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How to Enforce Specifications?

• We discussed design-by-contract approach which provides a way of 
organizing and writing interface specifications for object oriented 
programs

• Today we will also discuss temporal logics which provide a way of 
specifying expected ordering of events during program executions

• We discussed that one can infer specifications of program behavior 
by observing a set of program executions

Bottom line: All these approaches can be used to obtain a set of 
specifications about the expected behavior of a program

• What are we going to do with these specifications?
– Shouldn’t we make sure that the program behaves according to its 

specifications?
• How are we going to do that?



Runtime Monitoring

• The basic idea in runtime monitoring is to observe the program 
behavior during execution and make sure that it does not violate the 
specifications 
– Sometimes it is called runtime verification

• We already discussed this for the design-by-contract approach
– The pre, post-conditions and class invariants written within the 

scope of the design-by-contract approach can be monitored at 
runtime by instrumenting the program and checking the specified 
conditions at appropriate times

– Eiffel compiler supports this (since Eiffel languages supports the 
the design-by-contract approach)

– There are tools for other programming languages (like Java) that 
automatically instrument Java programs for runtime monitoring of 
design-by-contract specifications 



Runtime Monitoring of Assertions

• In general, monitoring of design-by-contract specifications correspond 
to monitoring of assertions
• Create an assertion for pre-condition (and class invariant) checks 

at each method call location
• Create an assertion for post-condition (and class invariant) checks 

at each method return location
– For each assertion, when the program execution reaches the 

location of the assertion, evaluate the assertion. 
• If the assertion evaluates to true continue execution (no 

violation).
• If the assertion evaluates to false, stop execution and report 

the assertion violation.
– When reporting the assertion violation in design-by-contract 

approach, we can also appropriately assign the blame:
• Pre-condition violation: Blame the caller
• Post-condition violation: Blame the callee



Runtime Monitoring of Assertions

• While converting design-by-contract specifications to  assertion 
checks, we need to take care of old and result primitives in the post-
condition specifications
– Store values of variables that are referenced with the old primitive 

at the method entry
– Compute the return value before evaluating the post-condition

• For runtime monitoring of JML specifications, expressions that involve 
quantification (forall, exists, sum, etc.) must be converted to code that 
evaluates the expression 



Beyond Assertions

• What if we want to do more than monitoring assertions?

• For example, we may have specifications such as:
– The method “close-file” should only be called after the method 

“open-file” is called
– This specification is not an assertion
– It is specifying an ordering of events, not a condition that needs to 

hold at a specific point in program execution (which is what an 
assertion does)



Temporal Logics

• We can use temporal logics such LTL (linear temporal logic) to 
specify ordering of events

• There are different variants of LTL for runtime monitoring:
– Past time LTL has temporal operators such as

• Previously
• Eventually in the past
• Always in the past
• Since

• The question is how do we monitor temporal properties?
– Temporal logic specifications can be converted to state machines 

(finite state automata)



Execution Paths

• An execution path is an infinite sequence of states
x = s0, s1, s2, ...
such that 
s0 ∈ I  and for all i ≥ 0, (si,si+1) ∈ R 

Notation: For any path x
xi denotes the i’th state on the path (i.e., si)
xi denotes the i’th suffix of the path (i.e., si, si+1, si+2, ... )



Temporal Logics

• Pnueli proposed using temporal logics for reasoning about the 
properties of reactive systems

• Temporal logics are a type of modal logics
– Modal logics were developed to express modalities such as 

“necessity” or “possibility”
– Temporal logics focus on the modality of temporal progression  

• Temporal logics can be used to express, for example, that:
– an assertion is an invariant (i.e., it is true all the time)
– an assertion eventually becomes true (i.e., it will become true 

sometime in the future) 



Temporal Logics
• We will assume that there is a set of basic (atomic) properties called 

AP
– These are used to write the basic (non-temporal) assertions about 

the program

• We will use the usual boolean connectives: ¬ , ∧ , ∨

• We will also use four temporal operators:
Invariant p : G p  (aka      p)    (Globally)
Eventually p : F p (aka      p) (Future)
Next p : X p (aka      p) (neXt)
p Until q : p U q



Linear Time Temporal Logic (LTL) Semantics

Given an execution path x and LTL properties p and q

x |= p iff L(x0, p) =True, where p ∈ AP
x |= ¬p iff not x |= p
x |= p ∧ q iff x |= p and x |= q
x |= p ∨ q iff x |= p or x |= q

x |= X p iff x1 |= p
x |= G p iff for all i, xi |= p
x |= F p iff there exists an i such that xi |= p
x |= p U q iff there exists an i such that xi |= q and

for all j < i, xj |= p



LTL Properties
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Example Properties
mutual exclusion:

Assume that pc1 is the program counter for process 1 and pc2 is the 
program counter for process 2

Then, mutual exclusion can be specified in LTL as:

G ( ¬ (pc1=c ∧ pc2=c))

Two processes are not in the critical section at the same time

starvation freedom: 
G(pc1=w ⇒ F(pc1=c)) ∧ G(pc2=w ⇒ F(pc2=c)) 



Example Properties
starvation freedom: 

G(pc1=w ⇒ F(pc1=c)) ∧ G(pc2=w ⇒ F(pc2=c)) 

If a process starts waiting to enter the critical section (pc1=w), then it will 
eventually get in the critical section (pc1=c).



