Lecture 7: Hoare Logic and Weakest Preconditions
class BankAccount {
 int: balance;
 //@ invariant balance >= 0;

 withdraw(int: i) {
 //@ requires balance >= i and i >= 0;
 balance = balance - i;
 //@ ensures balance == \old(balance) - i;
 }

deposit(int: i) {
 //@ requires i >= 0;
 balance = balance + i;
 //@ ensures balance == \old(balance) + i;
}

boolean isEmpty() {
 return balance == 0;
 //@ ensures result == (balance == 0);
}
}
class BankAccount {
 int: balance;

 withdraw(int: i) {
 int oldbalance = balance;
 assert(balance >= i and i >= 0);
 balance = balance - i;
 assert(balance == oldbalance - i);
 }

 deposit(int: i) {
 int oldbalance = balance;
 assert(i >= 0);
 balance = balance + i;
 assert(balance == oldbalance + i);
 }

 boolean isEmpty() {
 boolean result = (balance == 0);
 assert (result == (balance == 0));
 return result;
 }
}

Question: Where do we put the class invariant?
Answer: Add as a conjunction to pre and post-conditions
Dynamic Contract Monitoring

• We can do dynamic contract monitoring for such specifications using tools such as JContractor and Jass

• When the contract fails we know that there is an error in the implementation
 – We can identify who is responsible for the contract violation (i.e., the caller or the callee)

• Note that the contract monitoring is dynamic, i.e., it is done during the program execution
 – If we do not observe a contract violation for a set of executions, that does not mean that a contract violation will never happen.

• But some of the implementation code is so close to the pre and post-conditions specified in the contract, it looks like we should be able to prove that the implementation is correct with respect to the contract
 – Proving the implementation correct with respect to the contract means proving that there will never be a contract violation for any execution of the program!
Example

- Here is the question:
 - If we assume that the pre-condition holds, then does the implementation guarantee that the post-condition is satisfied?
 - I.e., if the pre-condition holds, then is it guaranteed that the assertion that checks the post-condition will not cause an assertion failure?

```c
withdraw(int: i) {
    int oldbalance = balance;
    assert(balance >= i and i >= 0);
    balance = balance - i;
    assert(balance == oldbalance - i);
}
```

these are the assertions that come from the contract specification

this is the implementation part
Hoare Logic and Weakest Preconditions

- Hoare Logic and Weakest Preconditions are formalisms which can be used to answer such questions

- The material in the following slides is mostly from the following papers:
Correctness

• How can we reason about the correctness of programs?
 – Use mathematics!
• We know what correctness means mathematically
 – For example:
 • $5 = 2 + 2$ is incorrect
 • $3 = 2 + 1$ is correct
 • $\forall x, \exists y, y = x + 1$ is correct for integers
 • $\exists x, \exists y, \exists z, x^4 = y^4 + z^4 \land x \neq 0$ is incorrect for integers
• So, what does correctness mean?
 – A mathematical statement about integers is correct if it can be inferred from the axioms defining integers
 • Showing this is called a proof
 – If we can show that the negation of a statement is correct, then we know that the statement is incorrect
What about Programs?

• Then the question becomes
 – Can we develop a mathematical framework for proving correctness of programs?
 – And the answer is yes.
 – But it is not very easy to do the proofs by hand.
 – And it is not possible to automate the proofs in general.
Reasoning About Programs

- Mathematical formalisms do not immediately translate to reasoning about programs
 - Integer arithmetic used in programs is different
 - Is $\forall x, \exists y, y = x + 1$ true for integer constants in a program?
 - No, because we will eventually get to MAXINT and get overflow

- We can still formalize mathematical rules about the programs
 - This is what the semantics of the programming language is supposed to do
 - Semantics of programming languages are complicated:
 - variables, assignments, arrays, pointers, procedures, parameter passing, object classes, inheritance, concurrency, etc.
Reasoning about program segments

• Reasoning about a program as a whole could be very complicated due to
 – procedure calls, parameter passing, recursion, dynamic memory allocation, etc.
• Let’s focus on simple program segments
 – Sequences of assignments, loops etc. without procedure calls
• Note that, the example we had earlier suggests a form of modularization for checking correctness for procedures
 – To show the correctness of a procedure, show that when the precondition holds, the post-condition always holds after executing the procedure
 – Then we also have to show that whenever the procedure is called its precondition is established. We can check that by inserting assertions to the procedure call sites.
Assertions

