Lecture 13: Dynamic Invariant Discovery
Specifications

• We saw several specification techniques/languages
 – object oriented design models
 • UML + OCL
 – data models
 • Alloy
 – contracts for classes
 • JML

• All these specification techniques help software developers to document the design decisions at a higher level of abstraction than the code
Specifications

• There is one problem with software specifications
 – Software developers do not like to write them!

• I personally believe that it is all about cost/benefit ratio
 – If there is enough benefit in writing specifications
 • reduced development time, more reliable programs, etc.
 – then people will write specifications

• Maybe current tools and techniques used in software development do not provide enough benefit for writing specifications
 – This may change in the future based on all the techniques and tools we discussed in this course
Lack of Specifications

• However, the fact remains, there is a lot of code out there with no specifications
 – maybe even no comments

• What should we do about them?

• You may say “Why do I care? I write detailed specifications when I develop software.”
 – There may be some code written by somebody else that you need to maintain, modify, or reuse
 • none of the original developers may still be around
 • there may not be any specifications
 • the specifications may not have been maintained with the software
Reverse Engineering

• Reverse engineering is the process of analyzing a subject system
 – to identify the system’s components and their inter-relationships, and
 – to create representations of the system in another form or at a higher level of abstraction

• Examples
 – Producing call graphs or control flow graphs from the source code
 – Generating class diagrams from the source code

• Two types of reverse engineering
 – Redocumentation: the creation or revision of a semantically equivalent representation within the same relative abstraction layer
 – Design recovery: involves identifying meaningful higher level abstractions beyond those obtained directly by examining the system itself
Reverse Engineering

• The main goal is to help with the program comprehension

• Most of the time reverse engineering makes up for lack of good documentation
Dynamically Discovering Likely Invariants

• Today I will talk about a particular reverse engineering approach

• References

• There is also a tool which implements the techniques described in the above papers
 – Daikon
 • works on C, C++, Java, Lisp
The main idea is to discover *likely* program *invariants* from a given program.

In this work, an ‘‘invariant’’ means an assertion that holds at a particular program point (not necessarily all program points).

They discover *likely* program invariants:
- there is no guarantee that the discovered invariants will hold for all executions.
Dynamically Discovering Likely Invariants

- Discovered properties are not stated in any part of the program
 - They are discovered by monitoring the execution of the program on a set of inputs (a test set)
 - The only thing that is guaranteed is that the discovered properties hold for all the inputs in the test set
 - No guarantee of soundness or completeness
An Example

• An example from “The Science of Programming,” by Gries, 1981
 – A good references on programming using assertions, Hoare Logic, weakest preconditions, etc.

Program 15.1.1

// Sum array b of length n into variable s
i = 0;
s = 0;
while (i != n) {
 s = s + b[i];
i = i+1;
}

• Precondition: n ≥ 0
• Postcondition: s = (∑ j : 0 ≤ j < n : b[j])
• Loop invariant: 0 ≤ i ≤ n and s = (∑ j : 0 ≤ j < i : b[j])
An Example

- The test set used to discover invariants has 100 randomly-generated arrays
 - Length is uniformly distributed from 7 to 13
 - Elements are uniformly distributed from –100 to 100

- Daikon discovers invariants by
 - running the program on this test set
 - monitoring the values of the variables
Discovered Invariants

15.1.1:::ENTER

\[
\begin{align*}
N &= \text{size}(B) \\
[N \text{ in } [7..13]] & \\
B & \\
\text{All elements } & \geq -100
\end{align*}
\]

100 samples
(7 values)
(7 values)
(100 values)
(200 values)

• These are the assertions that hold at the entry to the procedure
 – likely preconditions

• The invariant in the box implies the precondition of the original
 program (it is a stronger condition that implies the precondition
 that \(N\) is non-negative)
Discovered Invariants

15.1.1:::EXIT

100 samples

N = I = orig(N) = size(B) (7 values)

B = orig(B) (100 values)

\(S = \text{sum}(B) \) (96 values)

N in [7..13] (7 values)

B (100 values)

All elements >= -100 (200 values)

• These are the assertions that hold at the procedure exit
 – likely postconditions

• Note that orig(B) corresponds to Old.B in contracts
Discovered Invariants

15.1.1:::LOOP

\[N = \text{size}(B) \]
\[S = \text{sum}(B[0..I-1]) \]
\[N \text{ in } [7..13] \]
\[I \text{ in } [0..13] \]
\[I \leq N \]
\[B \]

