Automata-Based String Analysis
Model Counting

Tevfik Bultan, Abdulbaki Aydin, Lucas Bang

Verification Laboratory
http://vlab.cs.ucsb.edu
Department of Computer Science
Overview
Overview

String Constraints
Overview

String Constraints → Model Counter

Number of Solutions: 2 / 46
Overview

- **String Constraints** → **Model Counter** → **Number of Solutions**

- Number of Solutions: 2 / 46
Can you solve it, Will Hunting?
Can you solve it, Will Hunting?

Given the graph, find:
1) the adjacency matrix A
2) the matrix giving the number of 3-step walks
3) the generating function for walks from point $i \rightarrow j$
4) the generating function for walks from points $1 \rightarrow 3$
Motivation and Background
Model Counting Boolean Formulas
String Model Counting
 - Automata-Based Methods
 - Non-Automata-Based Method
String Model Counting Benchmarks
A Motivating Example

An adversary learns a password. User must select a new password.
A Motivating Example

An adversary learns a password. User must select a new password.

Policy for selecting a new password.
A Motivating Example

An adversary learns a password. User must select a new password.

Policy for selecting a new password.

```java
public Boolean NewPWCheck(String new_p, old_p){
    if( old_p.contains(new_p) || ...
    new_p.contains(old_p) || ...
    old_p.reverse().contains(new_p) || ...
    new_p.contains(old_p.reverse()) ){
        System.out.println("Too similar.");
        return false;
    } else
        return true;
}
```
A Motivating Example

Suppose an adversary knows $\text{old}_p = "abc-16"$
A Motivating Example

Suppose an adversary knows $old_p = "abc-16"$ and knows the policy.
A Motivating Example

Suppose an adversary knows \texttt{old_p = "abc-16"} and knows the policy.

Constraints on possible values of NEW_P

\[
\begin{align*}
\text{(not (contains (toLowerCase NEW_P) "abc-16"))} \\
\text{(not (contains (toLowerCase NEW_P) "61-cba"))} \\
\text{(not (contains "abc-16" (toLowerCase NEW_P)))} \\
\text{(not (contains "61-cba" (toLowerCase NEW_P)))}
\end{align*}
\]
A Motivating Example

Suppose an adversary knows \(\text{old}_p = "abc-16" \) and knows the policy.

Constraints on possible values of NEW_P

- \(\text{not (contains (toLower NEW_P) "abc-16")} \)
- \(\text{not (contains (toLower NEW_P) "61-cba")} \)
- \(\text{not (contains "abc-16" (toLower NEW_P))} \)
- \(\text{not (contains "61-cba" (toLower NEW_P))} \)

If password length = \(n \), then there are \(|\Sigma|^n \) possible passwords.
A Motivating Example

Suppose an adversary knows $old_p = \text{"abc-16"}$ and knows the policy.

Constraints on possible values of NEW_P

- $(\neg \text{contains (toLower NEW_P)} \text{"abc-16"}))$
- $(\neg \text{contains (toLower NEW_P)} \text{"61-cba"}))$
- $(\neg \text{contains "abc-16" (toLower NEW_P)})$
- $(\neg \text{contains "61-cba" (toLower NEW_P)})$

If password length = n, then there are $|\Sigma|^n$ possible passwords.

If adversary knows old_p and the policy . . .

- how much is the reduction in search space?
- what is the probability of guessing the new password?
In general, we want to answer questions regarding

- probability of program behaviors,
- number of inputs that cause an error,
- amount of information flow,
- information leakage,
- other, as yet unforeseen, applications...
Motivation

In general, we want to answer questions regarding

- probability of program behaviors,
- number of inputs that cause an error,
- amount of information flow,
- information leakage,
- other, as yet unforeseen, applications...

These are **quantitative** questions which require **model counting**.
Motivation

Techniques for model counting for other theories

Boolean Logic Formulas

- DPLL
- Random sampling based
- Approximations
Motivation

Techniques for model counting for other theories

<table>
<thead>
<tr>
<th>Boolean Logic Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ DPLL</td>
</tr>
<tr>
<td>▶ Random sampling based</td>
</tr>
<tr>
<td>▶ Approximations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linear Integer Arithmetic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ LattE</td>
</tr>
<tr>
<td>▶ Barvinok</td>
</tr>
</tbody>
</table>
Motivation

String manipulating programs are pervasive

- security critical functions,
- server side sanitization functions,
- databases,
- dynamic code generation.
Motivation

String manipulating programs are pervasive

- security critical functions,
- server side sanitization functions,
- databases,
- dynamic code generation.

We need model counting for strings in order to make quantitative guarantees about these types of programs.
Motivation

String manipulating programs are pervasive

- security critical functions,
- server side sanitization functions,
- databases,
- dynamic code generation.

We need model counting for strings in order to make quantitative guarantees about these types of programs.