- We can use logical assertions to state properties about variables of a program
 - Assertion $x > y$ (where x and y are integer variables) is true if the value of x is greater than value of y
 - Assertion $x+y=C$ is (x, y integer variables, C an integer constant) is true if addition of the values of variables x and y is equal to the constant C
 - $\forall i, \ 0 \leq i < A.length, A[i] = 0$ is true if all members of the integer array A have the value 0
• We can use assertions to reason about the correctness of program segments

• Hoare Logic formalizes this idea

• An Hoare triple is in the following form:
 – \{P\} S \{Q\}
 where P and Q are assertions, and S is a program segment

• \{P\} S \{Q\} means “if we assume that P holds before S starts executing, then Q holds at the end of the execution of S”
 – I.e., if we assume P before execution of S, Q is guaranteed after execution of S
Example Hoare triples

• Correct Hoare triples (i.e., we can prove them)
 - \{x=0\} \ x:=x+1 \ \{x=1\}
 - \{x+y=5\} \ x:=x+5; \ y:=y-1 \ \{x+y=9\}
 - \{x+y=C\} \ x:=x+5; \ y:=y-1 \ \{x+y=C+4\} where C is a place holder for any integer constant, i.e., it is equivalent to
 • \forall C, \{x+y=C\} \ x:=x+5; \ y:=y-1 \ \{x+y=C+4\}
 - \{x>C\} \ x:=x+1 \ \{x>C+1\}
 - \{x>C\} \ x:=x+1 \ \{x>C\} \\

• Incorrect Hoare triples
 - \{x=1\} \ x:=x+1 \ \{x=1\}
 - \{x+y=C\} \ x:=x+1; \ y:=y-1 \ \{x+y=C+1\}
What about our example?

Here is the Hoare triple for the procedure body of the withdraw method:
\[
\{ \text{balance} \geq i \land i \geq 0 \land \text{balance}=\text{oldbalance} \land \text{balance} \geq 0 \}
\]
balance := balance – i
\[
\{ \text{balance} = \text{oldbalance} – i \land \text{balance} \geq 0 \}
\]

Here is the Hoare triple for the procedure body of the deposit method:
\[
\{ i \geq 0 \land \text{balance}=\text{oldbalance} \land \text{balance} \geq 0 \}
\]
balance := balance + i
\[
\{ \text{balance} = \text{oldbalance} + i \land \text{balance} \geq 0 \}
\]

If we can PROVE the above Hoare triples, then that means that we proved the implementation of the withdraw and deposit methods
Partial vs. Total Correctness

- I use the notation
 - \{P\} S \{Q\}
- instead of the original notation in Hoare’s paper
 - P \{S\} Q

- Some researchers differentiate the meaning of these notations
 - \{P\} S \{Q\} means total correctness:
 - If we assume that P holds before S starts executing, then S terminates and Q holds at the end of the execution of S
 - P \{S\} Q means partial correctness:
 - If we assume that P holds before S starts executing and if S terminates then Q holds at the end of the execution of S
Proving properties of program segments

• How can we prove that:
 – \{x=0\} x:=x+1 \{x=1\} is correct?

• We need an axiom which explains what assignment does

• First, we will need more notation

• We need to define the substitution operation
 – Let \(P[x \leftarrow \text{exp}] \) denote the assertion obtained from \(P \) by replacing every appearance of \(x \) in \(P \) by the value of the expression \(\text{exp} \)

• Examples
 – \(x=0[x \leftarrow 0] \equiv 0=0 \)
 – \(x+y=z[x \leftarrow 0] \equiv 0+y=z \equiv y=z \)

I am using “≡” to denote equivalence between assertions
Axiom of Assignment

• Here is the **axiom of assignment**:
 – \(\{P[x←exp]\} x:=exp \{P\} \)
 • where \(\text{exp} \) is a simple expression (no procedure calls in \(\text{exp} \))
 that has no side effects (evaluating the expression does not
 change the state of the program)

• Now, let’s try to prove
 – \(\{x=0\} x:=x+1 \{x=1\} \)
 – We have
 – \(\{x=1[x←x+1]\} x:=x+1 \{x=1\} \) (by axiom of assignment)
 \(\equiv \{x+1=1\} x:=x+1 \{x=1\} \) (by definition of the substitution
 operation)
 \(\equiv \{x=0\} x:=x+1 \{x=1\} \) (arithmetic manipulation, i.e., by some
 axiom of arithmetic)
 • This is the end of our proof, we showed that the Hoare triple
 \(\{x=0\} x:=x+1 \{x=1\} \) follows from the axiom of assignment
Axiom of Assignment

