
272: Software Engineering
Winter 2024

Instructor: Tevfik Bultan

Lecture: Design by Contract & Java Modeling
Language

Design by Contract

• Design by Contract and the language that implements the Design by
Contract principles (called Eiffel) was developed in Santa Barbara by
Bertrand Meyer (he was a UCSB professor at the time)

• Bertrand Meyer won the 2006 ACM Software System Award for the
Eiffel!

– Award citation: “For designing and developing the Eiffel
programming language, method and environment, embodying the
Design by Contract approach to software development and other
features that facilitate the construction of reliable, extendible and
efficient software.”

• The material in the following slides is mostly from the following paper:

– “Applying Design by Contract,” B. Meyer, IEEE Computer, pp. 40-
51, October 1992.

Dependability and Object-Orientation

• An important aspect of object oriented design is reuse
– For reusable components correctness is crucial since an error in a

module can effect every other module that uses it

• Main goal of object oriented design and programming is to improve
the quality of software
– The most important quality of software is its dependability

• Design by contract presents a set of principles to produce
dependable and robust object oriented software
– Basic design by contract principles can be used in any object

oriented programming language

What is a Contract?

• There are two parties:
– Client which requests a service
– Supplier which supplies the service

• Contract is the agreement between the client and the supplier

• Two major characteristics of a contract
– Each party expects some benefits from the contract and is

prepared to incur some obligations to obtain them
– These benefits and obligations are documented in a contract

document

• Benefit of the client is the obligation of the supplier, and vice versa.

What is a Contract?

• As an example let’s think about the contract between a tenant and a
landlord

Party Obligations Benefits

Tenant Pay the rent at the
beginning of the month.

Stay at the apartment.

Landlord Keep the apartment in
a habitable state.

Get the rent payment
every month.

What is a Contract?

• A contract document between a client and a supplier protects both
sides
– It protects the client by specifying how much should be done to

get the benefit. The client is entitled to receive a certain result.
– It protects the supplier by specifying how little is acceptable. The

supplier must not be liable for failing to carry out tasks outside of
the specified scope.

• If a party fulfills its obligations it is entitled to its benefits
– No Hidden Clauses Rule: no requirement other than the

obligations written in the contract can be imposed on a party to
obtain the benefits

How Do Contracts Relate to Software Design?

• You are not in law school, so what are we talking about?

• Here is the basic idea

– One can think of pre and post conditions of a procedure as
obligations and benefits of a contract between the client (the
caller) and the supplier (the called procedure)

• Design by contract promotes using pre and post-conditions (written as
assertions) as a part of module design

• Eiffel is an object oriented programming language that supports
design by contract

– In Eiffel the pre and post-conditions are written using require and
ensure constructs, respectively

Design by Contract in Eiffel

In Eiffel procedures are written is in the following form:

procedure_name(argument declarations) is
-- Header comment

require
Precondition

do
Procedure body

ensure
Postcondition

end

Design by Contract in Eiffel
An example:

put_child(new_child: NODE) is
-- Add new to the children of current node

require
new_child /= Void

do
... Insertion algorithm ...

ensure
new_child.parent = Current;
child_count = old child_count + 1

end -- put_child

• Current refers to the current instance of the object (this in Java)
• Old keyword is used to denote the value of a variable on entry to the procedure
• Note that “=“ is the equality operator (== in Java) and “/=“ is the
inequality operator (!= in Java)

The put_child Contract

• The put_child contract in English would be something like the table
below.

– Eiffel language enables the software developer to write this
contract formally using require and ensure constructs

Party Obligations Benefits

Client Use as argument a
reference, say
new_child, to an
existing object of type
Node.

Get an updated tree
where the Current
node has one more
child than before;
new_child now has
Current as its parent.

Supplier Insert new_child as
required.

No need check if the
argument actually points
to an object.

