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String Constraint Language
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● A more compact notation

ABC: Constraint language
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Example String Expressions
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String Expression Constraint Language

Ja
va

s.length() length(s)

s.isEmpty() length(s) == 0

s.startsWith(t,n) 0 ≤ n ⋀ n ≤ |s| ⋀
begins(substring(s,n,|s|),t)

s.indexOf(t,n) indexof(substring(s,n,|s|),t)

s.replaceAll(p,r) replaceall(s,p,r)

P
H

P

strrpos(s, t) lastindexof(s,t)

substr_replace(s,
t,i,j)

substring(s,0,i).t.substring(s,j,|s|)

strip_tags(s) replaceall(s,("<a>"|"<p>"|...),"")

mysql_real_escape
_string(s)

...replaceall(s
,replaceall(s,“\\",“\\\\")
,"’", “\’")...



Model Counting String Constraint Solver
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OUTPUT
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ABC in a nutshell 

Automata-based constraint solving

Why?
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ABC in a nutshell 

Automata-based constraint solving

Basic idea:

Constructing an automaton for the set of solutions of a 
constraint reduces model counting problem to path counting!
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Automata-based constraint solving

Generate automaton that accepts satisfying solutions for the constraint

ABC can handle both
string and integer constraints

Constraints over 
only string 
variables
(e.g., v = “abcd”)

Constraints over both 
string and integer 
variables
(e.g., length(v) = i)

Constraints over 
only integer 
variables
(e.g., i = 2×j)
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¬match(v, (ab)*)match(v, (ab)*)v = “ab”

Automata-based constraint solving: expr, ¬

automata 
complement

Basic string constraints are directly mapped to automata
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Automata-based constraint solving: expr, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

automata product

More complex constraints are solved by creating automata for subformulae 
then combining their results
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Automata-based constraint solving: expr, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

More complex constraints are solved by creating automata for subformulae 
then combining their results

automata product
13



String Automata Construction:
More Details
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! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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SA
T ?

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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String Automata Construction
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String Automata Construction
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YE
S

⋂

" ≡ ¬ % ∈ 01 ∗ ∧ +,- % = 2



String Automata Construction
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! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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String Automata Construction
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String Automata Construction
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String Automata Construction
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YE
S

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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YE
S

SAT ?

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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YE
S

YES

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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YE
S

YES

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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YE
S

YES

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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YE
S

YES

⋂

" ≡ ¬ % ∈ 01 ∗ ∧ +,- % = 2



String Automata Construction
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YE
S

YES

! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2



String Automata Construction
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! ≡ ¬ $ ∈ 01 ∗ ∧ *+, $ = 2

00, 10, 11



Relational constraints
} Relational constraints:

} Constraints that involve multiple variables

} How do we handle relational constraints with automata?

36



Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each variable

v = t ⋀ v ≠ tv = t v ≠ t
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Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each variable

v = t ⋀ v ≠ tv = t v ≠ t

Satisfiable!
38



Automata-based constraint solving: relational

Single track automata cannot precisely capture relational constraints

Generated automata significantly over-approximate # of satisfying solutions

Use multi-track automata

39



Multi-track automata

Multi-track automaton = DFA accepting tuples of strings

Each track represents the values of a single variable

v = t v = t

Preserves relations 
among variables! 40



v ≠ t

Padding symbol λ ∉ Σ used 
to align tracks of different 
length (appears at the end)

Multi-track automata

v = t ⋀ v ≠ t

Correctly encodes
the constraint

v = t

automata 
product

41



Relational String Constraints: Summary
} How to handle constraints with multiple string variables?
} One approach is to use multiple single-track DFAs

} One DFA per variable

} Alternative approach: Use one multi-track DFAs
} Each track represents the values of one string variable

} Using multi-track DFAs:
} Identifies the relations among string variables
} Improves the precision
} Can be used to represent properties that depend on relations 

among string variables, e.g., $file = $usr.txt



Multi-track Automata
} Let X (the first track), Y (the second track), be two string 

variables
} λ is the padding symbol
} A multi-track automaton that encodes the word 

equation:

Y = X.txt

(a,a), (b,b) …

(λ,t) (λ,x) (λ,t)



Alignment
} To conduct relational string analysis, we need to compute 

union or intersection of multi-track automata
} Intersection is closed under aligned multi-track automata

} In an aligned multi-track automaton λs are right justified in all tracks, e.g., 
abλλ instead of aλbλ

} However, there exist unaligned multi-track automata that are 
not equivalent to any aligned multi-track automata 
} Use an alignment algorithm that constructs aligned automata which 

over or under approximates unaligned ones
} Over approximation: Generates an aligned multi-track automaton that 

accepts a super set of the language recognized by the unaligned multi-
track automaton

} Under approximation: Generates an aligned multi-track automaton that 
accepts a subset of the language recognized by the unaligned multi-track 
automaton



Word Equations
} Word equations: Equality of two expressions that consist of 

concatenation of a set of variables and constants
} Example:  X  = Y . txt

} Word equations and their combinations (using Boolean connectives) 
can be expressed using only equations of the form X = Y . c, X = c . 
Y, c = X . Y, X = Y. Z, Boolean connectives and existential 
quantification