• Another example
 – \{x \geq 0\} x := x + 1 \{x \geq 1\}
 – We have
 \{x \geq 1[x \leftarrow x + 1]\} x := x + 1 \{x \geq 1\} (by axiom of assignment)
 \equiv \{x + 1 \geq 1\} x := x + 1 \{x \geq 1\} (by definition of the substitution operation)
 \equiv \{x \geq 0\} x := x + 1 \{x \geq 1\} (arithmetic manipulation, i.e., by some axiom of arithmetic)
Justification for the Axiom of Assignment

• Axiom assignment: \(\{P[x\leftarrow \text{exp}]\} x:=\text{exp} \ {P} \)

• Let us write the assignment using equality and primed variables:
 \(x' = \text{exp} \)

where \(x \) denotes the value of variable \(x \) before the assignment, and \(x' \)
denotes the value of the variable \(x \) after the assignment

• Then we can consider the assignment and the property \(P \) as a
 conjunction if we replace every appearance of \(x \) in \(P \) with \(x' \)
 \(x' = \text{exp} \land P[x \leftarrow x'] \)

• Then we have:
 \(x' = \text{exp} \land P[x \leftarrow x'] \Rightarrow (P[x \leftarrow x'])[x' \leftarrow \text{exp}] \)

• For example:
 \(x:=x+1 \ \{x=1\} \) becomes:
 \(x'=x+1 \land x'=1 \)
 \(x'=x+1 \land x'=1 \Rightarrow x+1 = 1 \equiv x=0 \)
Rules of Inference

• Once we prove a Hoare triple we may want to use it to prove other Hoare triples

• If we already proved \(\{x=0\} \ x:=x+1 \{x=1\} \), then we should be able to conclude that \(\{x=0\} \ x:=x+1 \{x>0\} \) also holds

• Here is the general rule (**rule of consequence 1**)
 - If \(\{P\}S\{Q\} \) and \(Q \Rightarrow R \) then we can conclude \(\{P\}S\{R\} \)

• This rule means that once you prove a post-condition, you can always infer a weaker post-condition

• Example:
 - \(\{x=0\} \ x:=x+1 \{x=1\} \) and \(x=1 \Rightarrow x>0 \)
 - hence, we conclude \(\{x=0\} \ x:=x+1 \{x>0\} \)
Rules of Inference

• If we already proved \(\{x \geq 0\} \ x := x + 1 \ {x \geq 1}\), then we should be able to conclude \(\{x \geq 5\} \ x := x + 1 \ {x \geq 1}\)

• Here is the general rule (rule of consequence 2)
 – If \(\{P\}S\{Q\} \) and \(R \Rightarrow P \) then we can conclude \(\{R\}S\{Q\}\)

• This rule means that once you prove a pre-condition assumption, you can always infer a stronger pre-condition assumption

• Example
 – \(\{x \geq 0\} \ x := x + 1 \ {x \geq 1}\) and \(x \geq 5 \Rightarrow x \geq 0\)
 • hence, we conclude \(\{x \geq 5\} \ x := x + 1 \ {x \geq 1}\)
Back to Our Example

Proving the implementation of the withdraw method:
\[
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \} \text{[balance} \leftarrow \text{balance} - i] \}
\]

balance := balance – i
\[
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \} \text{ (by axiom of assignment)}
\]

≡ \{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \}

balance := balance – i
\[
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \} \text{ (by definition of the substitution operation)}
\]

≡ \{ \text{balance} = \text{oldbalance} \land \text{balance} \geq 0 \land i \geq 0 \}

balance := balance – i
\[
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \} \text{ (arithmetic manipulation)}
\]

≡ \{ \text{balance} = \text{oldbalance} \land \text{balance} \geq 0 \land i \geq 0 \}

balance := balance – i
\[
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \} \text{ (rule of consequence 1)}
\]

≡ \{ \text{balance} = \text{oldbalance} \land \text{balance} \geq 0 \land i \geq 0 \land \text{balance} \geq 0 \}

balance := balance – i
\[
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \} \text{ (rule of consequence 2)}
\]
Rule of Sequential Composition

• Program segments can be formed by sequential composition
 – \(x:=x+5; y:=y-1 \) is sequential composition of two assignment statements \(x:=x+5 \) and \(y:=y-1 \)
 – \(x:=x+5; y:=y-1; t:=0 \) is a sequential composition of the program segment \(x:=x+5; y:=y-1 \) and the assignment statement \(t:=0 \)

• How do we reason about sequences of program statements?

