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Specifications

• We saw several specification techniques/languages
– object oriented design models

• UML + OCL
– data models

• Alloy
– contracts for classes

• JML

• All these specification techniques help software developers to 
document the design decisions at a higher level of abstraction than 
the code



Specifications

• There is one problem with software specifications 
– Software developers do not like to write them!

• I personally believe that it is all about cost/benefit ratio
– If there is enough benefit in writing specifications

• reduced development time, more reliable programs, etc.
– then people will write specifications

• Maybe current tools and techniques used in software development do 
not provide enough benefit for writing specifications
– This may change in the future based on all the techniques and 

tools we discussed in this course 



Lack of Specifications
• However, the fact remains, there is a lot of code out there with no 

specifications
– maybe even no comments

• What should we do about them?

• You may say “Why do I care? I write detailed specifications when I 
develop software.”
– There may be some code written by somebody else that you need 

to maintain, modify, or reuse
• none of the original developers may still be around
• there may not be any specifications
• the specifications may not have been maintained with the 

software 



Reverse Engineering
• Reverse engineering is the process of analyzing a subject system 

– to identify the system’s components and their inter-relationships, 
and

– to create representations of the system in another form or at a 
higher level of abstraction

• Examples
– Producing call graphs or control flow graphs from the source code
– Generating class diagrams from the source code

• Two types of reverse engineering
– Redocumentation: the creation or revision of a semantically 

equivalent representation within the same relative abstraction 
layer

– Design recovery: involves identifying meaningful higher level 
abstractions beyond those obtained directly by examining the 
system itself



Reverse Engineering

• The main goal is to help with the program comprehension

• Most of the time reverse engineering makes up for lack of good 
documentation



Dynamically Discovering Likely Invariants
• Today I will talk about a particular reverse engineering approach

• References
– ``Dynamically discovering likely program invariants to support 

program evolution,’’Michael D. Ernst, Jake Cockrell, William G. 
Griswold, and David Notkin. IEEE Transactions on Software 
Engineering, vol. 27, no. 2, Feb. 2001, pp. 1-25.

– ``Quickly detecting relevant program invariants,’’Michael D. 
Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 
ICSE 2000, Proceedings of the 22nd International Conference on 
Software Engineering, pp. 449-458.

• There is also a tool which implements the techniques described in the 
above papers
– Daikon

• works on C, C++, Java, Lisp



Dynamically Discovering Likely Invariants
• The main idea is to discover likely program invariants from a given 

program

• In this work, an ``invariant’’ means an assertion that holds at a 
particular program point (not necessarily all program points)

• They discover likely program invariants 
– there is no guarantee that the discovered invariants will hold for all 

executions



Dynamically Discovering Likely Invariants

• Discovered properties are not stated in any part of the program 
– They are discovered by monitoring the execution of the program 

on a set of inputs (a test set)
– The only thing that is guaranteed is that the discovered properties 

hold for all the inputs in the test set
– No guarantee of soundness or completeness



An Example
• An example from “The Science of Programming,” by Gries, 1981

– A good references on programming using assertions, Hoare 
Logic, weakest preconditions, etc.

Program 15.1.1
// Sum array b of length n into variable s
i = 0;
s = 0;
while (i != n) {

s = s + b[i];
i = i+1;

}  

• Precondition: n ≥ 0
• Postcondition: s = (Σ j : 0 ≤ j < n : b[j])
• Loop invariant: 0 ≤ i ≤ n and s = (Σ j : 0 ≤ j < i : b[j])



An Example

• The test set used to discover invariants has 100 randomly-generated 
arrays
– Length is uniformly distributed from 7 to 13
– Elements are uniformly distributed from –100 to 100

• Daikon discovers invariants by
– running the program on this test set 
– monitoring the values of the variables



Discovered Invariants

15.1.1:::ENTER 100 samples
N = size(B) (7 values)

N in [7..13] (7 values)
B (100 values)
All elements >= -100 (200 values)

• These are the assertions that hold at the entry to the procedure
– likely preconditions

• The invariant in the box implies the precondition of the original 
program (it is a stronger condition that implies the precondition 
that N is non-negative)  

Size of the
test set

Number of
distinct values
for N 



Discovered Invariants
15.1.1:::EXIT 100 samples
N = I = orig(N) = size(B) (7 values)

B = orig(B) (100 values)
S = sum(B) (96 values)
N in [7..13] (7 values)
B (100 values)
All elements >= -100 (200 values)

