272: Software Engineering

Instructor: Tevfik Bultan

Lectures 3 and 4: Alloy and Alloy Analyzer
Object Oriented Modeling with UML

• UML is an object oriented modeling language

• UML allows software developers to specify object oriented designs at a high level of abstraction
 – UML models represent a higher level of abstraction compared to object oriented programs
 – They can be used in documenting the software design before the software is implemented

• UML models do not have a formal semantics
 – This is a major problem since software developers use UML models to document and communicate the design
Object Oriented Modeling with UML+OCL

- Object Constraint Language (OCL) allows software developers to make UML models more precise.

- OCL expressions and constraints can be used to reduce the imprecision in UML designs.

- One can augment a UML models with constraints written in OCL.
 - OCL constraints can be used to write contracts for UML classes.
 - Similar to design by contract assertions written as annotations for object oriented programs.

- OCL expressions have formal syntax and semantics.
Object Oriented Modeling with Alloy

- Alloy is another object oriented modeling language
- Alloy has formal syntax and semantics
- Alloy specifications can be written in ASCII
- Alloy also has a visual language similar to UML class diagrams
- Alloy has a constraint analyzer which can be used to automatically analyze properties of Alloy models
Alloy: A Modeling Language

- Alloy is a formal modeling language
- Alloy has formal syntax and semantics
- Alloy specifications are written in ASCII
 - There is also a visual representation (similar to UML class diagrams and entity-relationship diagrams) but the visual representation does not have the expressiveness of the whole language
- Alloy has a verification tool called Alloy Analyzer which can be used to automatically analyze properties of Alloy models
Alloy: A Modeling Language

- Alloy targets formal specification of object oriented data models

- It can be used for data modeling in general
 - It is good at specifying classes, objects, the associations among them, and constraints on those associations

- It is most similar to UML class diagrams combined with OCL (Object Constraint Language)
 - However, it has a simpler and cleaner semantics than UML/OCL and it is also supported by a verification tool (Alloy Analyzer)
Alloy Analyzer

- Alloy Analyzer is a verification tool that analyzes Alloy specifications.
- It uses bounded verification:
 - It limits the number of objects in each class to a fixed number and checks assertions about the specification within that bound.
- It uses a SAT-solver to answer verification queries:
 - It converts verification queries to satisfiability of Boolean logic formulas and calls a SAT solver to answer them.
Alloy and Alloy Analyzer

- Alloy and Alloy Analyzer were developed by Daniel Jackson’s group at MIT

- References
 - “Alloy: A Lightweight Object Modeling Notation”

- Unfortunately, the TOSEM paper is based on the old syntax of Alloy
 - The syntax of the Alloy language is different in the more recent versions of the tool
 - Documentation about the current version of Alloy is available here: http://alloy.mit.edu/
 - My slides are based on the following tutorial http://alloy.mit.edu/alloy/tutorials/online
An Alloy Object Model for a Family Tree

Married in abstract Person

name !

siblings

father ?

mother ?

?husband

wife ?

Man

Woman
Basics of Alloy Semantics

- Each box denotes a set of objects (atoms)
 - Corresponds to an object class in UML/OCL
 - In Alloy these are called signatures

- An object is an abstract, atomic and unchanging entity

- The state of the model is determined by
 - the relationships among objects and
 - the membership of objects in sets
 - these can change in time
Subclasses are subsets

• An arrow with unfilled head denotes a subset
 – Man, Woman, Married are subsets of Person
 – This corresponds to sub-classes in UML/OCL

• The keyword extends indicates disjoint subsets
 – This is the default, if a subset is not labeled, then it is assumed to extend
 – Man and Woman are disjoint sets (their intersection is empty)
 • There is no Person who is a Woman and a Man

• The keyword in indicates subsets, not necessarily disjoint from each other (or other subsets that extend)
 – Married and Man are not disjoint
 – Married and Woman are not disjoint
Signatures

- In Alloy sets of atoms such as *Man, Woman, Married, Person* are called **signatures**
 - *Signatures correspond to object classes*
- A signature that is not subset of another signature is a top-level signature
- Top-level signatures are implicitly disjoint
 - *Person and Name* are top-level signatures
 - They represent disjoint sets of objects
- Extensions of a signature are also disjoint
 - *Man and Woman* are disjoint sets
- An abstract signature has no elements except those belonging to its extensions
 - There is no *Person* who is not a *Man* or a *Woman*
Class associations are relations

- Arrows with a small filled arrow head denote relations
- For example, \textit{name} is a relation that maps \textit{Person} to \textit{Name}
- Relations are expressed as fields of signatures
 - These correspond to associations in UML-OCL
 - They express relations between object classes
Multiplicity

