272:. Software Engineering
Fall 2018

Instructor: Tevfik Bultan

Lecture 15: Runtime Monitoring

How to Enforce Specifications?

« We discussed design-by-contract approach which provides a way of
organizing and writing interface specifications for object oriented
programs

« Today we will also discuss temporal logics which provide a way of
specifying expected ordering of events during program executions

« We discussed that one can infer specifications of program behavior
by observing a set of program executions

Bottom line: All these approaches can be used to obtain a set of
specifications about the expected behavior of a program

« What are we going to do with these specifications?

— Shouldn’t we make sure that the program behaves according to its
specifications?

 How are we going to do that?

Runtime Monitoring

* The basic idea in runtime monitoring is to observe the program
behavior during execution and make sure that it does not violate the
specifications

— Sometimes it is called runtime verification

« We already discussed this for the design-by-contract approach

— The pre, post-conditions and class invariants written within the
scope of the design-by-contract approach can be monitored at
runtime by instrumenting the program and checking the specified
conditions at appropriate times

— Eiffel compiler supports this (since Eiffel languages supports the
the design-by-contract approach)

— There are tools for other programming languages (like Java) that
automatically instrument Java programs for runtime monitoring of
design-by-contract specifications

Runtime Monitoring of Assertions

* In general, monitoring of design-by-contract specifications correspond
to monitoring of assertions

« Create an assertion for pre-condition (and class invariant) checks
at each method call location

» Create an assertion for post-condition (and class invariant) checks
at each method return location

— For each assertion, when the program execution reaches the
location of the assertion, evaluate the assertion.

« |If the assertion evaluates to true continue execution (no
violation).

* |f the assertion evaluates to false, stop execution and report
the assertion violation.

— When reporting the assertion violation in design-by-contract
approach, we can also appropriately assign the blame:

* Pre-condition violation: Blame the caller
 Post-condition violation: Blame the callee

Runtime Monitoring of Assertions

While converting design-by-contract specifications to assertion
checks, we need to take care of old and result primitives in the post-
condition specifications

— Store values of variables that are referenced with the old primitive
at the method entry

— Compute the return value before evaluating the post-condition

For runtime monitoring of JML specifications, expressions that involve

quantification (forall, exists, sum, etc.) must be converted to code that
evaluates the expression

Beyond Assertions

« What if we want to do more than monitoring assertions?

« For example, we may have specifications such as:

— The method “close-file” should only be called after the method
“‘open-file” is called

— This specification is not an assertion

— It is specifying an ordering of events, not a condition that needs to

hold at a specific point in program execution (which is what an
assertion does)

Temporal Logics

We can use temporal logics such LTL (linear temporal logic) to
specify ordering of events

There are different variants of LTL for runtime monitoring:
— Past time LTL has temporal operators such as
* Previously
« Eventually in the past
« Always in the past
« Since

The question is how do we monitor temporal properties?

— Temporal logic specifications can be converted to state machines
(finite state automata)

Execution Paths

* An execution path is an infinite sequence of states
X =Sg, Sq, So, ...
such that
sp€l andforalli=0, (s,s,1) ER

Notation: For any path x
X; denotes the i'th state on the path (i.e., s))
xi denotes the i’'th suffix of the path (i.e., s;, Si+1, Sixo, ...)

Temporal Logics

Pnueli proposed using temporal logics for reasoning about the
properties of reactive systems

Temporal logics are a type of modal logics
— Modal logics were developed to express modalities such as
“necessity” or “possibility”
— Temporal logics focus on the modality of temporal progression

Temporal logics can be used to express, for example, that:
— an assertion is an invariant (i.e., it is true all the time)

— an assertion eventually becomes true (i.e., it will become true
sometime in the future)

Temporal Logics

We will assume that there is a set of basic (atomic) properties called
AP

— These are used to write the basic (non-temporal) assertions about
the program

We will use the usual boolean connectives: = , A , V

We will also use four temporal operators:

Invariant p ; Gp (aka O p) (Globally)
Eventually p ; Fp (aka Op) (Future)
Next p : Xp (aka O p) (neXt)

p Until g : pUaq

Linear Time Temporal Logic (LTL) Semantics

Given an execution path x and LTL properties p and g

X X X X

X X X X

=P

- ~P
-pArq
-pvq

iff
iff
Iff
iff

iff
iff
Iff
iff

L(xo, p) =True, where p € AP
notx |=p

X|=pandx|=q
X|[=porx|=q

x'|=p

foralli, X |=p

there exists an i such that x' |=p
there exists an i such that x' |= q and
forallj<i,x|=p