• Here is the inference rule of sequential composition
 – If \(\{P\} S_1 \{Q\} \) and \(\{Q\} S_2 \{R\} \) then we can conclude that \(\{P\} S_1; S_2 \{R\} \)
Example: Swap

- Let’s try to prove a swap operation based on what we learned
 - Here is the program segment for swap:
 \[t := x; \ x := y; \ y := t \]

- Let’s assume that \(x = A \land y = B \) holds before we start executing the swap segment.

- If swap is working correctly we would like \(x = B \land y = A \) to hold at the end of the swap (note that we did not restrict the values \(A \) and \(B \) in any way)

- Let’s apply the axiom of assignment twice
 - \(\{ x = B \land y = A [y \leftarrow t] \} \ y := t \ { x = B \land y = A } \)
 \[\equiv \{ x = B \land t = A \} \ y := t \ { x = B \land y = A } \]
 - \(\{ x = B \land t = A [x \leftarrow y] \} \ x := y \ { x = B \land t = A } \)
 \[\equiv \{ y = B \land t = A \} \ x := y \ { x = B \land t = A } \]
Example: Swap

- Now since we have
 - \{y=\text{B} \land t=\text{A}\} x:=y \ {x=\text{B} \land t=\text{A}} \text{ and } \{x=\text{B} \land t=\text{A}\} y:=t \ {x=\text{B} \land y=\text{A}},
 - using the rule of sequential composition we get:
 - \{y=\text{B} \land t=\text{A}\} x:=y; y:=t \ {x=\text{B} \land y=\text{A}}

- Let’s apply the axiom of assignment once more
 - \{y=\text{B} \land t=\text{A}[t←x]\} t:=x \ {y=\text{B} \land t=\text{A}}
 \equiv \{y=\text{B} \land x=\text{A}\} t:=x \ {y=\text{B} \land t=\text{A}}

- Using the rule of sequential composition once more
 \{y=\text{B} \land x=\text{A}\} t:=x \ {y=\text{B} \land t=\text{A}} \text{ and } \{y=\text{B} \land t=\text{A}\} x:=y; y:=t \ {x=\text{B} \land y=\text{A}}
 \Rightarrow \{y=\text{B} \land x=\text{A}\} t:=x; x:=y; y:=t \ {x=\text{B} \land y=\text{A}}
Inference rule for conditionals

• There are two inference rules for conditional statements, one for if-then and one for if-then-else statements.

• For if-then-else statements the rule is (rule of conditional 1)
 – If \{P \land B\} S_1 \{Q\} and \{P \land \neg B\} S_2 \{Q\} hold then we conclude that \{P\} if B then S_1 else S_2 \{Q\}.

• For if-then statements the rule is (rule of conditional 2)
 – If \{P \land B\} S \{Q\} and P \land \neg B \implies Q hold then we conclude that \{P\} if B then S \{Q\}.
Example for conditionals

Here is an example

- if (x > y) max := x else max := y
- We want to prove
- \{\text{True}\} if (x > y) max := x else max := y \{\text{max} \geq x \land \text{max} \geq y\}

\{\text{max} \geq x \land \text{max} \geq y[\text{max} \leftarrow x]\} max := x \{\text{max} \geq x \land \text{max} \geq y\} (\text{r.assign.})

\equiv \{x \geq x \land x \geq y\} max := x \{\text{max} \geq x \land \text{max} \geq y\} (\text{definition of subs.})

\equiv \{\text{True} \land x \geq y\} max := x \{\text{max} \geq x \land \text{max} \geq y\} (\text{some axiom of arith.})

\equiv \{x \geq y\} max := x \{\text{max} \geq x \land \text{max} \geq y\} (\text{some axiom of logic})

\equiv \{x > y\} max := x \{\text{max} \geq x \land \text{max} \geq y\} (\text{r. of cons. 2})
Example for conditionals

\{\text{max} \geq x \land \text{max} \geq y[\text{max} \leftarrow y]\} \ 	ext{max} := y \ \{\text{max} \geq x \land \text{max} \geq y\} \ (r.\text{assign.})

\equiv \ \{y \geq x \land y \geq y\} \ 	ext{max} := y \ \{\text{max} \geq x \land \text{max} \geq y\} \ (\text{definition of subs.})