• These are the assertions that hold at the procedure exit
– likely postconditions

• Note that orig(B) corresponds to Old.B in contracts



Discovered Invariants
15.1.1:::LOOP 1107 samples

N = size(B) (7 vallues)
S = sum(B[0..I-1]) (452 values)
N in [7..13] (7 values)
I in [0..13] (14 values)
I <= N (77 values)
B (100 values)

All elements in [-100..100] (200 values)
sum(B) in [-556..539] (96 values)
B[0] nonzero in [-99..96] (79 values)
B[-1] in [-88..99] (80 values)
B[0..I-1] (985 values)
All elements in [-100..100] (200 values)

N != B[-1] (99 values)
B[0] != B[-1] (100 values)

• These are the assertions that hold at the loop entry and exit
– likely loop invariants

Means 
last 
element



A Different Test Set

• Instead of using a uniform distribution for the length and the contents 
of the array an exponential distribution is used

• The expected values for the array lengths and the element values are 
same for both  test sets



Discovered Invariants
15.1.1:::ENTER 100 samples
N = size(B) (24 values)

N >= 0 (24 values)



Discovered Invariants
15.1.1:::EXIT 100 samples
N = I = orig(N) = size(B) (24 vallues)

B = orig(B) (96 values)
S = sum(B) (95 values)
N >= 0 (24 values)



Discovered Invariants
15.1.1:::LOOP 1107 samples
N = size(B) (24 vallues)

S = sum(B[0..I-1]) (858 values)
N in [0..35] (24 values)
I >= 0 (36 values)
I <= N (363 values)
B (96 values)

All elements in [-6005..7680] (784 values)
sum(B) in [-15006..21244] (95 values)
B[0..I-1] (887 values)
All elements in [-6005..7680] (784 values)



Dynamic Invariant Detection

• How does dynamic invariant generation work?

1. Run the program on a test set

2. Monitor the program execution 

3. Look for potential properties that hold for all the executions



Dynamic Invariant Detection

• Instrument the program to write data trace files
• Run the program on a test set
• Offline invariant engine reads data trace files, checks for a 

collection of potential invariants

Instrument Run Detect
Invariants

Original
Program

Test set

Data 
traces

Invariants



Inferring Invariants

• There are two issues
1. Choosing which invariants to infer
2. Inferring the invariants

• Daikon infers invariants at specific program points
– procedure entries
– procedure exits
– loop heads (optional)

• Daikon can only infer certain types of invariants
– it has a library of invariant patterns 
– it can only infer invariants which match to these patterns



Trace Values

• Daikon supports two forms of data values
– Scalar

• number, character, boolean
– Sequence of scalars

• All trace values must be converted to one of these forms

• For example, an array A of tree nodes each with left and a right child 
would be converted into two arrays 
– A.left (containing the object IDs for the left children) 
– A.right  



Invariant Patterns

• Invariants over any variable x (where a, b, c are computed constants)
– Constant value: x = a
– Uninitialized: x = uninit
– Small value set: x ∈{a, b, c}

• variable takes a small set of values

• Invariants over a single numeric variable:
– Range limits: x ≥ a, x ≤ b, a ≤ x ≤ b
– Nonzero: x ≠ 0
– Modulus: x = a (mod b)
– Nonmodulus: x ≠ a (mod b)

• reported only if x mod b takes on every value other than a



Invariant Patterns

• Invariants over two numeric variables x, y
– Linear relationship:  y = ax + b
– Ordering comparison: x < y, x ≤ y, x ≥ y, x > y, x = y, x ≠ y
– Functions: y = fn(x) or x = fn(y)

• where fn is absolute value, negation, bitwise complement
– Invariants over x+y

• invariants over single numeric variable where x+y is 
substituted for the variable

– Invariants over x-y



Invariant Patterns

• Invariants over three numeric variables
– Linear relationship: z = ax + by + c, y=ax+bz+c, x=ay+bz+c
– Functions z = fn(x,y)

• where fn is min, max, multiplication, and, or, greatest common 
divisor, comparison, exponentiation, floating point rounding, 
division, modulus, left and right shifts

• All permutations of x, y, z are tested (three permutations for 
symmetric functions, 6 permutations for asymmetric functions)