LTL Properties

Xp O—0O—0-0—0-0O— -

Example Properties

mutual exclusion:

Assume that pc1 is the program counter for process 1 and pc2 is the
program counter for process 2

Then, mutual exclusion can be specified in LTL as:
G (- (pc1=c A pc2=c))
Two processes are not in the critical section at the same time

starvation freedom:
G(pc1=w = F(pc1=c)) n G(pc2=w = F(pc2=c))

Example Properties

starvation freedom:

G(pc1=w = F(pc1=c)) A G(pc2=w = F(pc2=c))

If a process starts waiting to enter the critical section (pc1=w), then it will
eventually get in the critical section (pc1=c).

LTL Properties = Buchi automata

 Buchi automata: Finite state

automata that accept infinite A ue
strings G 0 -0
p o F W (O

« A Buchi automaton accepts a
string when the corresponding true

run visits an accepting state
infinitely often Fp -

* The size of the property
automaton can be exponential in
the size of the LTL formula

Temporal Logics to State Machines

We can convert temporal logic specifications to automata and track
the current state of the specification automata during the program
execution

— If the specification automaton goes to a sink state, then we can
report a violation

 a sink state is a state from which there is no path to any
accepting state

— At the program termination, we can check if the specification
automaton is at an accepting state

 This is assuming that we are using finite path semantics

— recall that standard semantics for temporal logics assume
infinite paths, but it is also possible to define finite paths
semantics

State Machines as Specifications

We can also use state machines directly as specifications

State machines are useful for specifying ordering of events and can
be useful for specifying interfaces

For examples, given a class, we may want to figure out what are the
allowed orderings of method calls to the methods of that class

— This can be specified as a state machine

There has been research on automatically extracting such interfaces
from existing code

— Dynamically: By observing program execution and recording
ordering of method class

— Statically: By statically analyzing code and identifying the method
call orderings that do not cause exceptions

An automatically extracted state machine

J2EE TransactionManager An example state machine that
class interface Is dynamically generated

« |t provides a specification for
the stateful interface of a class

 The states denote the method
calls (Start and and End states

[START

begln J are special states)
* The paths from start to end
/ J identify the acceptable method

rollback J call orderings

Another automatically extracted state machine

A statically extracted interface for the Java class Signature
The method calls are represented by the transitions

The paths from the initial state identify the acceptable method call
orderings

Signature class
interface

initVerify InitSign
update
verify >IgH
initVerify nitVerify INitSign

initSign

Beyond State Machines

As you know, finite state automata can only specify regular languages

For example, an ordering constraint that specifies nested matching of
events cannot be specified using finite state machines

— For example, each “acquire” call must be matched with a “release”
call and “acquire” and “release” calls can be nested

— This ordering of events is not a regular language

* ltis contextfree, so it can be specified using a context free
grammar (CFG)

So we can specify such ordering using context-free grammars

— Then, the question is how can we monitor such ordering
constraints at runtime

Runtime Monitoring with JavaMOP

This is the problem studied in the following paper:

— " Efficient Monitoring of Parametric Context-Free Patterns,”
Patrick O'Neil Meredith, Dongyun Jin, Feng Chen and Grigore
Rosu. 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008).

There is a tool called JavaMOP, developed by the authors of this
paper

« http://fsl.cs.uiuc.edu/index.php/MOP

JavaMOP instruments Java programs for runtime monitoring of
specifications written using a variety of formalisms including temporal
logics, finite state machines, context-free grammars, etc.

Runtime Monitoring

« There are three ingredients for runtime monitoring systems:

1. A specification formalism for specifying expected behaviors of
the program

2. A monitor synthesis algorithm that convert specifications about
the program behavior to monitors that can be executed with the
program and that track if any specified property is violated

3. A program instrumentor that embeds the synthesized monitors
to the program

Context Free Patterns

Specifies the appropriate ordering for method calls to a transaction
manager

Start = Base

Base = begin 7ail Base
| 3

Tail = commit
| rollback

— Method calls are the events which correspond to the terminal
symbols of the grammar

An Example

« Consider the call sequence
begin rollback begin commit

« Here is a derivation: Start
Base
Start
= Base
Tail

= begin Tuil Base

= begin rollback Base

= begin rollback begin 7Tuil Base

= begin rollback begin commit Base
= begin rollback begin commit

— =

Base

begin 7ail Base
&

commit
rollback

Another Example

« This interface can also be specified as a finite state machine (finite

state automata)
begin

N

commit
rollback

 However, the following grammar, which specifies nested
transactions, cannot be specified as a FSM

