, and also a list of atual parameters, whih are

assigned to the formal parameters in the module de�nition. An atual parameter an be any

legal expression. It is an error is the number of atual parameters is di�erent from the number

of formal parameters. The semantis of module instantiation is similar to all-by-referene.

For example, in the following program fragment:

...

VAR

a : boolean;

b : foo(a);

...

MODULE foo(x)

ASSIGN

x := 1;

the variable b is assigned the value 1. This distinguishes the all-by-referene mehanism

from a all-by-value sheme. Now onsider the following program:

...

DEFINE

a := 0;

VAR

b : bar(a);

...

MODULE bar(x)

DEFINE

16

a := 1;

y := x;

In this program, the value of y is 0. On the other hand, using a all-by-name mehanism,

the value of y would be 1, sine a would be substituted as an expression for x.

Forward referenes to module names are allowed, but irular referenes are not, and

result in an error.

2.13 Identi�ers

An id, or identi�er, is an expression whih referenes an objet. Objets are instanes of

modules, variables, and de�ned symbols. The syntax of an identi�er is as follows.

id ::

atom

| id "." atom

| id "[" expr "℄"

An atom identi�es the objet of that name as de�ned in a VAR or DEFINE delaration. If a

identi�es an instane of a module, then the expression a:b identi�es the omponent objet

named b of instane a. This is preisely analogous to aessing a omponent of a strutured

data type. Note that an atual parameter of module instane a an identify another module

instane b, allowing a to aess omponents of b, as in the following example:

...

VAR

a : foo(b);

b : bar(a);

...

MODULE foo(x)

DEFINE

 := x.p | x.q;

MODULE bar(x)

VAR

p : boolean;

q : boolean;

Here, the value of is the logial or of p and q.

If a identi�es an array, the expression a[b℄ identi�es element b of array a. It is an error

for the expression b to evaluate to a number outside the subsript bounds of array a, or to

a symboli value.

17

2.14 The main module

The syntax of an SMV program is

program ::

module1

module2

...

modulen

There must be one module with the name main and no formal parameters. The module

main is the one evaluated by the interpreter.

2.15 Proesses

Proesses are used to model interleaving onurreny. A proess is a module whih is in-

stantiated using the keyword proess (see setion 2.3). The program exeutes a step by

non-deterministially hoosing a proess, then exeuting all of the assignment statements in

that proess in parallel. It is impliit that if a given variable is not assigned by the proess,

then its value remains unhanged. Eah instane of a proess has a speial Boolean variable

assoiated with it alled running. The value of this variable is 1 if and only if the proess

instane is urrently seleted for exeution.

3 Examples

In this setion, we look at the performane of the SMV symboli model heker for two

hardware examples { a synhronous fair bus arbiter, and an asynhronous distributed mutual

exlusion ring iruit (the one studied by David Dill in his thesis [Dil89℄ and designed by

Alain Martin [Mar85℄).

3.1 Synhronous arbiter

The synhronous arbiter iruit is an example of a synhronous �nite state mahine. It is

omposed of a \daisy hain" of arbiter ells depited in Figure 2. Under normal operation,

the arbiter grants the bus on eah lok yle to the requester with the highest priority.

Eah arbiter ell reeives a \bus grant" input from the next higher priority ell. If this

signal is true, and the ell's \request" input is true, then the ell ativates its \aknowledge"

output, and negates \bus grant" to the next lower priority ell. On the other hand, if the

\request" input is false, then the \bus grant" input is passed along to the next ell via the

\bus grant" output. Despite this priority sheme, the bus arbiter is designed to insure that

every requester eventually is granted the bus. During light bus traÆ, the priority sheme

is used, but as the bus approahes saturation, the arbiter reverts to a round-robin sheme.

This is aomplished by means of a \token", whih is passed in a yli manner from the

�rst ell down to the last, and then bak to the �rst. The \token" moves one eah lok

yle. When the \token" passes a ell whose \request" is ative, it sets a ag \waiting".