\equiv \ \{y \geq x \land \text{True}\} \ 	ext{max} := y \ \{\text{max} \geq x \land \text{max} \geq y\} \ (\text{some axiom of arith.})

\equiv \ \{y \geq x\} \ 	ext{max} := y \ \{\text{max} \geq x \land \text{max} \geq y\} \ (\text{some axiom of logic})

\equiv \ \{\neg x > y\} \ 	ext{max} := y \ \{\text{max} \geq x \land \text{max} \geq y\} \ (\text{some axiom of logic})

So we proved that \{x > y\} \ 	ext{max} := x \ \{\text{max} \geq x \land \text{max} \geq y\} \ and
\{\neg x > y\} \ 	ext{max} := y \ \{\text{max} \geq x \land \text{max} \geq y\} \ then \ we \ can \ use \ the \ rule \ of \ conditional \ 1
and \ conclude \ that:
\{\text{True}\} \ if \ (x > y) \ \text{max} := x \ else \ \text{max} := y \ \{\text{max} \geq x \land \text{max} \geq y\}
What about the loops?

- Here is the inference rule (rule of iteration) for while loops:
 - If \(\{P \land B\} S \{P\} \) then we can conclude that
 \(\{P\} \) while B do S \(\{\neg B \land P\} \)

- This is what the inference rule for while loop is saying:
 - If you can show that every iteration of the loop preserves the property P,
 - and you know that the property holds before you start executing the loop,
 - then you can conclude that the property holds at the termination of the loop.
 - Also the loop condition will not hold at the termination of the loop (otherwise the loop would not terminate).
Loop invariants

• Given a loop
 – while B do S
 – Any assertion P which satisfies \(\{P \land B\} \ S \ \{P\} \) is called a loop invariant

• A loop invariant is an assertion such that, every iteration of the loop body preserves it
 – We write this as a Hoare triple as \(\{P \land B\} \ S \ \{P\} \)

• Note that rule of iteration given in the previous slide is for partial correctness
 – It does not guarantee that the loop will terminate
Example

• Here is an example loop
 while (y <= r) do (r:=r−y; q:=q+1)

• Let’s pick P as r+y×q=A where A is an integer value

\[
\begin{align*}
\{ r+y \times (q+1) = A \} & \quad q := q + 1 \quad \{ r+y \times q = A \} \text{ (by axiom of assignment)} \\
\{ r-y + y \times (q+1) = A \} & \quad r := r-y \quad \{ r+y \times (q+1) = A \} \text{ (by axiom of assignment)} \\
\{ r+y \times q = A \} & \quad r := r-y; \quad q := q+1 \quad \{ r+y \times q = A \} \text{ (by sequential composition rule)} \\
\{ r+y \times q = A \land (y \leq r) \} & \quad r := r-y; \quad q := q+1 \quad \{ r+y \times q = A \} \text{ (by rule of consequence 2)} \\
\{ r+y \times q = A \} & \quad \text{while } (y \leq r) \text{ do } (r := r-y; \quad q := q+1) \quad \{ \neg (y \leq r) \land r+y \times q = A \} \text{ (by rule of iteration)}
\end{align*}
\]
Using the rule of iteration

- To prove that a property Q holds after the loop while B do S terminates, we can use the following strategy
 - Find a strong enough loop invariant P such that:

 \((\neg B \land P) \Rightarrow Q\)
 - Show that P is a loop invariant: \(\{P \land B\} S \{P\}\)
 - If we can show that P is a loop invariant, we get
 \(\{P\} \text{ while } B \text{ do } S \{\neg B \land P\}\)
 - Since we had \((\neg B \land P) \Rightarrow Q\), using the rule of consequence 1, we get
 \(\{P\} \text{ while } B \text{ do } S \{Q\}\)
Example

• Consider the following program segment:
 sum:=0; i:=1; while (i <=10) do (sum:=sum+i; i:=i+1)

• We want to prove that Q ≡ sum=∑_{0 ≤ k ≤ 10} k
 holds at the loop termination, i.e., we want to prove the Hoare triple:

 {true} sum:=0; i:=0; while (i <=10) do (sum:=sum+i; i:=i+1) {Q}

• We need to find a strong enough loop invariant P
• Let’s choose P as follows:
 P ≡ i ≤ 11 ∧ sum=∑_{0 ≤ k<i} k
Example

- To use the rule of iteration we need to show \(\{P \land B\} \xrightarrow{S} \{P\} \) where
 - \(P \equiv i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k \)
 - \(S: \text{sum} := \text{sum} + i; \ i := i + 1 \)
 - \(B \equiv i \leq 10 \)