Start = Base
Base = begin Base Tail Base
| £

Tail = commit
| rollback

Nesting Requires Context Free Patterns

« If there is a nesting constraint in the property we wish to specify then
finite state machines will not work

— We need to use context free patterns

* Another example, assume that we have “acquire” and “release” calls
for a lock

— Assume that the lock is reentrant

— This means that you can call “acquire” even when you have the
lock

 This is how the locks are in Java

— The lock is released when the “acquire” and “release” calls cancel
each other out

« This cannot be expressed using finite state machines
— It is a context free pattern

Monitoring Context Free Patterns

Given a CFG as a specification

— Any execution trace that is not a prefix of a word (i.e., a sequence)
that is recognized by the CFG violates the specification

JavaMOP generates monitors from CFG specifications that check the
above condition

The specifications that JavaMOP handles are parametric:

— There are parameters that can be bound to different objects at
runtime

— So one CFP specification can instantiate multiple monitors at
runtime

« For example, generate a monitor for each lock object or each

transaction object based on the specifications we discussed
earlier

Total matching vs. Suffix matching

An execution is a sequence of events observed up to the current
moment (hence, they are always finite)

Total matching corresponds to checking the desired property against
the whole execution trace

— Total matching returns:
 Valid: the trace is a prefix of a valid trace
 Violation: the trace is not a prefix of any valid trace
« Unknown: otherwise

Suffix matching corresponds to checking if the desired property holds
for a suffix of a trace

— Suffix matching returns:
 Valid: the trace has a suffix which is prefix of a valid trace
« Unknown: otherwise

A suffix matching monitor can be implemented using total matching
monitors for the same pattern by creating a new monitor instance at
each event

Context Free Patterns in JavaMOP

JavaMOP supports LR(1) grammars

— A well-known subset of context free grammars supported by tools
like yacc

— Correspond to deterministic context free languages
— Can be parsed in linear time using the LR(1) parsing algorithm

LR(1) parsing algorithm basically generates a deterministic push-
down automaton (DPDA) that can recognize every word that is
accepted by the input LR(1) grammar without any back-tracking

— The transition system of the DPDA is encoded as action and go to

tables which are constructed using the LR(1) parser construction
algorithms

The monitor synthesis algorithm basically uses the LR(1) parser
construction algorithm and returns the resulting DPDA as the monitor

Stack Cloning

LR(1) parsing algorithm assumes that there is a single input trace

However, in runtime monitoring the current trace is extended when a
new event is observed

— It would be inefficient if addition of each event started the parsing
process from the beginning

To handle this, before a reduction is made that uses the terminal
symbol as the look-ahead, the parse stack is cloned (saving the
parser state until that point)

— When a new event is added to the end of the input, the parser can
start back from the cloned state

CFG Monitors

* When the synthesized CFP monitor is used for runtime monitoring, it
guarantees the following:

— For every finite prefix of a (possibly infinite) program trace, and a
CFG pattern, JavaMOP will report

« violation of the pattern if the LR(1) parsing algorithm would
indicate a parse failure due to a bad token, and

« validation of the pattern if the LR(1) parsing algorithm would
return success given that prefix as the total input

« Suffix matching is implemented by identifying a subset of events that
trigger the monitor creation

— Events in the first set of the start symbol for the grammar are used
for monitor creation

Some Properties Checked in Experiments

HashMap: An object’s hash code should not be changed when the
object is a key in a HashMap;

HasNext: For a given iterator, the hasNext() method should be called
between all calls to next();

Safelterator: Do not update a Collection when using the Iterator
interface to iterate its elements.

ImprovedLeakingSync: Specifies correct synchronization behavior
and allows calls to the unsynchronized methods so long as they
happen within synchronized calls.

SafeFilelnputStream: It ensures that a FilelnputStream is closed in
the same method in which it is created.

SafeFileWriter: It ensures that all writes to a FileWriter happen
between creation and close of the FileWriter, and that the creation
and close events are matched pairs.

Results of Experiments

Given 66 program/property pairs, the average runtime overhead of
runtime monitoring with JavaMOP is 34%

If the two cases with the largest overhead are removed, for the
remaining 64 program/property patterns, the average runtime
overhead is 8%

Average memory overhead is 33% with a 4% median

Overall JavaMOP has less overhead compared to other tools (PQL,
Tracematches)