- Markings at the ends of relation arrows denote the multiplicity constraints
 - * means zero or more (default, keyword set)
 - ? means zero or one (keyword lone)
 - ! means exactly one (keyword one)
 - + means one or more (keyword some)
 - If there is no marking, the multiplicity is *

- name maps each Person to exactly one Name (based on the mark at the Name end of the arrow denoting the name relationship)

- name maps zero or more members of Person to each Name (based on the omission of the mark at the Person end)
Textual Representation

• Alloy is a textual language
 – The graphical notation is just a useful way of visualizing the specifications but it is not how you write an Alloy model

• The textual representation represents the Alloy model completely
 – i.e., the graphical representation is redundant, it can be used to visualize a model but it is not used to specify a model
module language/Family

sig Name { }

abstract sig Person {
 name: one Name,
 siblings: Person,
 father: lone Man,
 mother: lone Woman
}

sig Man extends Person {
 wife: lone Woman
}

sig Woman extends Person {
 husband: lone Man
}

sig Married in Person {
}
Signatures

• Textual representation starts with `sig` declarations defining the signatures (sets of atoms)
 – You can think of signatures as object classes, each signature represents a set of objects

• Multiplicity:
 – `set` zero or more
 – `one` exactly one
 – `lone` zero or one
 – `some` one or more

• `extends` and `in` are used to denote which signature is subset of which other signature
 – Corresponding to arrow with unfilled head
 – `extends` denotes disjoint subsets
Signatures

sig A {}

set of atoms A

sig A {}
sig B {}

disjoint sets A and B. As an Alloy expression we can write: `no A & B`

(Alloy expressions are discussed in later slides)

sig A, B {}

same as above

sig B extends A {}

set B is a subset of A. As an Alloy expression: B in A

sig B extends A {}
sig C extends A {}

B and C are disjoint subsets of A: B in A && C in A && no B & C

sig B, C extends A {}

same as above
abstract sig A {}
sig B extends A {}
sig C extends A {}

A partitioned by disjoint subsets B and C: \[\text{no } B \& C \&\& A = (B + C) \]

sig B in A {}

B is a subset of A, not necessarily disjoint from any other set

sig C in A + B {}

C is a subset of the union of A and B: \[C \text{ in } A + B \]

one sig A {}
lone sig B {}
some sig C {}

A is a singleton set
B is a singleton or empty
C is a non-empty set
Fields are Relations

- The fields define relations among the signatures
 - Similar to a field in an object class that establishes a relation between objects of two classes
 - Similar to associations in UML/OCL

- Visual representation of a field is an arrow with a small filled arrow head
Fields Are Relations

sig A {f: e}

f is a binary relation with domain A and range given by expression e
each element of A is associated with exactly one element from e (i.e., the default cardinality is one)

all a: A | a.f: one e

sig A {

f1: one e1,
f2: lone e2,
f3: some e3,
f4: set e4

}

Multiplicities correspond to the following constraint, where m could be one, lone, some, or set

all a: A | a.f : m e
Fields

sig A {f, g: e}

two fields with the same constraint

sig A {f: e1 m -> n e2}

a field can declare a ternary relation, each tuple in the relation f has three elements (one from A, one from e1 and one from e2), m and n denote the cardinalities of the sets

all a: A | a.f : e1 m -> n e2

sig AddressBook {
 names: set Name,
 addrs: names -> Addr
}

In definition of one field you can use another field defined earlier (these are called dependent fields)

(all b: AddressBook | b.addrs: b.names -> Addr)
module language/Family

sig Name { }

abstract sig Person {
 name: one Name,
 siblings: Person,
 father: lone Man,
 mother: lone Woman
}

sig Man extends Person {
 wife: lone Woman
}

sig Woman extends Person {
 husband: lone Man
}

sig Married extends Person {
}

fact {
 no p: Person | p in p.^+(mother + father)
 wife = ~husband
}
Facts

- After the signatures and their fields, facts are used to express constraints that are assumed to always hold.

- Facts are not assertions, they are constraints that restrict the model:
 - Facts are part of our specification of the system.
 - Any configuration that is an instance of the specification has to satisfy all the facts.
Facts

\texttt{fact} \{ F \}

\texttt{fact} f \{ F \}

Facts can be written as separate paragraphs and can be named.