- Using the rule of assignment we get:

\[
\begin{align*}
\{ i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k [i \leftarrow i + 1] \} & \xrightarrow{i := i + 1} \{ i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k \} \\
\equiv \{ i + 1 \leq 11 \land \text{sum} = \sum_{0 \leq k < i + 1} k \} & \xrightarrow{i := i + 1} \{ i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k \} \\
\equiv \{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i + 1} k \} & \xrightarrow{i := i + 1} \{ i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k \}
\end{align*}
\]
Example

Using the rule of assignment one more time:

\[\{ i \leq 10 \land \text{sum}=\sum_{0 \leq k < i+1} k [\text{sum} \leftarrow \text{sum}+i] \} \text{sum:=sum+i} \{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i} k \} \]

\[\equiv \{ i \leq 10 \land \text{sum+i}=\sum_{0 \leq k < i+1} k \} \text{sum:=sum+i} \{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i+1} k \} \]

\[\equiv \{ i \leq 10 \land \text{sum}=\sum_{0 \leq k < i} k \} \text{sum:=sum+i} \{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i+1} k \} \]

Using the rule of sequential composition we get:

\[\{ i \leq 10 \land \text{sum}=\sum_{0 \leq k < i} k \} \text{sum:=sum+i}; \ i:=i+1 \{ i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k \} \]
Example

• Note that

\[P \land B \equiv (i \leq 11 \land \text{sum}=\sum_{0 \leq k<i} k) \land (i \leq 10) \equiv i \leq 10 \land \text{sum}=\sum_{0 \leq k<i} k \]

\[P \land \neg B \equiv (i \leq 11 \land \text{sum}=\sum_{0 \leq k<i} k) \land \neg (i \leq 10) \]

\[\equiv i \leq 11 \land i > 10 \land \text{sum}=\sum_{0 \leq k<i} k \equiv i = 11 \land \text{sum}=\sum_{0 \leq k<i} k \]

\[\equiv \text{sum}=\sum_{0 \leq k<11} k \]

• Using the rule of iteration we get:

\[\{i \leq 11 \land \text{sum}=\sum_{0 \leq k<i} k\} \text{ while } (i \leq 10) \text{ do } (\text{sum}:=\text{sum}+i; i:=i+1) \{\text{sum}=\sum_{0 \leq k<11} k\} \]
Example

• To finish the proof, apply rule of assignment

\[\{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k[i \leftarrow 1]\} \ i := 1\{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k\} \]
\[\equiv \{1 \leq 11 \land \text{sum} = \sum_{0 \leq k < 1} k\} \ i := 1\{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k\} \]
\[\equiv \{\text{sum}=0\} \ i := 1\{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k\} \]

Another rule of assignment application

\{\text{sum}=0 \ [\text{sum} \leftarrow 0]\} \ \text{sum} := 0 \ \{\text{sum}=0\} \]
\{0=0\} \ \text{sum} := 0 \ \{\text{sum}=0\} \]
\{\text{true}\} \ \text{sum} := 0 \ \{\text{sum}=0\} \]
Example

- Finally, combining the previous results with rule of sequential composition we get:

\[
\{ \text{true} \} \; \text{sum:=0; } i:=0; \text{ while (i <=10) do (sum:=sum+i; i:=i+1) } \{ \text{sum=}\sum_{0\leq k \leq 10} k \}
\]
Difficulties in Proving Programs Correct

• Finding a loop invariant that is strong enough to prove the property that we are interested in can be difficult

• Also, note that we did not prove that the loop will terminate
 – To prove total correctness we also have to prove that the loop terminates

• Things get more complicated when there are procedures and recursion
Difficulties in Proving Programs Correct

• Hoare Logic is a formalism for reasoning about correctness about programs

• Developing proof of correctness using this formalism is another issue

• In general proving correctness about programs is uncomputable
 – For example determining that a program terminates is uncomputable

• This means that there is no automatic way of generating these proofs

• Still Hoare’s formalism is useful for reasoning about programs
Weakest Preconditions

• Dijkstra added another tool to Hoare’s formalism called **weakest precondition**.
 – It is another useful tool in reasoning about programs

• Given an assertion Q and a program segment S weakest precondition of S with respect to Q written wp(S,Q) is defined as:
 – the weakest condition such that if S starts executing in a state which satisfies that condition, when it terminates it is guaranteed that Q will hold.