The \waiting" ag remains set as long as the request persists. When the token returns to

18

W

T

req in

token out

token in

override in

override out grant in

grant out

ack out

Figure 2: Cell of synhronous arbiter iruit.

that ell, if the \waiting" ag is still set, the ell reeives immediate highest priority. This is

aomplished by asserting an output alled \override". This signal propagates to the highest

priority ell and negates its \bus grant" input.

The spei�ations for the arbiter iruit are as follows:

1. No two aknowledge outputs are asserted simultaneously.

2. Every persistent request is eventually aknowledged.

3. Aknowledge is not asserted without request.

Expressed in CTL, they are:

1. 8i 6= j : AG :(ak

i

^ ak

j

)

2. 8i : AG AF (req

i

) ak

i

)

3. 8i : AG (ak

i

) req

i

)

The quanti�ers are bounded to range over the �nite set of ells, so these quanti�ed formulas

an be expanded into �nite CTL formulas. Figure 3 gives the SMV desription of a �ve ell

arbiter and its spei�ation.

To run the symboli model heker on this example, we use the ommand

smv -f synarb.smv

The option -f indiates that a forward searh of the state spae of the model should be

made before heking the spei�ations. This tehnique will be dealt with shortly.

Figure 4 plots the performane of the symboli model heking proedure for this example

in terms of several measures. First, the size of the transition relation in OBDD nodes.

Seond, the total run time (on a Sun3, running an implementation in the C language), and

19

third, the maximum number of OBDD nodes used at any given time. The latter number

should be regarded as being aurate only to within a fator of two, sine the garbage

olletor in the implementation savenges for unreferened nodes only when the number of

nodes doubles. We observe that as the number of ells in the iruit inreases, the size of

the transition relation inreases linearly. The exeution time is well �t by a quadrati urve.

To obtain polynomial performane for this example, it was neessary to add a wrinkle

to the symboli model heking algorithm (the -f option. It is often the ase that iruits

are \well behaved" in the part of their state spae whih is reahable from the initial state,

but not otherwise. In the ase of the synhronous arbiter, only states with one token in

the ring are reahable. However, the symboli model heking tehnique onsiders all states,

inluding states with multiple tokens. This beomes a problem when we onsider the highest

priority ell, whih is granted the bus by default when no other requesters override. If we

ompute the set of states in whih this ell neessarily grants the bus in k steps, we obtain

the set in whih, for every waiting ell i, there is no token at ell i� k mod n (hene a token

does not reah ell i in k steps). Unfortunately, this is not a set whih an be ompatly

represented as an OBDD. This is analogous to the problem of representing a shifter iruit

using OBDDs { there is no variable ordering whih produes a ompat OBDD for all shift

distanes k. As a result, the time required to ompute AFak

0

is exponential, roughly

doubling with eah added ell.

On the other hand, if we �rst ompute the set of reahable states, and then restrit the

evaluation of the temporal operators to that set, the result is unhanged, but the veri�ation

time beomes polynomial. When we restrit to states with only one token, we only have to

represent the set of states where ell i + k mod n is not waiting, where i is the position of

the single token.

3.2 Asynhronous state mahines

An asynhronous �nite state mahine an be viewed as a olletion of parallel proesses

whose ations are interleaved arbitrarily. This allows us to make an important optimization

in the symboli model heking tehnique: we observe that the set of states reahable by one

step of the system is the union of the sets of states reahable by one step of eah individual

proess. Using this fat, we an avoid omputing the transition relation of the system and

instead use only the transition relations of the individual proesses.

Our example of an asynhronous state mahine is the distributed mutual exlusion (DME)

iruit of Alain Martin [Mar85℄. It is a speed-independent iruit and makes use of speial

two-way mutual exlusion iruits as omponents. Figure 5 is a diagram of a single ell of

the distributed mutual-exlusion ring (DME). The iruit works by passing a token around

the ring, via the request and aknowledge signals RR and RA. A user of the DME gains

exlusive aess to the resoure via the request and aknowledge signals UR and UA.