Invariant Patterns

• Invariants over a single sequence variable
– Range: minimum and maximum sequence values (based on 

lexicographic ordering)
– Element ordering: nondecreasing, nonincreasing, equal
– Invariants over all sequence elements: such as each value in an 

array being nonnegative



Invariant Patterns

• Invariants over two sequence variables: x, y 
– Linear relationship: y = ax + b, elementwise
– Comparison: x < y, x ≤ y, x ≥ y, x > y, x = y, x ≠ y (based on 

lexicographic ordering)
– Subsequence relationship: x is a subsequence of y
– Reversal: x is the reverse of y

• Invariants over a sequence x and a numeric variable y
– Membership: x ∈ y



Inferring Invariants

• For each invariant pattern
– determine the constants in the pattern
– stop checking the invariants that are falsified

• For example,
– For invariant pattern x ≥ a we have to determine the constant a
– For invariant pattern x = ay + bz + c we have to determine the 

constants a, b, c



Inferring Invariants

• Consider the invariant pattern: x = ay + bz + c
• Consider an example data trace for variables (x, y, z)

(0,1,-7), (10,2,1), (10,1,3), (0, 0,-5), (3, 1, -4), (7, 1, 1), ...
• Based on the first three values for x, y, z in the trace we can figure out 

the constants a, b, and c
0 = a -7b +c
10 = 2a + b +c
10 = a +3b + c
If you solve these equations for a, b, c you get: a=2, b=1, c=5

• The  next two tuples (0, 0,-5), (3, 1, -4) confirm the invariant
• However the last trace value (7, 1, 1) kills this invariant

– Hence, it is not checked for the remaining trace values and it is 
not reported as an invariant



Inferring Invariants

• Determining the constants for invariants are not too expensive
– For example three linearly independent data values are sufficient 

for figuring out the constants in the pattern x = ay + bz + c 
– there are at most three constants in each invariant pattern

• Once the constants for the invariants are determined, checking that 
an invariant holds for each data value is not expensive
– Just evaluate the expression and check for equality



Cost of Inferring Invariants

• The cost of inferring invariants increases as follows:
– quadratic in the number of variables at a program point (linear in 

the number of invariants checked/discovered)
– linear in the number of samples or values (test set size)
– linear in the the number of program points

• Typically a few minutes per procedure:
– 10,000 calls, 70 variables, instrument entry and exit 



Invariant Confidence

• Not all unfalsified invariants should be reported

• There may be a lot of irrelevant invariants which may just reflect 
properties of the test set

• If  a lot of spurious invariants are reported the output may become 
unreadable

• Improving (increasing) the test set would reduce the number of 
spurious invariants



Invariant Confidence

• For each detected invariant Daikon computes the probability that 
such a property would appear by chance in a random input
– If that probability is smaller than a user specified confidence 

parameter, then the property is reported

• Daikon assumes a distribution and performs a statistical test 
– It checks the probability that the observed values for the detected 

invariant were generated by chance from the distribution
– If that probability is very low, then the invariant is reported 



Invariant Confidence

• As an example, consider an integer variable x which takes values 
between r/2 and -r/2-1

• Assume that x≠0 for all test cases

• If the values of x is uniformly distributed between r/2 and -r/2-1, then 
the probability that x is not 0 is 1 – 1/r

• Given s samples the probability x is never 0 is (1-1/r)s

• If this probability is less than a user defined confidence level then x≠0 
is reported as an invariant



Derived Variables

• Looking for invariants only on variables declared in the program may 
not be sufficient to detect all interesting invariants

• Daikon adds certain derived variables (which are actually 
expressions) and also detects invariants on these derived variables 



Derived Variables

• Derived from any sequence s:
– Length: size(s)
– Extremal elements: s[0], s[1], s[size(s)-1], s[size(s)-2] 

• Daikon uses s[-1] to denote s[size(s)-1] and s[-2] to denote 
s[size(s)-2]

• Derived from any numeric sequence s:
– Sum: sum(s)
– Minimum element: min(s)
– Maximum element: max(s)



Derived Variables

• Derived from any sequence s and any numeric variable i
– Element at the index: s[i], s[i-1]
– Subsequences: s[0..i], s[0..i-1]

• Derived from function invocations: 
– Number of calls so far 



Dynamically Detecting Invariants: Summary

• Useful reengineering tool
– Redocumentation

• Can be used as a coverage criterion during testing
– Are all the values in a range covered by the test set?

• Can be helpful in detecting bugs
– Found bugs in an existing program in a case study

• Can be useful in maintaining invariants
– Prevents introducing bugs, programmers are less likely to break 

existing invariants


