Automata-based Model Counting

Model Counting String Constraint Solver

INPUT

OUTPUT

Aydin et al.,Automata-based Model Counting for String Constraints. (CAV'I5)

Automata Based Counter (ABC) A Model Counting String Constraint Solver

Aydin et al.,Automata-based Model Counting for String Constraints. (CAV'I5)

String Constraint Language

C	\longrightarrow bterm			
bterm	$\longrightarrow \mathrm{v}$ \| true	false		
	$\mid \neg$ bterm \| bterm \wedge bterm \| bterm \vee bterm \mid (bterm)			
	\| sterm $=$ sterm			
	\| match(sterm, sterm)			
	contains(sterm, sterm)			
	begins(sterm, sterm)			
	ends(sterm, sterm)			
	\mid iterm $=$ iterm \mid iterm $<$ iterm \mid iterm $>$ iterm			
iterm	$\longrightarrow \mathrm{V} \mid \mathrm{n}$			
	iterm + iterm \mid iterm - iterm \mid iterm $\times \mathrm{n} \mid$ (iterm)			
	\| length(sterm)	toint(sterm)		
	\| indexof(sterm, sterm)			
	\| lastindexof(sterm, sterm)			
sterm	$\longrightarrow \mathrm{v}\|\varepsilon\| \mathrm{s}$			
	\| sterm.sterm	sterm	sterm	sterm ${ }^{*}$ \| (sterm)
	\| charat(sterm, iterm)	tostring(iterm)		
	\| toupper(sterm)	tolower(sterm)		
	substring(sterm, iterm, iterm)			
	\| replacefirst(sterm, sterm, sterm)			
	\| replacelast(sterm, sterm, sterm)			
	\| replaceall(sterm, sterm, sterm)			

ABC: Constraint language

- A more compact notation

$$
\begin{aligned}
& \varphi \quad \longrightarrow \varphi \wedge \varphi|\varphi \vee \varphi| \neg \varphi\left|\varphi_{\mathbb{Z}}\right| \varphi_{\mathbb{S}}|\top| \perp \\
& \varphi_{\mathbb{Z}} \longrightarrow \beta=\beta|\beta<\beta| \beta>\beta \\
& \varphi_{\mathbb{S}} \longrightarrow \gamma=\gamma|\gamma<\gamma| \gamma>\gamma|\operatorname{match}(\gamma, \rho)| \operatorname{contains}(\gamma, \gamma)|\operatorname{begins}(\gamma, \gamma)| \operatorname{ends}(\gamma, \gamma) \\
& \beta \quad \longrightarrow \quad v_{i}|n| \beta+\beta|\beta-\beta| \beta \times n \\
& |\operatorname{length}(\gamma)| \operatorname{toint}(\gamma)|\operatorname{indexof}(\gamma, \gamma)| \text { lastindexof(} \gamma, \gamma) \\
& \gamma \quad \longrightarrow \quad v_{s}|\rho| \gamma \cdot \gamma \mid \text { reverse }(\gamma) \mid \text { tostring }(\beta)|\operatorname{charat}(\gamma, \beta)| \text { toupper }(\gamma) \mid \text { tolower }(\gamma) \\
& \rho \quad \longrightarrow \varepsilon|s| \rho \cdot \rho|\rho| \rho \mid \rho^{*}
\end{aligned}
$$

Example String Expressions

Model Counting String Constraint Solver

Aydin et al.,Automata-based Model Counting for String Constraints. (CAV'I5)

ABC in a nutshell

Automata-based constraint solving
Why?

ABC in a nutshell

Automata-based constraint solving

Basic idea:

Constructing an automaton for the set of solutions of a constraint reduces model counting problem to path counting!

Automata-based constraint solving

Generate automaton that accepts satisfying solutions for the constraint
$A B C$ can handle both
string and integer constraints

Constraints over only string
variables
(e.g., v = "abcd")

Constraints over only integer
variables
(e.g., $i=2 \times j$)

Constraints over both string and integer variables
(e.g., length $(v)=i$)

Automata-based constraint solving: expr, \neg

Basic string constraints are directly mapped to automata

$$
\mathrm{v}=\mathrm{"ab} \text { " }
$$

$$
\operatorname{match}(\mathrm{v},(\mathrm{ab}) \star) \quad \neg \operatorname{match}(\mathrm{v},(\mathrm{ab}) \star)
$$

automata complement

Automata-based constraint solving: expr, \neg, \wedge, \vee

More complex constraints are solved by creating automata for subformulae then combining their results

$$
\neg \operatorname{match}(\mathrm{v},(\mathrm{ab}) *) \wedge \text { length }(\mathrm{v})=2
$$

automata product

Automata-based constraint solving: expr, \neg, \wedge, \vee

More complex constraints are solved by creating automata for subformulae then combining their results

$$
\neg \text { match }(\mathrm{v},(\mathrm{ab}) *) \wedge \text { length }(\mathrm{v})=2
$$

automata product

String Automata Construction:

 More Details$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

String Automata Construction

$$
C \equiv \neg\left(x \in(01)^{*}\right) \wedge \operatorname{LEN}(x)=2
$$

$00,10,11$

Relational constraints

- Relational constraints:
* Constraints that involve multiple variables
- How do we handle relational constraints with automata?

Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each variable

$$
v=t \quad v \neq t \quad v=t \wedge v \neq t
$$

Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each variable

Automata-based constraint solving: relational

Single track automata cannot precisely capture relational constraints

Generated automata significantly over-approximate \# of satisfying solutions

Use multi-track automata

Multi-track automata

Multi-track automaton $=$ DFA accepting tuples of strings
Each track represents the values of a single variable

Preserves relations among variables!

Multi-track automata

$$
v=t
$$

$$
v \neq t
$$

Padding symbol $\lambda \notin \Sigma$ used to align tracks of different length (appears at the end)

$$
v=t \wedge v \neq t
$$

Correctly encodes the constraint

Relational String Constraints: Summary

- How to handle constraints with multiple string variables?
- One approach is to use multiple single-track DFAs
, One DFA per variable
- Alternative approach: Use one multi-track DFAs
- Each track represents the values of one string variable
- Using multi-track DFAs:
- Identifies the relations among string variables
- Improves the precision
- Can be used to represent properties that depend on relations among string variables, e.g., \$file = \$usr.txt

Multi-track Automata

- Let X (the first track), Y (the second track), be two string variables
- λ is the padding symbol
- A multi-track automaton that encodes the word equation:

Alignment

- To conduct relational string analysis, we need to compute union or intersection of multi-track automata
- Intersection is closed under aligned multi-track automata
- In an aligned multi-track automaton λ s are right justified in all tracks, e.g., $a b \lambda \lambda$ instead of $a \lambda b \lambda$
- However, there exist unaligned multi-track automata that are not equivalent to any aligned multi-track automata
- Use an alignment algorithm that constructs aligned automata which over or under approximates unaligned ones
- Over approximation: Generates an aligned multi-track automaton that accepts a super set of the language recognized by the unaligned multitrack automaton
- Under approximation: Generates an aligned multi-track automaton that accepts a subset of the language recognized by the unaligned multi-track automaton

Word Equations

- Word equations: Equality of two expressions that consist of concatenation of a set of variables and constants
- Example: $\mathrm{X}=\mathrm{Y} . \mathrm{txt}$
- Word equations and their combinations (using Boolean connectives) can be expressed using only equations of the form $X=Y . c, X=c$. $\mathrm{Y}, \mathrm{c}=\mathrm{X} . \mathrm{Y}, \mathrm{X}=\mathrm{Y} . \mathrm{Z}$, Boolean connectives and existential quantification
- Construct multi-track automata from basic word equations
- The automata should accept tuples of strings that satisfy the equation
- Boolean connectives can be handled using intersection, union and complement
- Existential quantification can be handled using projection

Word Equations to Automata

- Basic equations $X=Y$. $c, X=c . Y, c=X . Y$ and their Boolean combinations can be represented precisely using multi-track automata
- The size of the aligned multi-track automaton for $\mathrm{X}=\mathrm{c}$. Y is exponential in the length of c
- The nonlinear equation $X=Y$. Z cannot be represented precisely using an aligned multi-track automaton

Word Equations to Automata

- When we cannot represent an equation precisely, we can generate an over or under-approximation of it
* Over-approximation:The automaton accepts all string tuples that satisfy the equation and possibly more
- Under-approximation:The automaton accepts only the string tuples that satify the equation but possibly not all of them
, We can implement a function CONSTRUCT(equation, sign)
- Which takes a word equation and a sign and creates a multi-track automata that over or under-approximation of the equation based on the input sign

Integer Constraints

C

$$
\longrightarrow \text { bterm }
$$

bterm

iterm

sterm

```
\longrightarrow
```

 sterm.sterm | sterm|sterm | sterm \({ }^{*}\) | (sterm)
 charat(sterm, iterm) | tostring(iterm)
 toupper(sterm) | tolower(sterm)
 substring(sterm, iterm, iterm)
 replacefirst(sterm, sterm, sterm)
 replacelast(sterm, sterm, sterm)
 replaceall(sterm, sterm, sterm)

Multi-track automata

Multi-track automata can also represent Presburger (linear arithmetic) arithmetic constraints