Contracts

• The pre and postconditions are assertions, i.e., they are expressions
which evaluate to true or false
– The precondition expresses the requirements that any call must

satisfy
– The postcondition expresses the properties that are ensured at

the end of the procedure execution

• If there is no precondition or postcondition, then the precondition or
postcondition is assumed to be true (which is equivalent to saying
there is no pre or postcondition)

Assertion Violations

• What happens if a precondition or a postcondition fails (i.e., evaluates
to false)
– The assertions can be checked (i.e., monitored) dynamically at

run-time to debug the software
– A precondition violation would indicate a bug at the caller
– A postcondition violation would indicate a bug at the callee

• Our goal is to prevent assertion violations from happening
– The pre and postconditions are not supposed to fail if the software

is correct
• hence, they differ from exceptions and exception handling

– By writing the contracts explicitly, we are trying to avoid contract
violations, (i.e, failed pre and postconditions)

Assertion Violations
• In the example below, if new_child = Void then the precondition

fails.
• The procedure body is not supposed to handle the case where

new_child = Void, that is the responsibility of the caller

put_child(new_child: NODE) is
-- Add new to the children of current node

require
new_child /= Void

do
... Insertion algorithm ...

ensure
new_child.parent = Current;
child_count = old child_count + 1

end -- put_child

Defensive Programming vs. Design by Contract

• Defensive programming is an approach that promotes putting checks
in every module to detect unexpected situations

• This results in redundant checks (for example, both caller and callee
may check the same condition)
– A lot of checks makes the software more complex and harder to

maintain

• In Design by Contract the responsibility assignment is clear and it is
part of the module interface
– prevents redundant checks
– easier to maintain
– provides a (partial) specification of functionality

Class Invariants

• A class invariant is an assertion that holds for all instances (objects)
of the class
– A class invariant must be satisfied after creation of every instance

of the class
– The invariant must be preserved by every method of the class,

i.e., if we assume that the invariant holds at the method entry it
should hold at the method exit

– We can think of the class invariant as conjunction added to the
precondition and postcondition of each method in the class

• For example, a class invariant for a binary tree could be (in Eiffel
notation)

invariant
left /= Void implies (left.parent = Current)
right /=Void implies (right.parent = Current)

Design by Contract and Inheritance

• Inheritance enables declaration of subclasses which can redeclare
some of the methods of the parent class, or provide an
implementation for the abstract methods of the parent class

• Polymorphism and dynamic binding combined with inheritance are
powerful programming tools provided by object oriented languages
– How can the Design by Contract can be extended to handle

these concepts?

ClassA

someMethod()

ClassB

Client

someMethod()

Inheritance: Preconditions

• If the precondition of the
ClassB.someMethod is stronger
than the precondition of the
ClassA.someMethod, then this is
not fair to the Client

• The code for ClassB may have
been written after Client was
written, so Client has no way of
knowing its contractual
requirements for ClassB

ClassA

someMethod()

ClassB

Client

someMethod()

Inheritance: Postconditions

• If the postcondition of the
ClassB.someMethod is weaker
than the postcondition of the
ClassA.someMethod, then this is
not fair to the Client

• Since Client may not have
known about ClassB, it could
have relied on the stronger
guarantees provided by the
ClassA.someMethod

Inheritance

• Eiffel enforces the following
– the precondition of a derived method to be weaker
– the postcondition of a derived method to be stronger

• In Eiffel when a method overwrites another method the new declared
precondition is combined with previous precondition using disjunction

• When a method overwrites another method the new declared
postcondition is combined with previous postcondition using
conjunction

• Also, the invariants of the parent class are passed to the derived
classes
– invariants are combined using conjunction

ClassA

ClassB

Client

someMethod()

someMethod()

In ClassA:
invariant

classInvariant
someMethod() is
require

Precondition
do

Procedure body
ensure

Postcondition
end

In ClassB which is derived from ClassA:
invariant

newClassInvariant
someMethod() is
require

newPrecondition
do

Procedure body
ensure

newPostcondition
end

The precondition of ClassB.aMethod is defined as:
newPrecondition or Precondition

The postcondition of ClassB.aMethod is defined as:
newPostcondition and Postcondition

The invariant of ClassB is
classInvariant and newClassInvariant

Dynamic Design-by-Contract Monitoring

• Enforce contracts at run-time

• A contract
– Preconditions of modules

• What conditions the module requests from the clients
– Postconditions of modules

• What guarantees the module gives to clients
– Invariants of the objects

• Precondition violation, the client is to blame
– Generate an error message blaming the client (caller)

• Postcondition violation, the server is to blame
– Generate an error message blaming the server (callee)

Java Modeling Language (JML)
• JML is a behavioral interface specification language

• The Application Programming Interface (API) in a typical
programming language (for example consider the API of a set of Java
classes) provides very little information
– The method names and return types, argument names and types

• This type of API information is not sufficient for figuring out what a
component does