The spei�ations of the DME iruit are as follows:

1. No two users are aknowledged simultaneously.

2. An aknowledgment is not output without a request.

3. An aknowledgment is not removed while a request persists.

20

MODULE arbiter-element(above,below,init-token)

VAR

Persistent : boolean;

Token : boolean;

Request : boolean;

ASSIGN

init(Token) := init-token;

next(Token) := token-in;

init(Persistent) := 0;

next(Persistent) := Request & (Persistent | Token);

DEFINE

above.token-in := Token;

override-out := above.override-out | (Persistent & Token);

grant-out := !Request & below.grant-out;

ak-out := Request & (Persistent & Token | below.grant-out);

SPEC

AG ((ak-out -> Request) & AF (!Request | ak-out))

MODULE main

VAR

e5 : arbiter-element(self,e4,0);

e4 : arbiter-element(e5,e3,0);

e3 : arbiter-element(e4,e2,0);

e2 : arbiter-element(e3,e1,0);

e1 : arbiter-element(e2,self,1);

DEFINE

grant-in := 1;

e1.token-in := token-in;

override-out := 0;

grant-out := grant-in & !e1.override-out;

SPEC

AG (

!(e1.ak-out & e2.ak-out)

& !(e1.ak-out & e3.ak-out)

& !(e2.ak-out & e3.ak-out)

& !(e1.ak-out & e4.ak-out)

& !(e2.ak-out & e4.ak-out)

& !(e3.ak-out & e4.ak-out)

& !(e1.ak-out & e5.ak-out)

& !(e2.ak-out & e5.ak-out)

& !(e3.ak-out & e5.ak-out)

& !(e4.ak-out & e5.ak-out)

)

Figure 3: SMV program for synhronous arbiter example.

21

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

S
ec

on
ds

2

4

6

8

10

12

0

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

R
ea

ch
ab

le
 s

ta
te

s

1×103

1×104

1×105

1×106

1×107

1×108

1×109

1×102

0

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

O
B

D
D

 n
od

es

500

1000

1500

2000

2500

0

Total OBDD nodes used
Transition relation

Figure 4: Performane { synhronous arbiter example.

22

Figure 5: One ell of the DME iruit.

4. All requests are eventually aknowledged.

We will onsider only the �rst spei�ation, regarding mutual exlusion. The others are

easily formulated in CTL, although the last requires the use of fairness onstraints (see

setion 2.8) to guarantee that all gate delays are �nite. The formalization of the mutual

exlusion spei�ation is

80 � i; j < n; i 6= j : AG :(ak

i

^ ak

j

)

We examine the performane of the symboli model heking algorithm in verifying this

spei�ation using three di�ering approahes. In method 1, we use a single proess to

model the entire system. Arbitrary delay of the gates is introdued by allowing eah gate

to hoose non-deterministially whether to reevaluate its state or remain unhanged. The

SMV desription of this model is given in Figure 6. In method 2, we model eah DME ell

by a separate proess (sine there are 18 gates per ell, making a separate proess for eah

gate is prohibitive). In method 3, we use the same model as in method 1, but reevaluate

the the transition relation at eah step of the forward searh, restriting the evaluation to

those transitions beginning in a state on the searh frontier. This results in a sequene of

approximations to the transition relation whih are substantially more ompat than the

omplete transition relation, at the expense of many reevaluations of the transition relation.

This method of alulation is invoked by using the -i option to the model heker. The

OBDD funtion Restrit of Coudert, Madre and Berthet is used to restrit the transition

relation. In all three methods, we use the -f option to restrit the omputation to the

reahable states, sine the state spae of this iruit is quite sparse.

The performane urves for the three methods are shown in Figure 7. The disjuntive

transition relation method requires O(n

4

) time, while the two onjuntive methods { with

23

MODULE and-gate(in1,in2)

VAR out : boolean;

ASSIGN init(out) := 0; next(out) := (in1 & in2) union out;

MODULE and-gate-init(in1,in2,init-out)

VAR out : boolean;

ASSIGN init(out) := init-out; next(out) := (in1 & in2) union out;

MODULE or-gate(in1,in2)

VAR out : boolean;

ASSIGN init(out) := 0; next(out) := (in1 | in2) union out;

MODULE -element(in1,in2)