\texttt{Sig} A \{ \ldots \}\{ F \}

Facts about a signature can be written immediately after the signature

Signature facts are implicitly quantified over the elements of the signature

It is equivalent to:

\texttt{fact} \{all a: A | F'} \}

where any field of A in F is replaced with a.field in F'
Facts

\[\text{sig Host} \quad \{\}\]

\[\text{sig Link} \quad \{\text{from}, \text{to}: \text{Host}\}\]

\[\text{fact} \quad \{\text{all} \ x: \text{Link} \mid x.\text{from} \neq x.\text{to}\}\]

\begin{quote}
no links from a host to itself
\end{quote}

\[\text{fact noSelfLinks} \quad \{\text{all} \ x: \text{Link} \mid x.\text{from} \neq x.\text{to}\}\]

\begin{quote}
same as above
\end{quote}

\[\text{sig Link} \quad \{\text{from}, \text{to}: \text{Host}\} \quad \{\text{from} \neq \text{to}\}\]

\begin{quote}
same as above, with implicit 'this.'
\end{quote}
Functions

fun f[x1: e1, ..., xn: en] : e { E }

- A function is a named expression with zero or more arguments
 - When it is used, the arguments are replaced with the instantiating expressions

fun grandpas[p: Person] : set Person {
 p.(mother + father).father
}
Predicates

pred p[x1: e1, ..., xn: en] { F }

• A predicate is a named constraint with zero or more arguments
 – When it is used, the arguments are replaced with the instantiating expressions

fun grandpas[p: Person] : set Person {
 let parent = mother + father + father.wife +
 mother.husband | p.parent.parent.parent & Man
}

pred ownGrandpa[p: Person] {
 p in grandpas[p]
}
Assertions

assert a { F }

Assertions are constraints that were intended to follow from facts of the model
You can use Alloy analyzer to check the assertions

sig Node {
 children: set Node
}

one sig Root extends Node {}

fact {
 Node in Root.*children
}

// invalid assertion:
assert someParent {
 all n: Node | some children.n
}

// valid assertion:
assert someParent {
 all n: Node - Root | some children.n
}
Assertions

• In Alloy, assertions are used to specify properties about the specification

• Assertions state the properties that we expect to hold

• After stating an assertion we can check if it holds using the Alloy analyzer (within a given scope)
Check command

```plaintext
assert a { F }
check a scope

- Assert instructs Alloy analyzer to search for counterexample to assertion within scope
  - Looking for counter-example means looking for a solution to
    \[ M \land \neg F \] where M is the formula representing the model

check a
  top-level sigs bound by 3
check a for default
  top-level sigs bound by default
check a for default but list
  default overridden by bounds in list
check a for list
  sigs bound in list
```
Check Command

abstract sig Person {}
sig Man extends Person {}
sig Woman extends Person {}
sig Grandpa extends Man {}
check a
check a for 4
check a for 4 but 3 Woman
check a for 4 but 3 Man, 5 Woman
check a for 4 Person
check a for 4 Person, 3 Woman
check a for 3 Man, 4 Woman
check a for 3 Man, 4 Woman, 2 Grandpa
Check Example

fact {
 no p: Person | p in p.^{(mother + father)}
 no (wife + husband) & ^(mother + father)
 wife = ~husband
}

assert noSelfFather {
 no m: Man | m = m.father
}

check noSelfFather
Run Command

pred p[x: X, y: Y, ...] { F }
run p **scope**

Instructs analyzer to search for instance of a predicate within scope
If the model is represented with formula M, run finds solution to
M && (some x: X, y: Y, ... | F)

fun f[x: X, y: Y, ...] : R { E }
run f **scope**

Instructs analyzer to search for instance of function within scope
If model is represented with formula M, run finds solution to
M && (some x: X, y: Y, ..., result: R | result = E)
module language/Family

sig Name { }

abstract sig Person {
 name: one Name,
 siblings: Person,
 father: lone Man,
 mother: lone Woman
}

sig Man extends Person {
 wife: lone Woman
}

sig Woman extends Person {
 husband: lone Man
}

sig Married extends Person {
}

fact {
 no p: Person | p in p.^{(mother + father)}
 no (wife + husband) & ^(mother + father)
 wife = ~husband
}
fun grandpas[p: Person] : set Person {
 let parent = mother + father + father.wife +
 mother.husband | p.parent.parent & Man
}

pred ownGrandpa[p: Person] {
 p in grandpas[p]
}

run ownGrandpa for 4 Person
fun grandpas[p: Person] : set Person {
 let parent = mother + father + father.wife + mother.husband | p.parent.parent.parent & Man
}

pred ownGrandpa[p: Person] {
 p in grandpas[p]
}

run ownGrandpa for 4 Person
Alloy Expressions

- Expressions in Alloy are expressions in Alloy’s logic

- atoms are Alloy's primitive entities
 - indivisible, immutable, uninterpreted

- relations associate atoms with one another
 - set of tuples, tuples are sequences of atoms

- every value in Alloy logic is a relation!
 - relations, sets, scalars are all the same thing
Everything is a relation

sets are unary (1 column) relations
Person = {(P0), (P1), (P2)}
Name = {(N0), (N1), (N2), (N3)}