- Each track represents a single numeric variable
- Encoded as binary integers in 2's complement form

$$
i=j
$$

$i \neq j$
$i=2 \times j$

Linear Arithmetic Constraints

- Can be used to represent sets of valuations of unbounded integers
- Linear integer arithmetic formulas can be stored as a set of polyhedra

$$
F=\vee_{k} \wedge_{l} c_{k l}
$$

where each $c_{k l}$ is a linear equality or inequality constraint and each

$$
\wedge_{l} c_{k l}
$$

is a polyhedron

Automata Representation for Arithmetic Constraints
 [Bartzis, Bultan CIAA' 02, IJFCS ' 02]

- Given an atomic linear arithmetic constraint in one of the following two forms

$$
\sum_{i=1}^{v} a_{i} \cdot x_{i}=c
$$

$$
\sum_{i=1}^{v} a_{i} \cdot x_{i}<c
$$

we construct a DFA which accepts all the solutions to the given constraint

- By combining such automata one can handle full Presburger arithmetic (linear arithmetic constraints + quantification)

Basic Construction

- We first construct a basic state machine which
- Reads one bit of each variable at each step, starting from the least significant bits
v and executes bitwise binary addition and stores the carry in each step in its state

Example
$x+2 y$

010
$+2 \times 001$

100

Number of states: $O\left(\sum_{i=1}^{v}\left|a_{i}\right|\right)$

Automaton Construction

- Equality With 0
- All transitions writing I go to a sink state
- State labeled 0 is the only accepting state
- For disequations (\neq), state labeled 0 is the only rejecting state
- Inequality (<0)
- States with negative carries are accepting
- No sink state
- Non-zero Constant Term c
- Same as before, but now -c is the initial state
- If there is no such state, create one (and possibly some intermediate states which can increase the size by $|\mathrm{c}|$)

Conjunction and Disjunction

- Conjunction and disjunction is handled by generating the product automaton

001	01	1
$0,1,1$	0,1	0

Automaton for $x-y<1$

Automaton for $2 x-y>0$

Integer Automata Construction

$$
C \equiv x=-1 \wedge \mathrm{x}+\mathrm{y}=1
$$

Integer Automata Construction

$$
\begin{gathered}
C \equiv x=-1 \wedge \mathrm{x}+\mathrm{y}=1 \\
C_{1} \equiv x+0 * y+1=0 \Rightarrow\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
C_{2} \equiv x+y-1=0 \Rightarrow\left[\begin{array}{lll}
1 & 1 & -1
\end{array}\right]
\end{gathered}
$$

Integer Automata Construction

$$
\begin{gathered}
C \equiv x=-1 \wedge \mathrm{x}+\mathrm{y}=1 \\
C_{1} \equiv x+0 * y+1=0 \Rightarrow\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] \\
C_{2} \equiv x+y-1=0 \Rightarrow\left[\begin{array}{lll}
1 & 1 & -1
\end{array}\right]
\end{gathered}
$$

- Using automata construction techniques described in:
C. Bartzis and Tevfik Bultan. Efficient symbolic representations for arithmetic constraints in verification. Int.J. Found. Comput. Sci., 2003

Integer Automata Construction

$$
C \equiv x=-1 \wedge \mathrm{x}+\mathrm{y}=1
$$

$(111,010)=(-1,2)$

- Conjunction and disjunction is handled by automata product, negation is handled by automata complement

Constraint Solving: Example Combining String

 and Integer Constraints$$
i=2 \times j \wedge \text { length }(v)=i \wedge \operatorname{match}(v,(a \mid b) *)
$$

automaton for numeric variables
automaton for string variables

Apporoximation

- In general ABC constructs automata that over approximate the solution set
- Some string constraints and combinations of string and integer constraints can lead to non-regular sets,
- which means they are not representable as automata
- ABC provides a sound over-approximation/abstraction:
- If the automata does not accept any strings then the original formula is guaranteed to be NOT satisfiable
- It is possible to also provide a sound underapproximation using automata

Model Counting String Constraints Solver

INPUT
string

constraint: \rightarrow\begin{tabular}{c}
Automata-Based

model Counting
string constraint
solver
(ABC)

OUTPUT

function:
\end{tabular}

Aydin et al.,Automata-based Model Counting for String Constraints. (CAV'I5)

Can you solve it Will Hunting?