} Construct multi-track automata from basic word equations
} The automata should accept tuples of strings that satisfy the equation

} Boolean connectives can be handled using intersection, union and 
complement

} Existential quantification can be handled using projection



Word Equations to Automata
} Basic equations X = Y . c, X = c . Y, c = X . Y and their 

Boolean combinations can be represented precisely using 
multi-track automata

} The size of the aligned multi-track automaton for X = c . 
Y is exponential in the length of c

} The nonlinear equation X = Y . Z cannot be represented 
precisely using an aligned multi-track automaton



Word Equations to Automata
} When we cannot represent an equation precisely, we can 

generate an over or under-approximation of it 

} Over-approximation: The automaton accepts all string tuples  that 
satisfy the equation and possibly more

} Under-approximation: The automaton accepts only the string tuples 
that satify the equation but possibly not all of them

} We can implement a function CONSTRUCT(equation, sign)
} Which takes a word equation and a sign and creates a multi-track 

automata that over or under-approximation of the equation based 
on the input sign



Integer Constraints
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Multi-track automata

Multi-track automata can also represent Presburger (linear arithmetic) 
arithmetic constraints

● Each track represents a single numeric variable

● Encoded as binary integers in 2’s complement form
i = j i ≠ j i = 2⨯j

49



Linear Arithmetic Constraints
} Can be used to represent sets of valuations of 

unbounded integers
} Linear integer arithmetic formulas can be stored as a set 

of polyhedra

where each ckl is a linear equality or inequality constraint 
and  each

is a polyhedron

cF kl
lk
∧∨=

ckl
l
∧



Automata Representation for Arithmetic 
Constraints
[Bartzis, Bultan CIAA’02, IJFCS ’02]

} Given an atomic linear arithmetic constraint in one of the 
following two forms

we construct a DFA which accepts all the solutions to the given 
constraint

} By combining such automata one can handle full 
Presburger arithmetic (linear arithmetic constraints + 
quantification) 

cxa
v

i
ii
=∑

=

⋅
1

i i
i

v

a x c⋅ <
=
∑
1



Basic Construction
} We first construct a basic state machine which

} Reads one bit of each variable at each step, starting from the 
least significant bits

} and executes bitwise binary addition and stores the carry in 
each step in its state

0 1 2

0  1
0  0
/   /
0  1

0
1
/ 
1

0  1
1  1
/   /
0  1

0  1
0  0
/   /
0  1

1
1
/
1

1 
1 
/  
0 

0
0
/
1

Example
x + 2y

010
+ 2 ´ 001

1 0 0

0
1
/ 
0

1
0
/
0

)(
1

||∑
=

v

i
iaONumber of states:



Automaton Construction
} Equality With 0

} All transitions writing 1 go to a sink state
} State labeled 0 is the only accepting state
} For disequations (¹), state labeled 0 is the only rejecting state

} Inequality (<0)
} States with negative carries are accepting
} No sink state

} Non-zero Constant Term c
} Same as before, but now -c is the initial state
} If there is no such state, create one (and possibly some 

intermediate states which can increase the size by |c|)



Conjunction and Disjunction 

0 0 1
0,1,1

0 1
0,1

1
0

1
0

1
0

0
1

0 0 1
0,1,1

Automaton for x-y<1

-1 0 1

0 0
0,1

0 1
0,1

0 1 1
1,0,1

1 1
0,1

0
1

1
0

Automaton
for 2x-y>0

0

-1

-2

1
1

0
1

1
0

0
0

0 0
0,1

1
1

1
0

1
0

0
1

0 1
0,1

0 1
1,1

1
0

0
0

0
0

0 1
0,1

1
0

0
1

0 1
1,1

1
0

Automaton for x-y<1 Ù
2x-y>0

-1,-1

0,-1

-2,-1

-1,0

-2,0 -2,1

} Conjunction and disjunction is handled by generating the 
product automaton



Integer Automata Construction
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! ≡ # = −1 ∧ x + y = 1



Integer Automata Construction
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! ≡ # = −1 ∧ x + y = 1
!+ ≡ # + 0 ∗ . + 1 = 0 ⇒ [1 0 1]
!2 ≡ # + . − 1 = 0 ⇒ [1 1 − 1]



Integer Automata Construction

} Using automata construction techniques described in: 
C. Bartzis and Tevfik Bultan. Efficient symbolic representations for 
arithmetic constraints in verification. Int. J. Found. Comput. Sci., 2003
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! ≡ # = −1 ∧ x + y = 1
!+ ≡ # + 0 ∗ . + 1 = 0 ⇒ [1 0 1]
!2 ≡ # + . − 1 = 0 ⇒ [1 1 − 1]

!+ !2∧



Integer Automata Construction

} Conjunction and disjunction is handled by automata 
product, negation is handled by automata complement

58

! ≡ # = −1 ∧ x + y = 1

(111, 010) = (−1, 2)



i = 2⨯j ∧ length(v) = i ∧ match(v, (a | b)*) 

