
Automata-based Model Counting

Model Counting String Constraint Solver

2

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

!

of strings with length ≤
for which ! evaluates to true

OUTPUT

counting
function:

$% length bound: #

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

Automata Based Counter (ABC)
A Model Counting String Constraint Solver

3

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

!

of strings with length ≤
for which ! evaluates to true

OUTPUT

counting
function:

$% length bound: #

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

String Constraint Language

4

● A more compact notation

ABC: Constraint language

5

Example String Expressions

6

String Expression Constraint Language

Ja
va

s.length() length(s)

s.isEmpty() length(s) == 0

s.startsWith(t,n) 0 ≤ n ⋀ n ≤ |s| ⋀
begins(substring(s,n,|s|),t)

s.indexOf(t,n) indexof(substring(s,n,|s|),t)

s.replaceAll(p,r) replaceall(s,p,r)

P
H

P

strrpos(s, t) lastindexof(s,t)

substr_replace(s,
t,i,j)

substring(s,0,i).t.substring(s,j,|s|)

strip_tags(s) replaceall(s,("<a>"|"<p>"|...),"")

mysql_real_escape
_string(s)

...replaceall(s
,replaceall(s,“\\",“\\\\")
,"’", “\’")...

Model Counting String Constraint Solver

7

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

!

of strings with length ≤
for which ! evaluates to true

OUTPUT

counting
function:

$% length bound: #

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

ABC in a nutshell

Automata-based constraint solving

Why?

8

ABC in a nutshell

Automata-based constraint solving

Basic idea:

Constructing an automaton for the set of solutions of a
constraint reduces model counting problem to path counting!

9

Automata-based constraint solving

Generate automaton that accepts satisfying solutions for the constraint

ABC can handle both
string and integer constraints

Constraints over
only string
variables
(e.g., v = “abcd”)

Constraints over both
string and integer
variables
(e.g., length(v) = i)

Constraints over
only integer
variables
(e.g., i = 2×j)

10

¬match(v, (ab)*)match(v, (ab)*)v = “ab”

Automata-based constraint solving: expr, ¬

automata
complement

Basic string constraints are directly mapped to automata

11

Automata-based constraint solving: expr, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

automata product

More complex constraints are solved by creating automata for subformulae
then combining their results

12

Automata-based constraint solving: expr, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

More complex constraints are solved by creating automata for subformulae
then combining their results

automata product
13

String Automata Construction:
More Details

14

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

15

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

16

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

17

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

18

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

19

SA
T ?

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

20

YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

21

YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

22

YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

23

YE
S

⋂

" ≡ ¬ % ∈ 01 ∗ ∧ +,- % = 2

String Automata Construction

24

YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

25

YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

26

YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

27

YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

28

YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

29

YE
S

SAT ?

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

30

YE
S

YES

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

31

YE
S

YES

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

32

YE
S

YES

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

33

YE
S

YES

⋂

" ≡ ¬ % ∈ 01 ∗ ∧ +,- % = 2

String Automata Construction

34

YE
S

YES

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

String Automata Construction

35

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

00, 10, 11

Relational constraints
} Relational constraints:

} Constraints that involve multiple variables

} How do we handle relational constraints with automata?

36

Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each variable

v = t ⋀ v ≠ tv = t v ≠ t

37

Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each variable

v = t ⋀ v ≠ tv = t v ≠ t

Satisfiable!
38

Automata-based constraint solving: relational

Single track automata cannot precisely capture relational constraints

Generated automata significantly over-approximate # of satisfying solutions

Use multi-track automata

39

Multi-track automata

Multi-track automaton = DFA accepting tuples of strings

Each track represents the values of a single variable

v = t v = t

Preserves relations
among variables! 40

v ≠ t

Padding symbol λ ∉ Σ used
to align tracks of different
length (appears at the end)

Multi-track automata

v = t ⋀ v ≠ t

Correctly encodes
the constraint

v = t

automata
product

41

Relational String Constraints: Summary
} How to handle constraints with multiple string variables?
} One approach is to use multiple single-track DFAs

} One DFA per variable

} Alternative approach: Use one multi-track DFAs
} Each track represents the values of one string variable

} Using multi-track DFAs:
} Identifies the relations among string variables
} Improves the precision
} Can be used to represent properties that depend on relations

among string variables, e.g., $file = $usr.txt

Multi-track Automata
} Let X (the first track), Y (the second track), be two string

variables
} λ is the padding symbol
} A multi-track automaton that encodes the word

equation:

Y = X.txt

(a,a), (b,b) …

(λ,t) (λ,x) (λ,t)

Alignment
} To conduct relational string analysis, we need to compute

union or intersection of multi-track automata
} Intersection is closed under aligned multi-track automata

} In an aligned multi-track automaton λs are right justified in all tracks, e.g.,
abλλ instead of aλbλ

} However, there exist unaligned multi-track automata that are
not equivalent to any aligned multi-track automata
} Use an alignment algorithm that constructs aligned automata which

over or under approximates unaligned ones
} Over approximation: Generates an aligned multi-track automaton that

accepts a super set of the language recognized by the unaligned multi-
track automaton