.scalars are singleton sets
myName = {(N1)}
yourName = {(N2)}

binary relation
name = {(P0, N0), (P1, N0), (P2, N2)}

Alloy also allows relations with higher arity (like ternary relations)
Constants

- **none**: empty set
- **univ**: universal set
- **iden**: identity relation

Person = \{(P0), (P1), (P2)\}

Name = \{(N0), (N1), (N2), (N3)\}

none = \{\}

univ = \{(P0), (P1), (P2), (N0), (N1), (N2), (N3)\}

iden = \{(P0, P0), (P1, P1), (P2, P2), (N0, N0), (N1, N1), (N2, N2), (N3, N3)\}
Set Declarations

\[
x: \ m \ e \\
x \text{ is a subset of } e \text{ and its cardinality (size) is restricted to be } m
\]

\[m \text{ can be:}\]

- set \ any number
- one \ exactly one (default)
- lone \ zero or one
- some \ one or more

\[
x: \ e \text{ is equivalent to } x: \one e
\]

\[
\text{SomePeople: set Person} \\
\text{SomePeople is a subset of the set Person}
\]
Set Operators

+ union

& intersection

− difference

in subset

= equality
Product Operator

-> \textit{cross product}

Person = \{(P0), (P1)\}
Name = \{(N0), (N1)\}
Address = \{(A0)\}

Person -> Name =
\{(P0, N0), (P0, N1), (P1, N0), (P1, N1)\}

Person -> Name -> Address =
\{(P0, N0, A0), (P0, N1, A0), (P1, N0, A0), (P1, N1, A0)\}
Relation Declarations with Multiplicity

$r: A \ m \rightarrow \ n \ B$ \textit{cross product with multiplicity constraints}
\textit{m and n can be one, lone, some, set}

$r: A \rightarrow B$ \textit{is equivalent to} (default multiplicity is set)
$r: A \ \text{set} \rightarrow \text{set} \ B$

$r: A \ m \rightarrow \ n \ B$ \textit{is equivalent to:}
$r: A \rightarrow B$
all \textit{a} : A | n \ a.\ r
all \textit{b} : B | m \ r.\ b
Relation Declarations with Multiplicity

\[r: A \rightarrow \text{one } B \]
- \(r \) is a function with domain \(A \)

\[r: A \text{ one } \rightarrow B \]
- \(r \) is an injective relation with range \(B \)

\[r: A \rightarrow \text{lone } B \]
- \(r \) is a function that is partial over the domain \(A \)

\[r: A \text{ one } \rightarrow \text{one } B \]
- \(r \) is an injective function with domain \(A \) and range \(B \) (a bijection from \(A \) to \(B \))

\[r: A \text{ some } \rightarrow \text{some } B \]
- \(r \) is a relation with domain \(A \) and range \(B \)
Relational Join (aka navigation)

\[p \cdot q \]

dot is the relational join operator

Given two tuples \((p_1, \ldots, p_n)\) in \(p\) and \((q_1, \ldots, q_m)\) in \(q\) where \(p_n = q_1\)

\(p \cdot q\) contains the tuple \((p_1, \ldots, p_{n-1}, q_2, \ldots, q_m)\)

\[
\begin{align*}
\{(N0)\} \cdot \{(N0, D0)\} &= \{(D0)\} \\
\{(N0)\} \cdot \{(N1, D0)\} &= \{} \\
\{(N0)\} \cdot \{(N0, D0), (N0, D1)\} &= \{(D0), (D1)\} \\
\{(N0), (N1)\} \cdot \{(N0, D0), (N1, D1), (N2, D3)\} &= \{(D0), (D1)\} \\
\{(N0, A0)\} \cdot \{(A0, D0)\} &= \{(N0, D0)\}
\end{align*}
\]
Box join

box join, box join can be defined using dot join

e1[e2] = e2.e1

a.b.c[d] = d.(a.b.c)
Unary operations on relations

\sim \quad \text{transpose}

\^ \quad \text{transitive closure}

* \quad \text{reflexive transitive closure}

\text{these apply only to binary relations}

\^r = r + r.r + r.r.r + ... \\
* r = iden + \^r

\text{wife} = \{(M0,W1), (M1, W2)\}
\sim\text{wife} = \text{husband} = \{(W1,M0), (W2, M1)\}
Relation domain, range, restriction

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>returns the domain of a relation</td>
</tr>
<tr>
<td>range</td>
<td>returns the range of a relation</td>
</tr>
<tr>
<td><:</td>
<td>domain restriction (restricts the domain of a relation)</td>
</tr>
<tr>
<td>:></td>
<td>range restriction (restricts the range of a relation)</td>
</tr>
</tbody>
</table>

name = {(P0,N1), (P1,N2), (P3,N4), (P4, N2)}

\[
\begin{align*}
\text{domain}(\text{name}) & = \{(P0), (P1), (P3), (P4)\} \\
\text{range}(\text{name}) & = \{(N1), (N2), (N4)\}
\end{align*}
\]

somePeople = {(P0), (P1)}
someNames = {(N2), (N4)}

name :> someNames = {(P1,N2), (P3,N4), (P4,N2)}
somePeople <: name= {(P0,N1), (P1,N2)}
Relation override

