Abstract Interpretation Framework

- Associate each string variable at each program point with an automaton that accepts an over approximation of its possible values.
- Use these automata to perform symbolic executions on string variables.
- Iteratively
 - Compute the next state of current automata against string operations and
 - Update automata by joining the result to the automata at the next statement
- Terminate the execution upon reaching a fixed point.
Challenges

- **Precision**: Need to deal with sanitization routines having decent PHP functions, e.g., `ereg` replacement.

- **Complexity**: Need to face the fact that the problem itself is undecidable. The fixed point may not exist and even if it exists the computation itself may not converge.

- **Performance**: Need to perform efficient automata manipulations in terms of both time and memory.
Features of Our Approach

We propose:

- A Language-based Replacement: to model decent string operations in PHP programs.
- An Automata Widening Operator: to accelerate fixed point computation.
- A Symbolic Encoding: using Multi-terminal Binary Decision Diagrams (MBDDs) from MONA DFA packages.
A Language-based Replacement

\[M = \text{REPLACE}(M_1, M_2, M_3) \]

- \(M_1, M_2, \) and \(M_3 \) are DFAs.
 - \(M_1 \) accepts the set of original strings,
 - \(M_2 \) accepts the set of match strings, and
 - \(M_3 \) accepts the set of replacement strings
- Let \(s \in L(M_1), x \in L(M_2), \) and \(c \in L(M_3) \):
 - Replaces all parts of any \(s \) that match any \(x \) with any \(c \).
 - Outputs a DFA that accepts the result to \(M \).
Some examples:

<table>
<thead>
<tr>
<th>$L(M_1)$</th>
<th>$L(M_2)$</th>
<th>$L(M_3)$</th>
<th>$L(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ baaabaa}</td>
<td>{aa}</td>
<td>{c}</td>
<td>{bacbc, bcabc}</td>
</tr>
<tr>
<td>{ baaabaa}</td>
<td>a^+</td>
<td>ε</td>
<td>{bb}</td>
</tr>
<tr>
<td>{ baaabaa}</td>
<td>$a^+ b$</td>
<td>{c}</td>
<td>{bcaa}</td>
</tr>
<tr>
<td>{ baaabaa}</td>
<td>a^+</td>
<td>{c}</td>
<td>{bccb, bccbc, bccbcc, bccbcc, bccbcc}</td>
</tr>
<tr>
<td>$ba^+ b$</td>
<td>a^+</td>
<td>{c}</td>
<td>$bc^+ b$</td>
</tr>
</tbody>
</table>
An over approximation with respect to the leftmost/longest(first) constraints

Many string functions in PHP can be converted to this form:
- htmlspecialchars, tolower, toupper, str_replace, trim, and
- preg_replace and ereg_replace that have regular expressions as their arguments.
Implementation of $\text{REPLACE}(M_1, M_2, M_3)$:

- Mark matching sub-strings
 - Insert marks to M_1
 - Insert marks to M_2
- Replace matching sub-strings
 - Identify marked paths
 - Insert replacement automata

In the following, we use two marks: $<$ and $>$ (not in Σ), and a duplicate set of alphabet: $\Sigma' = \{\alpha' | \alpha \in \Sigma\}$. We use an example to illustrate our approach.
An Example

Construct $M = \text{REPLACE}(M_1, M_2, M_3)$.

- $L(M_1) = \{baab\}$
- $L(M_2) = a^+ = \{a, aa, aaa, \ldots\}$
- $L(M_3) = \{c\}$
Step 1

Construct M'_1 from M_1:

- Duplicate M_1 using Σ'
- Connect the original and duplicated states with $<$ and $>$

For instance, M'_1 accepts $b < a'a' > b$, $b < a' > ab$.

![Diagram of automaton]
Step 2

Construct M'_2 from M_2:

- Construct M_2 that accepts strings do not contain any substring in $L(M_2)$. (a)
- Duplicate M_2 using Σ'. (b)
- Connect (a) and (b) with marks. (c)

For instance, M'_2 accepts $b < a'a' > b$, $b < a' > bc < a' >$.

(a)
(b)
(c)
Intersect M'_1 and M'_2.

- The matched substrings are marked in Σ'.
- Identify (s, s'), so that $s \rightarrow < \ldots \rightarrow > s'$.

In the example, we identify three pairs: (i, j), (i, k), (j, k).
Step 4

Construct M:

- Insert M_3 for each identified pair. (d)
- Determinize and minimize the result. (e)

$L(M) = \{bcb, bccb\}$.

(d)

(e)
The operator was originally proposed by Bartzis and Bultan [BB, CAV04]. Intuitively, we

- Identify equivalence classes, and
- Merge states in an equivalence class
State Equivalence

q, q' are equivalent if one of the following condition holds:

- $\forall w \in \Sigma^*, w$ is accepted by M from q then w is accepted by M' from q', and vice versa.
- $\exists w \in \Sigma^*, M$ reaches state q and M' reaches state q' after consuming w from its initial state respectively.
- $\exists q'', q$ and q'' are equivalent, and q' and q'' are equivalent.
An Example for $M \sqcup M'$

- $L(M) = \{\epsilon, ab\}$ and $L(M') = \{\epsilon, ab, abab\}$.
- The set of equivalence classes: $C = \{q''_0, q''_1\}$, where $q''_0 = \{q_0, q'_0, q_2, q'_2, q'_4\}$ and $q''_1 = \{q_1, q'_1, q'_3\}$.

![Diagram](image-url)

Figure: Widening automata
Recall that we want to compute the least fixpoint that corresponds to the reachable values of string expressions.

- The fixpoint computation will compute a sequence $M_0, M_1, \ldots, M_i, \ldots$, where $M_0 = I$ and $M_i = M_{i-1} \cup \text{post}(M_{i-1})$.
A Fixed Point Computation

Consider a simple example:

- Start from an empty string and concatenate ab at each iteration.
- The exact computation sequence $M_0, M_1, ..., M_i, ...$ will never converge, where $L(M_0) = \{\epsilon\}$ and $L(M_i) = \{(ab)^k \mid 1 \leq k \leq i\} \cup \{\epsilon\}$.
Accelerate The Fixed Point Computation

Use the widening operator ∇.

- Compute an over-approximate sequence instead: M'_0, M'_1, ..., M'_i, ...
- $M'_0 = M_0$, and for $i > 0$, $M'_i = M'_{i-1} \nabla (M'_{i-1} \cup \text{post}(M'_{i-1}))$.

An over-approximate sequence for the simple example:

(a) M'_0
(b) M'_1
(c) M'_2
(d) M'_3