• JML is a specification language that allows specification of the
behavior of an API
– not just its syntax, but its semantics

• JML specifications are written as annotations
– As far as Java compiler is concerned they are comments but a

JML compiler can interpret them

JML Project(s) and Materials

• Information about JML and JML based projects are available here:
– https://www.cs.ucf.edu/~leavens/JML/index.shtml

• My lecture notes are based on:
– Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,

Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview
of JML tools and applications. International Journal on Software
Tools for Technology Transfer, 7(3):212-232, June 2005

– Slides by Yoonsik Cheon
– JML tutorials by Joe Kiniry

https://www.cs.ucf.edu/~leavens/JML/index.shtml

JML

• One goal of JML is to make it easily understandable and usable by
Java programmers, so it stays close to the Java syntax and
semantics whenever possible

• JML supports design by contract style specifications with
– Pre-conditions
– Post-conditions
– Class invariants

• JML supports quantification (\forall, \exists), and specification-
only fields and methods
– Due to these features JML specifications are more expressive

than Eiffel contracts and can be made more precise and complete
compared to Eiffel contracts

JMLAnnotations

• JML assertions are added as comments to the Java source code
– either between /*@ . . . @*/
– or after //@

• These are annotations and they are ignored by the Java
compiler

• In JML properties are specified as Java boolean expressions
– JML provides operators to support design by contract style

specifications such as \old and \result
– JML also provides quantification operators (\forall, \exists)

• JML also has additional keywords such as
– requires, ensures, signals, assignable, pure,
invariant, non_null, . . .

Design by Contract in JML

• In JML contracts:

– Preconditions are written as a requires clauses

– Postconditions are written as ensures clauses

– Invariants are written as invariant clauses

JML assertions

• JML assertions are written as Java expressions, but:
– Cannot have side effects

• No use of =, ++, --, etc., and
• Can only call pure methods (i.e., methods with no side effects)

• JML extentions to Java expression syntax:

Syntax Meaning
\result the return value for the method call
\old(E) value of E just before the method call
a ==> b a implies b
a <== b b implies a
a <==> b a if and only if b
a <=!=> b !(a <==> b)

JML quantifiers
• JML supports several forms of quantifiers

– Universal and existential (\forall and \exists)
– Other quantifiers (\sum, \product, \min, \max, \num_of)

(\forall Student s; cs272.contains(s);
s.getProject() != null)

(\forall Student s; cs272.contains(s) ==>
s.getProject() != null)

• Without quantifiers, we would need to write loops to specify these
types of constraints

JML Quantifiers

• Quantifier expressions

– Start with a decleration that is local to the quantifier expression
(\forall Student s;

– Followed by an optional range predicate
cs272.contains(s);

– Followed by the body of the quantifier
s.getProject() != null)

JML Quantifiers
• \sum, \product, \min, \max return the sum, product, min and max

of the values of their body expression when the quantified variables
satisfy the given range expression

• For example,
(\sum int x; 1 <= x && x <= 5; x) denotes the sum of

values between 1 and 5 inclusive

• The numerical quantifier, \num_of, returns the number of values for
quantified variables for which the range and the body predicate are
true

JML Example: Purse

public class Purse {

final int MAX_BALANCE;
int balance;
//@ invariant 0 <= balance && balance <= MAX_BALANCE;

byte[] pin;
/*@ invariant pin != null && pin.length == 4

@ && (\forall int i; 0 <= i && i < 4;
@ 0 <= pin[i] && pin[i] <= 9);
@*/

. . .

}

JML Invariants

• Invariants (i.e., class invariants) must be maintained by all the
methods of the class
– Invariants must be preserved even when an exception is thrown

• Invariants are implicitly included in all pre and post-conditions
– For constructors, invariants are only included in the post-condition

not in the pre-condition. So, the constructors ensure the invariants
but they do not require them.

• Invariants document design decisions and make understanding the
code easier

Invariants for non-null references

• Many invariants, pre- and postconditions are about references not
being null.
– The non_null keyword is a convenient short-hand for these.

public class Directory {
private /*@ non_null @*/ File[] files;
void createSubdir(/*@ non_null @*/ String name){
...
Directory /*@ non_null @*/ getParent(){
...