++ override

\[p ++ q = p - (\text{domain}(q) <: p) + q \]

\[m' = m ++ (k \rightarrow v) \]

update map \(m \) with key-value pair \((k, v)\)
Boolean operators

! not negation
&& and conjunction
|| or disjunction
=> implies implication
else alternative
<=> iff bi-implication

four equivalent constraints:
F => G else H
F implies G else H
(F && G) || (!F) && H
(F and G) or ((not F) and H)
Quantifiers

all x: e | F
all x: e1, y: e2 | F
all x, y: e | F
all disj x, y: e | F F holds on distinct x and y

all F holds for every x in e
some F holds for at least one x in e
no F holds for no x in e
lone F holds for at most one x in e
one F holds for exactly one x in e
A File System Model in Alloy

// File system objects
abstract sig FSObject { }
sig File, Dir extends FSObject { }

// A File System
sig FileSystem {
 live: set FSObject,
 root: Dir & live,
 parent: (live - root) -> one (Dir & live),
 contents: Dir -> FSObject
}
{
 // live objects are reachable from the root
 live in root.*contents
 // parent is the inverse of contents
 parent = ~contents
}
An Instance of the File System Specification

FileSystem = \{(FS0)\}
FSObject = \{(F0), (F1), (F2), (F4), (D0), (D1)\}
File = \{(F0), (F1), (F2), (F4)\}
Dir = \{(D0), (D1)\}

live = \{(FS0,F0),(FS0,F1),(FS0,F2),(FS0,D0),(FS0,D1)\}
root = \{(FS0,D0)\}
pARENT = \{(FS0,F0,D0),(FS0,D1,D0),
(FS0,F1,D1),(FS0,F2,D1)\}
contents = \{(FS0,D0,F0),(FS0,D0,D1),
(FS0,D1,F1),(FS0,D1,F2)\}
// Move x to directory d
pred move [fs, fs': FileSystem, x: FSObject, d: Dir]{
 // precondition
 (x + d) in fs.live
 // postcondition
 fs'.parent = fs.parent - x->(x.(fs.parent)) + x->d
}

File System Model in Alloy

// Delete the file or empty directory x
pred remove [fs, fs': FileSystem, x: FSObject] {
 x in (fs.live - fs.root)
 fs'.root = fs.root
 fs'.parent = fs.parent - x->(x.(fs.parent))
}

// Recursively delete the directory x
pred removeAll [fs, fs': FileSystem, x: FSObject] {
 x in (fs.live - fs.root)
 fs'.root = fs.root
 let subtree = x.*(fs.contents) |
 fs'.parent = fs.parent - subtree->(subtree.(fs.parent))
}
// Moving doesn't add or delete any file system objects
moveOkay: check {
 all fs, fs': FileSystem, x: FSObject, d:Dir |
 move[fs, fs', x, d] => fs'.live = fs.live
} for 5

// remove removes exactly the specified file or directory
removeOkay: check {
 all fs, fs': FileSystem, x: FSObject |
 remove[fs, fs', x] => fs'.live = fs.live - x
} for 5
File System Model in Alloy

// removeAll removes exactly the specified subtree

removeAllOkay: check {
 all fs, fs': FileSystem, d: Dir |
 removeAll[fs, fs', d] =>
 fs'.live = fs.live - d.*(fs.contents)
} for 5

// remove and removeAll has the same effects on files

removeAllSame: check {
 all fs, fs1, fs2: FileSystem, f: File |
 remove[fs, fs1, f] && removeAll[fs, fs2, f] =>
 fs1.live = fs2.live
} for 5
Data Modeling with Alloy

• A natural way to represent the data model for a web application is to use entity-relationship diagrams or UML class diagrams.

• Entity-relationship diagrams and UML class diagrams can be converted to Alloy specifications.