LTL Properties ≡ Büchi automata 

• Büchi automata: Finite state 
automata that accept infinite 
strings

• A Büchi automaton accepts a 
string when the corresponding 
run visits an accepting state 
infinitely often

• The size of the property 
automaton can be exponential in 
the size of the LTL formula

G p p ¬p
true

F p p¬p
true

G (F p) 
true p

true



Temporal Logics to State Machines

• We can convert temporal logic specifications to automata and track 
the current state of the specification automata during the program 
execution

– If the specification automaton goes to a sink state, then we can 
report a violation 

• a sink state is a state from which there is no path to any 
accepting state

– At the program termination, we can check if the specification 
automaton is at an accepting state 

• This is assuming that we are using finite path semantics 
– recall that standard semantics for temporal logics assume 

infinite paths, but it is also possible to define finite paths 
semantics



State Machines as Specifications

• We can also use state machines directly as specifications

• State machines are useful for specifying ordering of events and can 
be useful for specifying interfaces

• For examples, given a class, we may want to figure out what are the 
allowed orderings of method calls to the methods of that class
– This can be specified as a state machine

• There has been research on automatically extracting such interfaces 
from existing code
– Dynamically: By observing program execution and recording 

ordering of method class
– Statically: By statically analyzing code and identifying the method 

call orderings that do not cause exceptions



startSTART

begin

END

suspend

resume

rollbackcommit

J2EE TransactionManager
class interface

An automatically extracted state machine

• An example state machine that 
is dynamically generated

• It provides a specification for 
the stateful interface of a class

• The states denote the method 
calls (Start and and End states 
are special states)

• The paths from start to end 
identify the acceptable method 
call orderings



Another automatically extracted state machine

• A statically extracted interface for the Java class Signature
• The method calls are represented by the transitions
• The paths from the initial state identify the acceptable method call 

orderings

s0

s1 s2

initSigninitVerify
update
sign
initSigninitVerify

initSignupdate
verify
initVerify

Signature class 
interface



Beyond State Machines

• As you know, finite state automata can only specify regular languages

• For example, an ordering constraint that specifies nested matching of 
events cannot be specified using finite state machines
– For example, each “acquire” call must be matched with a “release” 

call and “acquire” and “release” calls can be nested 
– This ordering of events is not a regular language

• It is context free, so it can be specified using a context free 
grammar (CFG)

• So we can specify such ordering using context-free grammars
– Then, the question is how can we monitor such ordering 

constraints at runtime 



Runtime Monitoring with JavaMOP
• This is the problem studied in the following paper:

– ``Efficient Monitoring of Parametric Context-Free Patterns,” 
Patrick O'Neil Meredith, Dongyun Jin, Feng Chen and Grigore 
Rosu. 23rd IEEE/ACM International Conference on Automated 
Software Engineering (ASE 2008).

• There is a tool called JavaMOP, developed by the authors of this 
paper 
• http://fsl.cs.uiuc.edu/index.php/MOP

• JavaMOP instruments Java programs for runtime monitoring of 
specifications written using a variety of formalisms including temporal 
logics, finite state machines, context-free grammars, etc.



Runtime Monitoring

• There are three ingredients for runtime monitoring systems:
1. A specification formalism for specifying expected behaviors of 

the program
2. A monitor synthesis algorithm that convert specifications about 

the program behavior to monitors that can be executed with the 
program and that track if any specified property is violated

3. A program instrumentor that embeds the synthesized monitors 
to the program



Context Free Patterns

• Specifies the appropriate ordering for method calls to a transaction 
manager

– Method calls are the events which correspond to the terminal 
symbols of the grammar

Start → Base
Base → begin Tail Base

| ε
Tail → commit

| rollback



 An Example
• Consider the call sequence 
begin rollback begin commit

• Here is a derivation:
Start
⇒ Base
⇒ begin Tail Base
⇒ begin rollback Base
⇒ begin rollback begin Tail Base
⇒ begin rollback begin commit Base
⇒ begin rollback begin commit