• Note that the Hoare triple \{P\}S{Q} is correct if and only if P⇒wp(S,Q)
 – this is why it is called the weakest precondition, every other assertion P where we can show \{P\}S{Q} implies (i.e., is stronger than) wp(S,Q)
Weakest Preconditions

• Dijkstra calls $wp(S,Q)$ a predicate transformer
 – $wp(S,Q)$ takes a predicate (assertion, same thing) Q and a program segment S, and transforms it to another predicate that corresponds to the weakest precondition of S with respect to Q

• For example, for simple assignments $x:=\text{exp}$ (where exp is a simple expression with no procedure calls and no side effects) we already know the predicate transformer:
 – $wp(x:=\text{exp},Q) = Q[x←\text{exp}]$
 • where exp is a simple expression (no procedure calls in exp) that has no side effects (evaluating the expression does not change the state of the program)
Some rules about weakest preconditions

- If $P \implies Q$ then $\text{wp}(S, P) \implies \text{wp}(S, Q)$

- $\text{wp}(S, P) \land \text{wp}(S, Q) \equiv \text{wp}(S, P \land Q)$

- $\text{wp}(S, P) \lor \text{wp}(S, Q) \equiv \text{wp}(S, P \lor Q)$

- $\text{wp}(S_1 ; S_2 , P) \equiv \text{wp}(S_1, \text{wp}(S_2, P))$

- $\text{wp}(\text{if } B \text{ then } S_1 \text{ else } S_2 , P) \equiv (B \implies \text{wp}(S_1, P)) \land (\neg B \implies \text{wp}(S_2, P))$

- $\text{wp}(\text{if } B \text{ then } S_1 , P) \equiv (B \implies \text{wp}(S_1, P)) \land (\neg B \implies P)$
Examples

- \(wp(x:=x+1, x \geq 1) \)
 \[\equiv x \geq 1[x \leftarrow x+1] \]
 \[\equiv x+1 \geq 1 \]
 \[\equiv x \geq 0 \]

- \(wp(x:=x+1; x:=x+2, x < 10) \)
 \[\equiv wp(x:=x+1, wp(x:=x+2, x < 10)) \]
 \[\equiv wp(x:=x+1, x < 10[x \leftarrow x+2]) \]
 \[\equiv wp(x:=x+1, x+2 < 10) \]
 \[\equiv wp(x:=x+1, x < 8) \]
 \[\equiv x < 8[x \leftarrow x+1] \]
 \[\equiv x+1 < 8 \]
 \[\equiv x < 7 \]
Examples

• \(wp(\text{if } (x > y) \text{ max:=}x \text{ else max:=}y, \text{ max} \geq x \land \text{max} \geq y) \)
 \[\equiv (x > y \implies wp(\text{max:=}x, \text{max} \geq x \land \text{max} \geq y)) \land (\neg (x > y) \implies wp(\text{max:=}y, \text{max} \geq x \land \text{max} \geq y)) \]
 \[\equiv (x > y \implies \text{max} \geq x \land \text{max} \geq y) \land (x \leq y \implies \text{max} \geq x \land \text{max} \geq y) \]
 \[\equiv (x > y \implies x \geq y) \land (x \leq y \implies y \geq x) \]
 \[\equiv \text{true} \]
Loops

• Loops are more complicated

• We want to compute $wp(\text{while } B \text{ do } S, P)$

• We will need the following definitions:
 – Let $H_0(P) \equiv \neg B \land P$
 – Let (for $k > 0$) $H_k(P) \equiv wp(\text{if } B \text{ then } S, H_{k-1}(P)) \lor H_0(P)$

• *Intuition*: $H_k(P)$ is the weakest precondition for the case that the loop body is executed less than or equal to k times
Loops

• One can show that the weakest precondition is the (infinite) disjunction of the iterates $H_0(P)$, $H_1(P)$, $H_2(P)$, ...:

 $\text{wp(while } B \text{ do } S, P) \equiv H_0(P) \lor H_1(P) \lor H_2(P) ...$

• Equivalently (by replacing the infinite disjunction with existential quantification, we get):

 $\text{wp(while } B \text{ do } S, P) \equiv \exists m, m \geq 0, H_m(P)$

• Intuition: The weakest precondition states that there exists an m where the loop will iterate at most m times, and the weakest precondition of the loop is the weakest precondition that corresponds to iterating the loop m times or less
Loops