• Once we write the data model in Alloy we can check assertions about the data model.
A Book Store Data Model in UML

Book

Category

Book

Book Edition

Shopping Cart

User

Order Line

0..*

1

1..*

1

0..1

1

0..*

1
sig BookCategory {
 books: set Book
}
sig Book {
 category: one BookCategory,
 edition: set BookEdition,
 similar: set Book
}
sig BookEdition {
 book: one Book
}
sig OrderLine {
 order: one BookEdition
}
sig ShoppingCart {
 contents: set OrderLine
}
sig User {
 cart: lone ShoppingCart
}
Alloy Specification (Cont.)

fact {
 books = ~category
 book = ~edition
 all e1, e2: BookEdition | e1 != e2 => e1.book != e2.book
 all b1, b2: Book | b1 in b2.similar => b1.category = b2.category
 all u1, u2: User | u1.cart = u2.cart => u1 = u2
 all o:OrderLine, c1, c2:ShoppingCart |
 (o in c1.contents && o in c2.contents) => c1 = c2
}

pred addCart[u, u' : User, o : OrderLine] {
 !(o in u.cart.contents)
 u'.cart.contents = u.cart.contents + o
}

pred removeCart[u, u' : User, o : OrderLine] {
 o in u.cart.contents
 u'.cart.contents = u.cart.contents - o
}
Checking the Alloy Specification

assert category { all b1, b2 : Book | b1.category != b2.category => b1 !in b2.similar }

run addCart

run removeCart

run emptyCart

check category

check category1
Alloy Kernel

- Alloy is based on a small kernel language
- The language as a whole is defined by the translation to the kernel
- It is easier to define and understand the formal syntax and semantics of the kernel language
Alloy Kernel Syntax

Formula Syntax

```
formula ::= 
  elemFormula
  | compFormula
  | quantFormula

elemFormula ::= 
  expr in expr
  | expr = expr

compFormula ::= 
  not formula
  | formula and formula

quantFormula ::= 
  all var : expr | formula
```

Expression Syntax

```
expr ::= 
  rel
  | var
  | none
  | expr binop expr
  | unop expr

binop ::= 
  +
  | &
  | -
  | .
  | ->

unop ::= 
  ~
  | ^
```

Relations

```
rel ::= 
  subset
  | equality
```

Unary Operators

```
unop ::= 
  ~
  | ^
```

Binary Operators

```
binop ::= 
  +
  | &
  | -
  | .
  | ->
```

Preliminary

```
expr ::=
  rel
  | var
  | none
  | expr binop expr
  | unop expr

binop ::= 
  +
  | &
  | -
  | .
  | ->

unop ::= 
  ~
  | ^
```
Alloy Kernel Semantics

- Alloy kernel semantics is defined using denotational semantics

- There are two meaning functions in the semantic definitions
 - M: which interprets a formula as true or false
 - M: Formula, Instance \rightarrow Boolean
 - E: which interprets an expression as a relation value
 - E: Expression, Instance \rightarrow RelationValue

- Interpretation is given with respect to an instance that assigns a relational value to each declared relation

- Meaning functions take a formula or an expression and the instance as arguments and return a Boolean value or a relation value
Alloy Kernel Semantics

• To handle the sets and relations in a uniform way Alloy semantics encodes sets also as relations

• Set \{x_1, x_2, \ldots\} is represented as a relation \{(unit,x_1), (unit,x_2), \ldots\}

• Scalar types are singleton sets, i.e., a scalar \(x_1\) is represented as \(\{x\}\) which is actually represented as the relation \{(unit,x_1)\}
Alloy Kernel Semantics

M: Formula, Instance → Boolean

Formula Semantics:

\[M[p \text{ in } q]i = E[p]i \subseteq E[q]i \]

\[M[p = q]i = (E[p]i = E[q]i) \]

\[M[\neg f]i = \neg M[f]i \]

\[M[f \text{ and } g]i = M[f]i \land M[g]i \]

\[M[\text{all } x:e \mid f]i = \land\{M[f](i \oplus x \rightarrow v) \mid v \subseteq E[e]i \land \#v = 1\} \]

\(i \oplus x \rightarrow v \) is the instance generated by extending \(i \) with the binding of variable \(x \) to the value \(v \)

\(\#v \) denotes the cardinality of \(v \)
Alloy Kernel Semantics

E: Expression, Instance \rightarrow RelationValue

Expression Semantics:

$E[\text{none}]i = \emptyset$

$E[p+q]i = E[p]i \cup E[q]i$

$E[p&q]i = E[p]i \cap E[q]i$

$E[p-q]i = E[p]i \setminus E[q]i$

$E[p.q]i = \{(p_1, ..., p_{n-1}, q_2,...,q_m) \mid (p_1, ..., p_n) \in E[p]i \land (q_1, ..., q_m) \in E[q]i \land p_n = q_1\}$

$E[\sim p]i = \{(y,x) \mid (x,y) \in E[p]i\}$

$E[^p]i = \{(x,y) \mid \exists p_1, ... \exists p_n, n\geq0 \mid (x,p_1), (p_1,p_2), ... (p_n,y) \in E[p]i\}$
Analyzing Specifications

• Possible problems with a specification

 – The specification is over-constrained: There is no model for the specification

 – The specification is under-constrained: The specification allows some unintended behaviors

• Alloy analyzer has automated support for finding both over-constraint and under-constraint errors
Analyzing Specifications

- Remember that the Alloy specifications define formulas and given an environment (i.e., bindings to the variables in the specification) the semantics of Alloy maps a formula to true or false.