All elements in \([-100..100]\)
\[\text{sum}(B) \text{ in } [-556..539] \]
\[B[0] \text{ nonzero in } [-99..96] \]
\[B[-1] \text{ in } [-88..99] \]
\[B[0..I-1]\]

All elements in \([-100..100]\)
\[N \neq B[-1] \]
\[B[0] \neq B[-1] \]

1107 samples
(7 values)
(452 values)
(7 values)
(14 values)
(77 values)
(100 values)
(200 values)
(96 values)
(79 values)
(80 values)
(985 values)
(200 values)
(99 values)
(100 values)

- These are the assertions that hold at the loop entry and exit
 – likely loop invariants
A Different Test Set

• Instead of using a uniform distribution for the length and the contents of the array an exponential distribution is used

• The expected values for the array lengths and the element values are same for both test sets
Discovered Invariants

15.1.1: : : ENTER

\[N = \text{size}(B) \]

\[N \geq 0 \]

100 samples

(24 values)

(24 values)
Discovered Invariants

15.1.1:::EXIT

N = I = orig(N) = size(B) (24 values)
B = orig(B) (96 values)
S = sum(B) (95 values)
N >= 0 (24 values)
Discovered Invariants

15.1.1:::LOOP

\[N = \text{size}(B) \]
\[S = \text{sum}(B[0..I-1]) \]
\[N \text{ in } [0..35] \]
\[I \geq 0 \]
\[I \leq N \]
\[B \]

All elements in \([-6005..7680]\]
\[\text{sum}(B) \text{ in } [-15006..21244] \]
\[B[0..I-1] \]

All elements in \([-6005..7680]\)
Dynamic Invariant Detection

• How does dynamic invariant generation work?

 1. Run the program on a test set

 2. Monitor the program execution

 3. Look for potential properties that hold for all the executions
Dynamic Invariant Detection

- Instrument the program to write data trace files
- Run the program on a test set
- Offline invariant engine reads data trace files, checks for a collection of potential invariants
Inferring Invariants

- There are two issues
 1. Choosing which invariants to infer
 2. Inferring the invariants

- Daikon infers invariants at specific program points
 - procedure entries
 - procedure exits
 - loop heads (optional)

- Daikon can only infer certain types of invariants
 - it has a library of invariant patterns
 - it can only infer invariants which match to these patterns
Trace Values

- Daikon supports two forms of data values
 - Scalar
 - number, character, boolean
 - Sequence of scalars

- All trace values must be converted to one of these forms

- For example, an array A of tree nodes each with left and a right child would be converted into two arrays
 - A.left (containing the object IDs for the left children)
 - A.right
Invariant Patterns

- Invariants over any variable x (where a, b, c are computed constants)
 - Constant value: $x = a$
 - Uninitialized: $x = \text{uninit}$
 - Small value set: $x \in \{a, b, c\}$
 - variable takes a small set of values

- Invariants over a single numeric variable:
 - Range limits: $x \geq a$, $x \leq b$, $a \leq x \leq b$
 - Nonzero: $x \neq 0$
 - Modulus: $x = a \text{ (mod b)}$
 - Nonmodulus: $x \neq a \text{ (mod b)}$
 - reported only if $x \mod b$ takes on every value other than a
Invariant Patterns

• Invariants over two numeric variables x, y
 – Linear relationship: $y = ax + b$
 – Ordering comparison: $x < y, x \leq y, x \geq y, x > y, x = y, x \neq y$
 – Functions: $y = fn(x)$ or $x = fn(y)$
 • where fn is absolute value, negation, bitwise complement
 – Invariants over $x+y$
 • invariants over single numeric variable where $x+y$ is substituted for the variable
 – Invariants over $x-y$
Invariant Patterns

• Invariants over three numeric variables
 – Linear relationship: $z = ax + by + c$, $y=ax+bz+c$, $x=ay+bz+c$
 – Functions $z = f_n(x,y)$
 • where f_n is min, max, multiplication, and, or, greatest common divisor, comparison, exponentiation, floating point rounding, division, modulus, left and right shifts
 • All permutations of x, y, z are tested (three permutations for symmetric functions, 6 permutations for asymmetric functions)
Invariant Patterns

- Invariants over a single sequence variable
 - Range: minimum and maximum sequence values (based on lexicographic ordering)
 - Element ordering: nondecreasing, nonincreasing, equal
 - Invariants over all sequence elements: such as each value in an array being nonnegative
Invariant Patterns