} Under approximation: Generates an aligned multi-track automaton that
accepts a subset of the language recognized by the unaligned multi-track
automaton

Word Equations
} Word equations: Equality of two expressions that consist of

concatenation of a set of variables and constants
} Example: X = Y . txt

} Word equations and their combinations (using Boolean connectives)
can be expressed using only equations of the form X = Y . c, X = c .
Y, c = X . Y, X = Y. Z, Boolean connectives and existential
quantification

} Construct multi-track automata from basic word equations
} The automata should accept tuples of strings that satisfy the equation

} Boolean connectives can be handled using intersection, union and
complement

} Existential quantification can be handled using projection

Word Equations to Automata
} Basic equations X = Y . c, X = c . Y, c = X . Y and their

Boolean combinations can be represented precisely using
multi-track automata

} The size of the aligned multi-track automaton for X = c .
Y is exponential in the length of c

} The nonlinear equation X = Y . Z cannot be represented
precisely using an aligned multi-track automaton

Word Equations to Automata
} When we cannot represent an equation precisely, we can

generate an over or under-approximation of it

} Over-approximation: The automaton accepts all string tuples that
satisfy the equation and possibly more

} Under-approximation: The automaton accepts only the string tuples
that satify the equation but possibly not all of them

} We can implement a function CONSTRUCT(equation, sign)
} Which takes a word equation and a sign and creates a multi-track

automata that over or under-approximation of the equation based
on the input sign

Integer Constraints

48

Multi-track automata

Multi-track automata can also represent Presburger (linear arithmetic)
arithmetic constraints

● Each track represents a single numeric variable

● Encoded as binary integers in 2’s complement form
i = j i ≠ j i = 2⨯j

49

Linear Arithmetic Constraints
} Can be used to represent sets of valuations of

unbounded integers
} Linear integer arithmetic formulas can be stored as a set

of polyhedra

where each ckl is a linear equality or inequality constraint
and each

is a polyhedron

cF kl
lk
∧∨=

ckl
l
∧

Automata Representation for Arithmetic
Constraints
[Bartzis, Bultan CIAA’02, IJFCS ’02]

} Given an atomic linear arithmetic constraint in one of the
following two forms

we construct a DFA which accepts all the solutions to the given
constraint

} By combining such automata one can handle full
Presburger arithmetic (linear arithmetic constraints +
quantification)

cxa
v

i
ii
=∑

=

⋅
1

i i
i

v

a x c⋅ <
=
∑
1

Basic Construction
} We first construct a basic state machine which

} Reads one bit of each variable at each step, starting from the
least significant bits

} and executes bitwise binary addition and stores the carry in
each step in its state

0 1 2

0 1
0 0
/ /
0 1

0
1
/
1

0 1
1 1
/ /
0 1

0 1
0 0
/ /
0 1

1
1
/
1

1
1
/
0

0
0
/
1

Example
x + 2y

010
+ 2 ´ 001

1 0 0

0
1
/
0

1
0
/
0

)(
1

||∑
=

v

i
iaONumber of states:

Automaton Construction
} Equality With 0

} All transitions writing 1 go to a sink state
} State labeled 0 is the only accepting state
} For disequations (¹), state labeled 0 is the only rejecting state

} Inequality (<0)
} States with negative carries are accepting
} No sink state

} Non-zero Constant Term c
} Same as before, but now -c is the initial state
} If there is no such state, create one (and possibly some

intermediate states which can increase the size by |c|)

Conjunction and Disjunction

0 0 1
0,1,1

0 1
0,1

1
0

1
0

1
0

0
1

0 0 1
0,1,1

Automaton for x-y<1

-1 0 1

0 0
0,1

0 1
0,1

0 1 1
1,0,1

1 1
0,1

0
1

1
0

Automaton
for 2x-y>0

0

-1

-2

1
1

0
1

1
0

0
0

0 0
0,1

1
1

1
0

1
0

0
1

0 1
0,1

0 1
1,1

1
0

0
0

0
0

0 1
0,1

1
0

0
1

0 1
1,1

1
0

Automaton for x-y<1 Ù
2x-y>0

-1,-1

0,-1

-2,-1

-1,0

-2,0 -2,1

} Conjunction and disjunction is handled by generating the
product automaton

Integer Automata Construction

55

! ≡ # = −1 ∧ x + y = 1

Integer Automata Construction

56

! ≡ # = −1 ∧ x + y = 1
!+ ≡ # + 0 ∗ . + 1 = 0 ⇒ [1 0 1]
!2 ≡ # + . − 1 = 0 ⇒ [1 1 − 1]

Integer Automata Construction

} Using automata construction techniques described in:
C. Bartzis and Tevfik Bultan. Efficient symbolic representations for
arithmetic constraints in verification. Int. J. Found. Comput. Sci., 2003

57

! ≡ # = −1 ∧ x + y = 1
!+ ≡ # + 0 ∗ . + 1 = 0 ⇒ [1 0 1]
!2 ≡ # + . − 1 = 0 ⇒ [1 1 − 1]