- An environment for which a formula evaluates to true is called a model (or instance or solution) of the formula.

- If a formula has at least one model then the formula is consistent (i.e., satisfiable).

- If every (well-formed) environment is a model of the formula, then the formula is valid.

- The negation of a valid formula is inconsistent.
Analyzing Specifications

• Given a assertion we can check it as follows:
 – Negate the assertion and conjunct it with the rest of the specification
 – Look for a model for the resulting formula, if there exists such a model (i.e., the negation of the formula is consistent) then we call such a model a *counterexample*

• Bad news
 – Validity and consistency checking for Alloy is undecidable
 • The domains are not restricted to be finite, they can be infinite, and there is quantification
Analyzing Specifications

- Alloy analyzer provides two types of analysis:
 - *Simulation*, in which consistency of an invariant or an operation is demonstrated by generating an environment that models it
 - Simulations can be used to check over-constraint errors: To make sure that the constraints in the specification is so restrictive that there is no environment which satisfies them
 - The `run` command in Alloy analyzer corresponds to simulation
 - *Checking*, in which a consequence of the specification is tested by attempting to generate a counter-example
 - The `check` command in Alloy analyzer corresponds to checking

- Simulation is for determining consistency (i.e., satisfiability) and Checking is for determining validity
 - And these problems are undecidable for Alloy specifications
Trivial Example

- Consider checking the theorem
 \[
 \text{all } x:X \mid \text{some } y:Y \mid x.r = y
 \]

- To check this formula we formulate its negation as a problem
 \[
 r: X \rightarrow Y \\
 !\text{all } x:X \mid \text{some } y:Y \mid x.r = y
 \]

- The Alloy analyzer will generate an environment such as
 \[
 X = \{X0, X1\} \\
 Y = \{Y0, Y1\} \\
 r = \{(X0, Y0), (X0, Y1)\} \\
 x = \{X1\}
 \]
 which is a model for the negated formula. Hence this environment is a counterexample to the claim that the original formula is valid.
 The value X1 for the quantified variable x is called a Skolem constant and it acts as a witness to the to the invalidity of the original formula.
Sidestepping Undecidability

• Alloy analyzer restricts the simulation and checking operations to a finite scope
 – where a scope gives a finite bound on the sizes of the domains in the specification (which makes everything else in the specification also finite)

• Here is another way to put it:
 – Alloy analyzer rephrases the consistency problem as: Does there exist an environment within the given scope that is a model for the formula
 – Alloy analyzer rephrases the validity problem as: Are all the well-formed environments within the scope a model for the formula

• Validity and consistency problem within a finite scope are decidable problems
 – Simple algorithm: just enumerate all the environments and evaluate the formula on all environments using the semantic function
Simulation: Consistency within a Scope

• If the Alloy analyzer finds a model within a given scope then we know that the formula is consistent!

• On the other hand, if the Alloy analyzer cannot find a model within a given scope does not prove that the formula is inconsistent
 – General problem is is undecidable

• However, the fact that there is no model within a given scope shows that the formula might be inconsistent
 – which would prompt the designer to look at the specification to understand why the formula is inconsistent within that scope
Checking: Validity within a given Scope

• If the formula is not valid within a given scope then we are sure that the formula is not valid
 – Alloy analyzer would generate a counter-example and the designer can look at this counter-example to figure out the problem with the specification.

• On the other hand, the fact that Alloy analyzer shows that a formula is valid within a given scope does not prove that the formula is valid in general
 – Again, the problem is undecidable

• However, the fact that the formula is valid within a given scope gives the designer a lot of confidence about the specification
Alloy Analyzer

- Alloy analyzer converts the simulation and checking queries to boolean satisfiability problems (SAT) and uses a SAT solver to solve the satisfiability problem.
- Here are the steps of analysis steps for the Alloy analyzer:
 1. Conversion to negation normal form and skolemization
 2. Formula is translated for a chosen scope to a boolean formula along with a mapping between relational variables and the boolean variables used to encode them. This boolean formula is constructed so that it has a model exactly when the relational formula has a model in the given scope.
 3. The boolean formula is converted to a conjunctive normal form, (the preferred input format for most SAT solvers)
 4. The boolean formula is presented to the SAT solver
 5. If the solver finds a model, a model of the relational formula is then reconstructed from it using the mapping produced in step 2.
Translation Overview

• In negation normal form only elementary formulas are negated
 – To convert to negation normal form push negations inwards using de Morgan’s laws