- Invariants over two sequence variables: x, y
 - Linear relationship: $y = ax + b$, elementwise
 - Comparison: $x < y$, $x \leq y$, $x \geq y$, $x > y$, $x = y$, $x \neq y$ (based on lexicographic ordering)
 - Subsequence relationship: x is a subsequence of y
 - Reversal: x is the reverse of y

- Invariants over a sequence x and a numeric variable y
 - Membership: $x \in y$
Inferring Invariants

• For each invariant pattern
 – determine the constants in the pattern
 – stop checking the invariants that are falsified

• For example,
 – For invariant pattern \(x \geq a \) we have to determine the constant \(a \)
 – For invariant pattern \(x = ay + bz + c \) we have to determine the constants \(a, b, c \)
Inferring Invariants

- Consider the invariant pattern: \(x = ay + bz + c \)
- Consider an example data trace for variables \((x, y, z)\):
 \((0,1,-7), (10,2,1), (10,1,3), (0, 0,-5), (3, 1, -4), (7, 1, 1), ...\)
- Based on the first three values for \(x, y, z\) in the trace we can figure out the constants \(a, b,\) and \(c\)
 \(0 = a -7b +c\)
 \(10 = 2a + b +c\)
 \(10 = a +3b + c\)
 If you solve these equations for \(a, b, c\) you get: \(a=2, b=1, c=5\)
- The next two tuples \((0, 0,-5), (3, 1, -4)\) confirm the invariant
- However the last trace value \((7, 1, 1)\) kills this invariant
 – Hence, it is not checked for the remaining trace values and it is not reported as an invariant
Inferring Invariants

• Determining the constants for invariants are not too expensive
 – For example three linearly independent data values are sufficient
 for figuring out the constants in the pattern \(x = ay + bz + c \)
 – there are at most three constants in each invariant pattern

• Once the constants for the invariants are determined, checking that
 an invariant holds for each data value is not expensive
 – Just evaluate the expression and check for equality
Cost of Inferring Invariants

- The cost of inferring invariants increases as follows:
 - quadratic in the number of variables at a program point (linear in the number of invariants checked/discovered)
 - linear in the number of samples or values (test set size)
 - linear in the number of program points

- Typically a few minutes per procedure:
 - 10,000 calls, 70 variables, instrument entry and exit
Invariant Confidence

- Not all unfalsified invariants should be reported
- There may be a lot of irrelevant invariants which may just reflect properties of the test set
- If a lot of spurious invariants are reported the output may become unreadable
- Improving (increasing) the test set would reduce the number of spurious invariants
Invariant Confidence

• For each detected invariant Daikon computes the probability that such a property would appear by chance in a random input
 – If that probability is smaller than a user specified confidence parameter, then the property is reported

• Daikon assumes a distribution and performs a statistical test
 – It checks the probability that the observed values for the detected invariant were generated by chance from the distribution
 – If that probability is very low, then the invariant is reported
Invariant Confidence

- As an example, consider an integer variable x which takes values between $r/2$ and $-r/2-1$.

- Assume that $x \neq 0$ for all test cases.

- If the values of x is uniformly distributed between $r/2$ and $-r/2-1$, then the probability that x is not 0 is $1 - 1/r$.

- Given s samples the probability x is never 0 is $(1-1/r)^s$.

- If this probability is less than a user defined confidence level then $x \neq 0$ is reported as an invariant.
Derived Variables

- Looking for invariants only on variables declared in the program may not be sufficient to detect all interesting invariants.

- Daikon adds certain derived variables (which are actually expressions) and also detects invariants on these derived variables.
Derived Variables

• Derived from any sequence s:
 – Length: size(s)
 – Extremal elements: s[0], s[1], s[size(s)-1], s[size(s)-2]
 • Daikon uses s[-1] to denote s[size(s)-1] and s[-2] to denote s[size(s)-2]

• Derived from any numeric sequence s:
 – Sum: sum(s)
 – Minimum element: min(s)
 – Maximum element: max(s)
Derived Variables

• Derived from any sequence s and any numeric variable i
 – Element at the index: $s[i]$, $s[i-1]$
 – Subsequences: $s[0..i]$, $s[0..i-1]$

• Derived from function invocations:
 – Number of calls so far
Dynamically Detecting Invariants: Summary

- Useful reengineering tool
 - Redocumentation

- Can be used as a coverage criterion during testing
 - Are all the values in a range covered by the test set?

- Can be helpful in detecting bugs
 - Found bugs in an existing program in a case study

- Can be useful in maintaining invariants
 - Prevents introducing bugs, programmers are less likely to break existing invariants