VAR out : boolean;

ASSIGN init(out) := 0;

next(out) := ase in1 = in2 : in1 union out; 1 : out; esa;

MODULE mutex-half(inp,other-out)

VAR out : boolean;

ASSIGN init(out) := 0; next(out) := inp union out;

TRANS !(next(out) & next(other-out))

MODULE user

VAR req : boolean;

ASSIGN init(req) := 0; next(req) := (!ak) union req;

MODULE ell(left,right,token)

VAR q : and-gate(f.out,n.out); f : -element(d.out,i.out);

d : and-gate(b.out,!u.ak); b : mutex-half(left.req,a.out);

i : and-gate(h.out,!j.out); h : -element(g.out,j.out);

n : and-gate-init(!e.out,!m.out,!token); u : user;

a : mutex-half(u.req,b.out); : and-gate(a.out,!left.ak);

g : or-gate(.out,d.out); e : -element(.out,i.out);

k : and-gate(g.out,!h.out); l : and-gate(k.out,m.out);

p : and-gate(k.out,n.out); m : and-gate-init(!f.out,!n.out,token);

r : and-gate(e.out,m.out); j : or-gate(l.out,ak);

DEFINE req := p.out; left.ak := q.out; u.ak := r.out;

MODULE main

VAR e-3 : ell(e-1,e-2,1); e-2 : ell(e-3,e-1,0); e-1 : ell(e-2,e-3,0);

SPEC AG (

!(e-1.u.ak & e-2.u.ak)

& !(e-1.u.ak & e-3.u.ak)

& !(e-2.u.ak & e-3.u.ak)

)

Figure 6: SMV program for DME iruit example.

24

unrestrited and restrited transition relation { require O(n

3

) time. As a result, the restrited

transition relation method overtakes the disjuntive method at about 8 ells. At this point,

the disadvantage of having to evaluate the transition relation at eah step is outweighed

by the better asymptoti performane. The di�erene in asymptoti performane an be

explained by observing the growth in the OBDDs representing state sets in the forward

searh. The size of the largest suh OBDDs as a funtion of the number of ells is plotted in

Figure 7(). As mentioned previously, the orrelation between the number of steps taken by

eah proess an make the representation of the reahed state less eÆient. Thus, the OBDD

size for the reahed state set runs linearly for methods 1 and 3, but quadratially for method

2. The overall time omplexity of O(n

3

) for methods 1 and 3 derives from three fators: a

linear inrease in the transition relation OBDD, a linear inrease in the state set OBDD,

and a linear inrease in the number of iterations. For method 2, the quadrati inrease in

the state set OBDD results in an overall O(n

4

) time omplexity. Note that the number of

reahable states inreases roughly a fator of ten with eah added ell (see Figure 8).

Referenes

[Dil89℄ D. L. Dill. Trae Theory for Automati Hierarhial Veri�ation of Speed-

Independent Ciruits. ACM Distinguished Dissertations. MIT Press, 1989.

[Mar85℄ A. J. Martin. The design of a self-timed iruit for distributed mutual exlusion.

In H. Fuhs, editor, Proeedings of the 1985 Chapel Hill Conferene on Very Large

Sale Integration, 1985.

25

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

S
ec

on
ds

5000

10000

15000

20000

25000

0

Method 3
Method 2

(a)

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

O
B

D
D

 n
od

es

50000

100000

150000

200000

250000

300000

0

Total OBDD nodes used
Total used, Method 2

(b)

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

O
B

D
D

 n
od

es

4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

2000
0

Transition relation, Method 3
Transition relation, Method 2

()

Figure 7: Performane for DME iruit example.

26

4 5 6 7 8 9 10 11

5000

10000

15000

20000

25000

30000

35000

0
3

Reached state set, Method 2

(a)

Number of Cells
1 2 3 4 5 6 7 8 9 10 11 12

R
ea

ch
ab

le
 s

ta
te

s

1×104
1×105
1×106
1×107
1×108
1×109
1×1010
1×1011
1×1012
1×1013

1×103

0

(b)

Figure 8: State set size for DME iruit example.

27