Constraint Solving: Example Combining String 
and Integer Constraints

automaton for numeric variables
(vl auxiliary variable encoding length of v)

automaton for string variables

a,b

a,b



Apporoximation
} In general ABC constructs automata that over 

approximate the solution set
} Some string constraints and combinations of string and integer 

constraints can lead to non-regular sets,
} which means they are not representable as automata

} ABC provides a sound over-approximation/abstraction:
} If the automata does not accept any strings then the original 

formula is guaranteed to be NOT satisfiable

} It is possible to also provide a sound under-
approximation using automata
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Model Counting String Constraints Solver
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Automata-Based 
model Counting 
string constraint 

solver
(ABC)

INPUT

string 
constraint:

!

# of strings with length ≤ #
for which ! evaluates to true

OUTPUT

counting 
function:

$% length bound: #

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)



Can you solve it Will Hunting?
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Automata-based Model Counting
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! ≡ ¬ $ ∈ 01 ∗

} Converting constraints to automata reduces the model counting 
problem to path counting problem in graphs

} We will generate a function )(+)
} Given length bound +, it will count the number of paths with length +. 
} ) 0 = 0, {}
} ) 1 = 2, {0,1}
} ) 2 = 3, {00,10,11}



Path Counting via Matrix Exponentiation
! = ¬ $ ∈ 01 ∗
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) =
0
1
0
0

1
0
0
0

1
1
2
0

0
1
1
0
, ), =

1
0
0
0

0
1
0
0

3
3
4
0

2
1
2
0
, )/ =

0
1
0
0

1
0
0
0

7
7
8
0

3
4
4
0
, )2 =

0
1
0
0

1
0
0
0

15
15
16
0

8
7
8
0

5 0 = 0 5 1 = 2 5 2 = 3 5 3 = 8



Path Counting via Recurrence Relation
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! ", $ = &
((,))∈,

!(-, $ − 1)

! 0,0 = 1
! 1,0 = 0
! 2,0 = 0
…
! 3, 0 = 0



Path Counting via Recurrence Relation
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! 4, $ = ! 2, $ − 1 + ! 3, $ − 1
! 3, $ = ! 1, $ − 1 + ! 2, $ − 1 + ! 3, $ − 1
! 2, $ = ! 1, $ − 1
! 1, $ = ! 2, $ − 1
! 1,0 = 1, ! 2,0 = 0, ! 3,0 = 0, ! 4,0 = 0



Path Counting via Recurrence Relation
} We can solve system of recurrence relations for final 

node

! 0 = 0, ! 1 = 2, ! 2 = 3
! ( = 2! ( − 1 + ! ( − 2 − 2! ( − 3
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} We can compute a generating function, ! " , for a DFA 
from the associated matrix

! " = (−1)(det(, − "-: / + 1,1)"×det(, − "-) = 2" − "4
1 − 2" − "4 + 2"5

Counting Paths via Generating Functions

68

- =
0
1
0
0

1
0
0
0

1
1
2
0

0
1
1
0



! " = 2" − "&
1 − 2" − "& + 2")

} Each *(,) can be computed by Taylor expansion of ! "

! " = !(0)
0! "0 + !

(1)(0)
1! "1 + !

(&)(0)
2! "& + ⋯+ !

(3)(0)
4! "3 + ⋯

! " = 0"0 + 2"1 + 3"& + 8") + 15"8 + ⋯
! " = *(0)"0 + *(1)"1 + *(2)"& + *(3)") + *(4)"8 + ⋯

Counting Paths via Generating Functions
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Good job Will Hunting!
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Applicable to Both Automata
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} Multi-track Binary Integer Automaton:

} String Automaton:



Model Counting String Constraints Solver
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Automata-Based 
model Counting 
string constraint 

solver
(ABC)

INPUT

string 
constraint:

!

# of strings with length ≤ #
for which ! evaluates to true

OUTPUT

counting 
function:

$% length bound: #

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)



Automata-based model counting 
extensions

● In order to scale the automata-based model counting, it 
is necessary to cache the prior results 

● Many constraints generated from programs are 
equivalent
○ By normalizing constraints we can identify many equivalent 

constraints

● 87X improvement for the Kaluza big data set
73



Kaluza Dataset: 
1,342 big constraints and 17,554 small 
constraints

74

1,342 big constraints are reduced 
to 34 equivalent constraints after
normalization

17,554 small constraints are reduced 
to 360 equivalent constraints after
normalization



Automata-based model counting 
extensions

● More caching 
○ Cache subformulas
○ Automata provide a canonical form for constraints after 

minimization and determinization
○ Generate keys for automata and use a compute cache like 

BDDs
● Subformula caching leads to order of magnitude 

improvement for attack synthesis
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ABC DEMO
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https://github.com/vlab-cs-ucsb/ABC

http://ec2-52-35-130-176.us-west-
2.compute.amazonaws.com/

https://github.com/vlab-cs-ucsb/ABC
http://ec2-52-35-130-176.us-west-2.compute.amazonaws.com/