• Skolemization eliminates existentially quantified variables.
 – If the existential quantification is not within a universal quantification the quantified variable is replaced with a constant and an additional constraint that such a constant exists
 – If the existential quantification is within a universal quantification the existentially quantified variable is replaced with a function
Translation Overview

- For example

\[
!\text{all } x: X \mid \text{some } y: Y \mid x.r=y
\]

is converted to

\[
\text{some } x: X \mid \text{all } y: Y \mid !x.r=y
\]

which is converted to the problem

\[
\begin{align*}
r & : X\rightarrow Y \\
x & : X \\
\text{all } y: Y & \mid !x.r=y \\
\text{some } z:X & \mid z=x
\end{align*}
\]
Translation Overview

• For example
 all x: X | some y: Y | x.r=y

 is converted to
 all x: X | x.r=y[x]

 by replacing y with the function
 y: X->one Y

• This method generalizes to arbitrary number of universal quantifiers
 by creating functions indexed by as many types as necessary
Translation Overview

• Once a scope is fixed a value of a relation from S to T can be represented as a bit matrix with a 1 in the ith row of jth column when the ith atom in S is related to the jth atom in T and 0 otherwise
 – Such matrices encode all possible relations from S to T

• Hence, collection of possible values of a relation can be expressed by a matrix of boolean variables

• Any constraint on a relation can be expressed as a formula in these boolean variables and a relational formula as a whole can be similarly expressed by introducing boolean variables for each relational variables
Translation Overview

• For example
 \[\forall y: \mathcal{Y} \mid !x.r=y \]
 using a scope of 2 would be translated as follows

• First let’s look at the negation of the formula
 \[\exists y: \mathcal{Y} \mid x.r=y \]

• Generate a vector \([x_0 \ x_1]\) for \(x\) and a matrix \([r_{00} \ r_{01}, \ r_{10} \ r_{11}]\) for \(r\)

• The expression \(x.r\) corresponds to the vector
 \[[x_0 \land r_{00} \lor x_1 \land r_{10} \quad x_0 \land r_{01} \lor x_1 \land r_{11}] \]
• Given,
\[x.r \equiv [x_0 \land r_{00} \lor x_1 \land r_{10}] \land [x_0 \land r_{01} \lor x_1 \land r_{11}]\]
and \(y \equiv [y_0 \ y_1]\), we get
\[x.r = y \equiv \]
\[(y_0 \leftrightarrow (x_0 \land r_{00} \lor x_1 \land r_{10})) \land (y_1 \leftrightarrow (x_0 \land r_{01} \lor x_1 \land r_{11}))\]
\[\land (y_0 \land \neg y_1 \lor \neg y_0 \land y_1)\]

• Then the boolean logic translation for some \(y: Y \mid x.r=y\) is
true \(\leftrightarrow (x_0 \land r_{00} \lor x_1 \land r_{10}) \land \neg (x_0 \land r_{01} \lor x_1 \land r_{11})\)
\lor false \(\leftrightarrow (x_0 \land r_{00} \lor x_1 \land r_{10}) \land true \leftrightarrow (x_0 \land r_{01} \lor x_1 \land r_{11})\)
\equiv (x_0 \land r_{00} \lor x_1 \land r_{10}) \land \neg (x_0 \land r_{01} \lor x_1 \land r_{11})
\lor \neg (x_0 \land r_{00} \lor x_1 \land r_{10}) \land (x_0 \land r_{01} \lor x_1 \land r_{11})\)
Translation Overview

- Hence, the formula \(\text{some } y: Y | x.r=y \) is satisfiable within a scope of 2 if and only if the following boolean logic formula is satisfiable:
 \[
 (x_0 \land r_{00} \lor x_1 \land r_{10}) \land \neg (x_0 \land r_{01} \lor x_1 \land r_{11}) \\
 \lor \neg (x_0 \land r_{00} \lor x_1 \land r_{10}) \land (x_0 \land r_{01} \lor x_1 \land r_{11})
 \]

- Note that we can also generate the boolean logic formula for checking the satisfiability of:
 \[
 \text{all } y: Y | \neg x.r=y \equiv \neg (\text{some } y: Y | x.r=y)
 \]
 within the scope of 2 by negating the boolean logic formula above:
 \[
 \neg ((x_0 \land r_{00} \lor x_1 \land r_{10}) \land \neg (x_0 \land r_{01} \lor x_1 \land r_{11}) \\
 \lor \neg (x_0 \land r_{00} \lor x_1 \land r_{10}) \land (x_0 \land r_{01} \lor x_1 \land r_{11}))
 \]
Translation Overview

• The generated boolean satisfiability problem (SAT) is an NP-complete problem

• Alloy analyzer implements an efficient translation in the sense that the problem instance presented to the SAT solver is as small as possible
 – It will take the SAT solver exponential time in the worst case to solve the boolean satisfiability problem