Start → Base
Base → begin Tail Base

| ε
Tail → commit

| rollback



Another Example

• This interface can also be specified as a finite state machine (finite 
state automata)

• However, the following grammar, which specifies nested 
transactions, cannot be specified as a FSM
Start → Base
Base → beginBase Tail Base

| ε
Tail → commit

| rollback

begin

commit 
rollback



Nesting Requires Context Free Patterns

• If there is a nesting constraint in the property we wish to specify then 
finite state machines will not work 
– We need to use context free patterns

• Another example, assume that we have “acquire” and “release” calls 
for a lock
– Assume that the lock is reentrant
– This means that you can call “acquire” even when you have the 

lock
• This is how the locks are in Java

– The lock is released when the “acquire” and “release” calls cancel 
each other out

• This cannot be expressed using finite state machines
– It is a context free pattern



Monitoring Context Free Patterns

• Given a CFG as a specification
– Any execution trace that is not a prefix of a word (i.e., a sequence) 

that is recognized by the CFG violates the specification

• JavaMOP generates monitors from CFG specifications that check the 
above condition

• The specifications that JavaMOP handles are parametric:
– There are parameters that can be bound to different objects at 

runtime
– So one CFP specification can instantiate multiple monitors at 

runtime
• For example, generate a monitor for each lock object or each 

transaction object based on the specifications we discussed 
earlier



Total matching vs. Suffix matching

• An execution is a sequence of events observed up to the current 
moment (hence, they are always finite)

• Total matching corresponds to checking the desired property against 
the whole execution trace
– Total matching returns: 

• Valid: the trace is a prefix of a valid trace
• Violation: the trace is not a prefix of any valid trace
• Unknown: otherwise

• Suffix matching corresponds to checking if the desired property holds 
for a suffix of a trace 
– Suffix matching returns:

• Valid: the trace has a suffix which is prefix of a valid trace
• Unknown: otherwise

• A suffix matching monitor can be implemented using total matching 
monitors for the same pattern by creating a new monitor instance at 
each event



Context Free Patterns in JavaMOP

• JavaMOP supports LR(1) grammars
– A well-known subset of context free grammars supported by tools 

like yacc
– Correspond to deterministic context free languages
– Can be parsed in linear time using the LR(1) parsing algorithm

• LR(1) parsing algorithm basically generates a deterministic push-
down automaton (DPDA) that can recognize every word that is 
accepted by the input LR(1) grammar without any back-tracking
– The transition system of the DPDA is encoded as action and go to 

tables which are constructed using the LR(1) parser construction 
algorithms

• The monitor synthesis algorithm basically uses the LR(1) parser 
construction algorithm and returns the resulting DPDA as the monitor



Stack Cloning

• LR(1) parsing algorithm assumes that there is a single input trace

• However, in runtime monitoring the current trace is extended when a 
new event is observed
– It would be inefficient if addition of each event started the parsing 

process from the beginning

• To handle this, before a reduction is made that uses the terminal 
symbol as the look-ahead, the parse stack is cloned (saving the 
parser state until that point)
– When a new event is added to the end of the input, the parser can 

start back from the cloned state 



CFG Monitors

• When the synthesized CFP monitor is used for runtime monitoring, it 
guarantees the following:
– For every finite prefix of a (possibly infinite) program trace, and a 

CFG pattern, JavaMOP will report
• violation of the pattern if the LR(1) parsing algorithm would 

indicate a parse failure due to a bad token, and 
• validation of the pattern if the LR(1) parsing algorithm would 

return success given that prefix as the total input 

• Suffix matching is implemented by identifying a subset of events that 
trigger the monitor creation
– Events in the first set of the start symbol for the grammar are used 

for monitor creation



Some Properties Checked in Experiments

• HashMap: An object’s hash code should not be changed when the 
object is a key in a HashMap;

• HasNext: For a given iterator, the hasNext() method should be called 
between all calls to next();

• SafeIterator: Do not update a Collection when using the Iterator 
interface to iterate its elements.

• ImprovedLeakingSync: Specifies correct synchronization behavior 
and allows calls to the unsynchronized methods so long as they 
happen within synchronized calls.

• SafeFileInputStream: It ensures that a FileInputStream is closed in 
the same method in which it is created.

• SafeFileWriter: It ensures that all writes to a FileWriter happen 
between creation and close of the FileWriter, and that the creation 
and close events are matched pairs.



Results of Experiments

• Given 66 program/property pairs, the average runtime overhead of 
runtime monitoring with JavaMOP is 34%

• If the two cases with the largest overhead are removed, for the 
remaining 64 program/property patterns, the average runtime 
overhead is 8%

• Average memory overhead is 33% with a 4% median

• Overall JavaMOP has less overhead compared to other tools (PQL, 
Tracematches) 


