Binary Decision Diagrams

Binary Decision Diagrams (BDDs)

[Bryant 86]

- Reduced Ordered Binary Decision Diagrams (BDDs)
- An efficient data structure for representing Boolean functions (or truth sets of Boolean formulas) and manipulating them
- There are BDD packages available: (for example CUDD from Colorado University)
- BDDs are a canonical representation for Boolean functions
- given two Boolean logic formulas F and G, if F and G are equivalent (i.e. if their truth sets are the same), then their BDD representations will be the same

BDDs for Symbolic Model Checking

- BDD data structure can be used to implement the symbolic model checking algorithm we discussed earlier
- BDDs support all the operations we need for symbolic model checking
- take conjunction of two BDDs
- take disjunction of two BDDs
- test equivalence of two BDDs
- test subsumption between two BDDs
- negate a BDD
- test if a BDD satisfiable
- test if a BDD is a tautology
- existential variable elimination

Binary Decision Trees

Given a variable order, in each level of the tree, branch on the value of the variable in that level.

- Examples for boolean formulas on two variables Variable order: x, y

False

Reduced and Ordered Binary Decision Diagrams

- We are interested in Reduced and Ordered Binary Decision Diagrams
- Reduced:
- Merge all identical sub-trees in the binary decision tree (converts it to a directed-acyclic graph)
- Remove redundant tests (if the false and true branches for a node go to the same place, remove that node)
- Ordered
- We pick a fix order for the Boolean variables:

$$
x_{0}<x_{1}<x_{2}<\ldots
$$

- The nodes in the BDD are listed based on this ordering

BDDs

- Repeatedly apply the following transformations to a binary decision tree:

1. Remove duplicate terminals
2. Remove duplicate non-terminals
3. Remove redundant tests

- These transformations transform the tree to a directed acyclic graph

Binary Decision Trees vs. BDDs

False

F

Good News About BDDs

- Given BDDs for two boolean logic formulas F and G
- The BDDs for $F \wedge G$ and $F \vee G$ are of size $|F| \times|G|$ (and can be computed in that time)
- The BDD for $\neg \mathrm{F}$ is of size $\mid \mathrm{F}$ (and can be computed in that time)
$-\mathrm{F} \equiv$? G can be checked in linear time
- Satisfiability of F can be checked in constant time
- No, this does not mean that you can solve SAT in constant time

Bad News About BDDs

- The size of a BDD can be exponential in the number of boolean variables
- The sizes of the BDDs are very sensitive to the variable ordering. Bad variable ordering can cause exponential increase in the size of the BDD
- There are functions which have BDDs that are exponential for any variable ordering (for example binary multiplication)

BDDs are Sensitive to Variable Ordering

Identity relation for two variables: $\left(x^{\prime} \leftrightarrow x\right) \wedge\left(y^{\prime} \leftrightarrow y\right)$

Variable order: $\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{y}, \mathrm{y}^{\prime}$

For n variables, $3 n+2$ nodes

Variable order: $x, y, x^{\prime}, y^{\prime}$

For n variables, $3 \times 2^{n}-1$ nodes

BDDs from Another Perspective

- Any Boolean formula f on variables $x_{1}, x_{2}, \ldots, x_{n}$ can be written as (called Shannon expansion):
$f=x_{i} \wedge f\left[\right.$ True $\left./ x_{i}\right] \vee \neg x_{i} \wedge f\left[\right.$ False $\left./ x_{i}\right]$
(this is an if-then-else)
- BDDs use this idea

This node corresponds to the formula False, which comes from the Shannon expansion:
False $\equiv x \wedge y[$ False/x]

This node corresponds to the formula y, which comes from the Shannon expansion:

$$
y \equiv x \wedge y[\text { True } / x]
$$

Model counting with BDDs

- Once you construct a BDD, you can count the number of models by counting paths of the BDD
- Count the paths that reach from the root to the "True" leaf node
- You need to take into account the variables that are not represented in the BDD
- they are removed as redundant tests but we need to keep track of them to count
- Count the number of paths that reach True
- keep track of missing (redundant) variables on a path, and add 2^{k} to the count for each path that has k missing variables
- Can compute the count in linear time by traversing the nodes from leaves towards the root node