}

JML Example: Purse, Cont’d

/*@ requires amount >= 0;
@ assignable balance;
@ ensures balance == \old(balance) - amount
@ && \result == balance;
@ signals (PurseException) balance == \old(balance);

@*/
int debit(int amount) throws PurseException {

if (amount <= balance) { balance -= amount; return balance; }
else { throw new PurseException("overdrawn by " + amount); }

}

• The assignable clause indicates that balance is the only field that
will be assigned
– This type of information is very useful for analysis and verification

tools
– The default assignable clause is: assignable \everything

JML post conditions
• The keyword \old can be used to refer to the value of a field just

before the execution of the method

• The keyword \result can be used to refer to the return value of the
method

• Both of these keywords are necessary and useful tools for specifying
post conditions

Exceptions in JML

• In addition to normal post-conditions, JML also supports exceptional
posticonditions
– Exceptional postconditions are written as signals clauses

• Exceptions mentioned in throws clause are allowed by default, i.e. the
default signals clause is

signals (Exception) true;

– To rule them out, you can add an explicit
signals (Exception) false;

– or use the keyword normal_behavior
/*@ normal_behavior

@ requires ...
@ ensures ...
@*/

JML Example: Purse, Cont’d

/*@ requires p != null && p.length >= 4;
@ assignable \nothing;
@ ensures \result <==> (\forall int i; 0 <= i && i < 4;
@ pin[i] == p[i]);
@*/

boolean checkPin(byte[] p) {
boolean res = true;
for (int i=0; i < 4; i++) { res = res && pin[i] == p[i]; }
return res;

}

JML Example: Purse, Cont’d

/*@ requires 0 < mb && 0 <= b && b <= mb
@ && p != null && p.length == 4
@ && (\forall int i; 0 <= i && i < 4;
@ 0 <= p[i] && p[i] <= 9);
@ assignable MAX_BALANCE, balance, pin;
@ ensures MAX_BALANCE == mb && balance == b
@ && (\forall int i; 0 <= i && i < 4; p[i] == pin[i]);
@*/

Purse(int mb, int b, byte[] p) {
MAX_BALANCE = mb; balance = b; pin = (byte[]) p.clone();

}

Model variables

• In JML one can declare and use variables that are only part of the
specification and are not part of the implementation
– These are called model variables (they are auxiliary variables that

are used only for the purpose of specification)

• For example, instead of a Purse assume that we want to specify a
PurseInterface
– We could introduce a model variable called balance in order to

specify the behavioral interface of a Purse
– Then, a class implementing the PurseInterface would identify

how its representation of the balance relates to this model variable

JML Libraries

• JML has an extensive library that supports concepts such as sets,
sequences, and relations.

• These can be used in JML assertions directly without needing to re-
specify these mathematical concepts

JML & Side-effects
• The semantics of JML forbids side-effects in assertions.

– This both allows assertion checks to be used safely during
debugging and supports mathematical reasoning about
assertions.

• A method can be used in assertions only if it is declared as pure,
meaning the method does not have any side-effects and does not
perform any input or output.

• For example, if there is a method getBalance() that is declared as
/*@ pure @*/ int getBalance() { ... }

then this method can be used in the specification instead of the field
balance.

• Note that for pure methods, the assignable clause is implicitly
assignable \nothing

Assert clauses
• The requires clauses are used to specify conditions that should

hold just before a method execution, i.e., preconditions

• The ensures clauses are used to specify conditions that should hold
just after a method execution, i.e., postconditions

• An assert clause can be used to specify a condition that should hold
at some point in the code (rather than just before or right after a
method execution)

if (i <= 0 || j < 0) {
...

} else if (j < 5) {
//@ assert i > 0 && 0 < j && j < 5;
...

} else {
//@ assert i > 0 && j > 5;
...

}

Assert in JML

• Although assert is also a part of Java language, assert in JML is more
expressive

for (n = 0; n < a.length; n++)
if (a[n]==null) break;

/*@ assert (\forall int i; 0 <= i && i < n;
@ a[i] != null);
@*/

JML Tools

• There are tools for parsing and typechecking Java programs and their JML

annotations

– JML compiler (jmlc)

• There are tools for supporting documentation with JML

– HTML generator (jmldoc)

• There are tools for runtime assertion checking:

– Test for violations of assertions (pre, postconditions, invariants) during

execution

– Tool: jmlrac

• There are testing tools based on JML

– JML/JUnit unit test tool: jmlunit

• Extended static checking:

– Automatically prove that contracts are never violated at any execution

– Automatic verification is done statically (i.e., at compile time).

– Tool: ESC/Java