• One can show that, if there is an n where $H_n(P) \equiv H_{n-1}(P)$ then

 – $H_0(P) \lor H_1(P) \lor H_2(P) \ldots \equiv H_n(P)$

• Hence, if we can find an n where $H_n(P) \equiv H_{n-1}(P)$ then

 – $wp(\text{while } B \text{ do } S, P) \equiv H_n(P)$

 – However, there may not be an n where $H_n(P) \equiv H_{n-1}(P)$
Loops: Example

- Assume that we want to compute the following weakest precondition
 \[\text{wp(while (i} \leq 10 \text{) do i} \leftarrow i+1, \text{ i=11)} \]

\[H_0(i=11) \equiv i>10 \land i=11 \equiv i=11 \]

\[H_1(i=11) \equiv \text{wp(if}(i \leq 10 \text{) then i} \leftarrow i+1, \text{ i=11) } \lor i=11 \]
 \[\equiv i=10 \lor i=11 \]

\[H_2(i=11) \equiv i=9 \lor i=10 \lor i=11 \]

\[H_3(i=11) \equiv i=8 \lor i=9 \lor i=10 \lor i=11 \]
...

We can see that, \[H_k(i=11) \equiv \lor_{0 \leq j \leq k} i = 11 - j \]

Note that, for each \(k \), \[H_k(i=11) \Rightarrow H_{k-1}(i=11) \]
Remember, we said that the weakest precondition can be written as an infinite disjunction of the iterates:

\[wp(\text{while } (i \leq 10) \text{ do } i := i + 1, i = 11) \equiv H_0(i=11) \lor H_1(i=11) \lor H_2(i=11) \ldots \]

and that the infinite disjunction is equivalent to

\[wp(\text{while } (i \leq 10) \text{ do } i := i + 1, i = 11) \equiv \exists m, m \geq 0, H_m(i=11) \]

\[\equiv \exists m, m \geq 0, \bigvee_{0 \leq j \leq m} i = 11 - j \equiv \exists m, m \geq 0, 11 - m \leq i \leq 11 \]

\[\equiv \exists m, m \geq 0 \land 11 - m \leq i \land i \leq 11 \equiv i \leq 11 \]
Loops: Fixpoint

• Note that \(i \leq 11 \) is a **fixpoint** of the iterative definition for the weakest precondition in this example.

The iterative definition was:

 \[H_k (i=11) \equiv wp(while (i\leq10) do i:=i+1, H_{k-1}(i=11)) \lor H_0(i=11) \]

 where \(H_0(i=11) \equiv i>10 \land i=11 \equiv i = 11 \)

• What does fixpoint mean?

 – It means that, if we set \(H_{k-1}(i=11) \equiv i \leq 11 \) we will get \(H_k \equiv H_{k-1} \)

• Let’s try:

 \[H_k \equiv wp(if(i\leq10) then i:=i+1, i \leq 11) \lor i = 11 \]

 \[\equiv i \leq 10 \lor i = 11 \equiv i \leq 11 \]

 We see that, \(H_k \equiv H_{k-1} \equiv i \leq 11 \).
• Actually, $i \leq 11$ is the **least fixpoint** of the iterative definition for the weakest precondition in this example.

• What does it mean that $i \leq 11$ is the least fixpoint of the iterative definition?
 – It means that for any other predicate P which is the fixpoint of the iteration $i \leq 11 \Rightarrow P$

• For example, $i \leq 12$ is also a fixpoint of the iterative definition for the weakest precondition in this example, however it is not the least fixpoint since $i \leq 12 \nRightarrow i \leq 11$
 – Note that, “true” is also a fixpoint of the iterative definition for the weakest precondition in this example

• Weakest precondition if the least fixpoint of the iterative definition
Loops: A Non-terminating Example

• We can check termination using weakest preconditions
 – To check termination set the post-condition to “true”

• Let’s look at the following loop: while (i <= i) do i:=i+1
 – Let’s compute, \(wp(while \ (i <= i) \ do \ i:=i+1, \ true) \)
 \[
 H_0(i=11) \equiv i > i \land true \equiv false
 \]
 \[
 H_1(i=11) \equiv wp(if(i<=i) \ then \ i:=i+1, \ false) \lor false
 \]
 \[
 \equiv false
 \]
 – Hence, \(wp(while \ (i <= i) \ do \ i:=i+1, \ true) \equiv false \)
 • i.e., the loop does not terminate

• Remember that halting problem is undecidable
 – We cannot automatically compute weakest preconditions