Automata-based Model Counting

- Converting constraints to automata reduces the model counting problem to path counting problem in graphs

- We will generate a function $f(k)$
- Given length bound k, it will count the number of paths with length k.
- $f(0)=0,\{ \}$
- $f(1)=2,\{0,1\}$
- $f(2)=3,\{00,10,11\}$

Path Counting via Matrix Exponentiation

$$
C=\neg\left(x \in(01)^{*}\right)
$$

$$
\begin{array}{r}
T=\left[\begin{array}{llll}
0 & 1 & 0 & 01 \\
1 & 0 & 1 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], T^{2}=\left[\begin{array}{llll}
1 & 0 & 2 & 27 \\
0 & 1 & 3 & 1 \\
0 & 0 & 4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right], T^{3}=\left[\begin{array}{llll}
0 & 1 & 3 & 37 \\
1 & 0 & 7 & 4 \\
0 & 0 & 8 & 4 \\
0 & 0 & 0 & 0
\end{array}\right], T^{4}=\left[\begin{array}{llll}
0 & 1 & 1: 87 \\
1 & 0 & 1 & 7 \\
0 & 0 & 7 & 7 \\
0 & 0 & 0 & 8 \\
0 & 0 & 0
\end{array}\right] \\
\\
f(0)=0 \quad f(1)=2 \quad f(2)=3 \quad f(3)=8
\end{array}
$$

Path Counting via Recurrence Relation

$$
f(n, k)=\sum_{(m, n) \in E} f(m, k-1)
$$

$$
f(0,0)=1
$$

$$
f(1,0)=0
$$

$$
f(2,0)=0
$$

$$
f(i, 0)=0
$$

Path Counting via Recurrence Relation

Path Counting via Recurrence Relation

- We can solve system of recurrence relations for final node

$$
\begin{aligned}
& f(0)=0, f(1)=2, f(2)=3 \\
& f(k)=2 f(k-1)+f(k-2)-2 f(k-3)
\end{aligned}
$$

Counting Paths via Generating Functions

- We can compute a generating function, $g(z)$, for a DFA from the associated matrix

$$
T=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
g(z)=(-1)^{n} \frac{\operatorname{det}(I-z T: n+1,1)}{z \times \operatorname{det}(I-z T)}=\frac{2 z-z^{2}}{1-2 z-z^{2}+2 z^{3}}
$$

Counting Paths via Generating Functions

$$
g(z)=\frac{2 z-z^{2}}{1-2 z-z^{2}+2 z^{3}}
$$

- Each $f(i)$ can be computed by Taylor expansion of $g(z)$

$$
\begin{aligned}
& g(z)=\frac{g(0)}{0!} z^{0}+\frac{g^{(1)}(0)}{1!} z^{1}+\frac{g^{(2)}(0)}{2!} z^{2}+\cdots+\frac{g^{(n)}(0)}{n!} z^{n}+\cdots \\
& g(z)=0 z^{0}+2 z^{1}+3 z^{2}+8 z^{3}+15 z^{4}+\cdots \\
& g(z)=f(0) z^{0}+f(1) z^{1}+f(2) z^{2}+f(3) z^{3}+f(4) z^{4}+\cdots
\end{aligned}
$$

Good job Will Hunting!

G is the graph

Foul
1 The adjacency matrix, A.
2 The mathis pining the number of 3 step walks
3) The generating fenctive for milks from $1 \rightarrow$
4) The generating fandiru for walls pome

$$
1 \rightarrow 3
$$

This is correct. Who did this ?

Applicable to Both Automata

- Multi-track Binary Integer Automaton:

- String Automaton:

Model Counting String Constraints Solver

INPUT

string constraint:

C

OUTPUT

counting
function:
$\boldsymbol{f}_{\boldsymbol{c}} \longleftarrow$ length bound: \boldsymbol{k} \downarrow
$\#$ of strings with length $\leq \boldsymbol{k}$ for which \boldsymbol{C} evaluates to true

Automata-based model counting extensions

- In order to scale the automata-based model counting, it is necessary to cache the prior results
- Many constraints generated from programs are equivalent
- By normalizing constraints we can identify many equivalent constraints
- $87 \times$ improvement for the Kaluza big data set

Kaluza Dataset:

1,342 big constraints and 17,554 small

253	42	42			40
	40	39			38
	39	38	36	36	35
99	39	38	34	28	27
99	39	37	32	27	13
				15	3

I,342 big constraints are reduced to 34 equivalent constraints after normalization

2543	1875		1874		1020
	736	399	345	323	216
2537		374	1951		
	729	374	$186 \frac{94}{74}$		
	445	371	$155 \frac{7}{5}$		

I7,554 small constraints are reduced to 360 equivalent constraints after normalization

Automata-based model counting extensions

- More caching
- Cache subformulas
- Automata provide a canonical form for constraints after minimization and determinization
- Generate keys for automata and use a compute cache like BDDs
- Subformula caching leads to order of magnitude improvement for attack synthesis

ABC DEMO

https://github.com/vlab-cs-ucsb/ABC
http://ee2-52-35-130-176.us-west2.compute.amazonaws.com/