!+ !2∧

Integer Automata Construction

} Conjunction and disjunction is handled by automata
product, negation is handled by automata complement

58

! ≡ # = −1 ∧ x + y = 1

(111, 010) = (−1, 2)

i = 2⨯j ∧ length(v) = i ∧ match(v, (a | b)*)

Constraint Solving: Example Combining String
and Integer Constraints

automaton for numeric variables
(vl auxiliary variable encoding length of v)

automaton for string variables

a,b

a,b

Apporoximation
} In general ABC constructs automata that over

approximate the solution set
} Some string constraints and combinations of string and integer

constraints can lead to non-regular sets,
} which means they are not representable as automata

} ABC provides a sound over-approximation/abstraction:
} If the automata does not accept any strings then the original

formula is guaranteed to be NOT satisfiable

} It is possible to also provide a sound under-
approximation using automata

60

Model Counting String Constraints Solver

61

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

!

of strings with length ≤
for which ! evaluates to true

OUTPUT

counting
function:

$% length bound: #

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

Can you solve it Will Hunting?

62

Automata-based Model Counting

63

! ≡ ¬ $ ∈ 01 ∗

} Converting constraints to automata reduces the model counting
problem to path counting problem in graphs

} We will generate a function)(+)
} Given length bound +, it will count the number of paths with length +.
}) 0 = 0, {}
}) 1 = 2, {0,1}
}) 2 = 3, {00,10,11}

Path Counting via Matrix Exponentiation
! = ¬ $ ∈ 01 ∗

64

) =
0
1
0
0

1
0
0
0

1
1
2
0

0
1
1
0
,), =

1
0
0
0

0
1
0
0

3
3
4
0

2
1
2
0
,)/ =

0
1
0
0

1
0
0
0

7
7
8
0

3
4
4
0
,)2 =

0
1
0
0

1
0
0
0

15
15
16
0

8
7
8
0

5 0 = 0 5 1 = 2 5 2 = 3 5 3 = 8

Path Counting via Recurrence Relation

65

! ", $ = &
((,))∈,

!(-, $ − 1)

! 0,0 = 1
! 1,0 = 0
! 2,0 = 0
…
! 3, 0 = 0

Path Counting via Recurrence Relation

66

! 4, $ = ! 2, $ − 1 + ! 3, $ − 1
! 3, $ = ! 1, $ − 1 + ! 2, $ − 1 + ! 3, $ − 1
! 2, $ = ! 1, $ − 1
! 1, $ = ! 2, $ − 1
! 1,0 = 1, ! 2,0 = 0, ! 3,0 = 0, ! 4,0 = 0

Path Counting via Recurrence Relation
} We can solve system of recurrence relations for final

node

! 0 = 0, ! 1 = 2, ! 2 = 3
! (= 2! (− 1 + ! (− 2 − 2! (− 3

67

} We can compute a generating function, ! " , for a DFA
from the associated matrix

! " = (−1)(det(, − "-: / + 1,1)"×det(, − "-) = 2" − "4
1 − 2" − "4 + 2"5

Counting Paths via Generating Functions

68

- =
0
1
0
0

1
0
0
0

1
1
2
0

0
1
1
0

! " = 2" − "&
1 − 2" − "& + 2")

} Each *(,) can be computed by Taylor expansion of ! "

! " = !(0)
0! "0 + !

(1)(0)
1! "1 + !

(&)(0)
2! "& + ⋯+ !

(3)(0)
4! "3 + ⋯

! " = 0"0 + 2"1 + 3"& + 8") + 15"8 + ⋯
! " = *(0)"0 + *(1)"1 + *(2)"& + *(3)") + *(4)"8 + ⋯

Counting Paths via Generating Functions

69

Good job Will Hunting!

70

Applicable to Both Automata

71

} Multi-track Binary Integer Automaton:

} String Automaton:

Model Counting String Constraints Solver

72

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

!

of strings with length ≤
for which ! evaluates to true

OUTPUT

counting
function:

$% length bound: #

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

Automata-based model counting
extensions

● In order to scale the automata-based model counting, it
is necessary to cache the prior results

● Many constraints generated from programs are
equivalent
○ By normalizing constraints we can identify many equivalent

constraints

● 87X improvement for the Kaluza big data set
73

Kaluza Dataset:
1,342 big constraints and 17,554 small
constraints

74

1,342 big constraints are reduced
to 34 equivalent constraints after
normalization

17,554 small constraints are reduced
to 360 equivalent constraints after
normalization

Automata-based model counting
extensions

● More caching
○ Cache subformulas
○ Automata provide a canonical form for constraints after

minimization and determinization
○ Generate keys for automata and use a compute cache like

BDDs
● Subformula caching leads to order of magnitude

improvement for attack synthesis

75

ABC DEMO

76

https://github.com/vlab-cs-ucsb/ABC

http://ec2-52-35-130-176.us-west-
2.compute.amazonaws.com/

https://github.com/vlab-cs-ucsb/ABC
http://ec2-52-35-130-176.us-west-2.compute.amazonaws.com/