Software for string constraint model counting

- Automata-Based Model Counter (ABC) [Aydin, et. al. CAV 2015]
- String Model Counter (SMC) [Luu, et. al. PLDI 2014]
- S3# [Trinh, et. al. CAV 2017]
Outline

- Motivation and Background
- Model Counting Boolean Formulas
- String Model Counting
 - Automata-Based Methods
 - Non-Automata-Based Method
- String Model Counting Benchmarks
Recall the classic (boolean) SAT problem

Given a formula ϕ from propositional logic, is it possible to assign all variables the values T (true) or F (false) so that the formula is true?
Model Counting

Recall the classic (boolean) SAT problem

Given a formula \(\phi \) from propositional logic, is it possible to assign all variables the values \(T \) (true) or \(F \) (false) so that the formula is true?

Example:

\[
\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v)
\]
Model Counting

Recall the classic (boolean) SAT problem

Given a formula ϕ from propositional logic, is it possible to assign all variables the values T (true) or F (false) so that the formula is true?

Example:

$$\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v)$$

ϕ is satisfiable by setting

$$(x, y, z, w, v) = (T, F, T, F, T).$$
Recall the classic (boolean) SAT problem

Given a formula ϕ from propositional logic, is it possible to assign all variables the values T (true) or F (false) so that the formula is true?

Example:

$$\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v)$$

ϕ is satisfiable by setting

$$(x, y, z, w, v) = (T, F, T, F, T).$$

A satisfying assignment is called a model for ϕ.

The **model counting problem**

Given a formula ϕ over some theory (Boolean, LIA, Strings, . . .)

how many models are there for ϕ?
The **model counting problem**

Given a formula ϕ over some theory (Boolean, LIA, Strings, \ldots)

how many models are there for ϕ?

Difficulty of Model Counting

Model counting is “at least as hard” as satisfiability check.
Model Counting

The model counting problem

Given a formula ϕ over some theory (Boolean, LIA, Strings, ...)

how many models are there for ϕ?

Difficulty of Model Counting

Model counting is “at least as hard” as satisfiability check.

$|\phi| > 0 \iff \phi$ is satisfiable
Model Counting Boolean SAT

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>w</td>
<td>v</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

φ = (x ∨ y) ∧ (¬x ∨ z) ∧ (z ∨ w) ∧ x ∧ (y ∨ v)

φ has 6 models.

Truth table method is $θ(2^n)$.

DPLL method is $O(2^n)$, but is faster in practice.

\[\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v) \]

\(\phi\) has 6 models.
Model Counting Boolean SAT

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\[\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v) \]

\(\phi \) has 6 models.

Truth table method is \(\theta(2^n) \).
Model Counting Boolean SAT

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

$\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v)$

ϕ has 6 models.

Truth table method is $\theta(2^n)$.

DPLL method is $O(2^n)$, but is faster in practice.\(^1\)

\(^1\) Birnbaum, et. al. The good old Davis-Putnam procedure helps counting models. JAIR 1999.
Outline

- Motivation and Background
- Model Counting Boolean Formulas
- String Model Counting
 - Automata-Based Methods
 - Non-Automata-Based Method
- String Model Counting Benchmarks
A formula over the theory of strings can involve:

- Word Equations: \(X \circ U = Y \circ Z \)
- Length Constraints: \(4 < \text{Length}(X) < 10 \)
- Regular Language Membership: \(X \in (a|b)^* \)
- and more complex constraints: \((X = \text{substring}(Y, i, j), \ldots) \)
A formula over the theory of strings can involve

- Word Equations: $X \circ U = Y \circ Z$
A formula over the theory of strings can involve

- **Word Equations**: $X \circ U = Y \circ Z$
- **Length Constraints**: $4 < \text{Length}(X) < 10$
- and more complex constraints: $(X = \text{substring}(Y, i, j), \ldots)$
A formula over the theory of strings can involve:

- **Word Equations**: $X \circ U = Y \circ Z$
- **Length Constraints**: $4 < \text{Length}(X) < 10$
- **Regular Language Membership**: $X \in (a|b)^*$
A formula over the theory of strings can involve

- **Word Equations**: $X \circ U = Y \circ Z$
- **Length Constraints**: $4 < \text{Length}(X) < 10$
- **Regular Language Membership**: $X \in (a|b)^*$
- **and more complex constraints**: $(X = \text{substring}(Y, i, j), \ldots)$
A formula over the theory of strings can involve:

- **Word Equations**: \(X \circ U = Y \circ Z \)
- **Length Constraints**: \(4 < \text{Length}(X) < 10 \)
- **Regular Language Membership**: \(X \in (a|b)^* \)
- **and more complex constraints**: \(X = \text{substring}(Y, i, j), \ldots \)
Model Counting Strings

\[X \in (0\mid(1(01^*0)^*1))^* \]

Q: How many solutions for \(X \)?

\[a_0 = 1, \quad a_1 = 1, \quad a_2 = 1, \quad a_3 = 1, \quad a_4 = 3, \quad a_5 = 5, \ldots \]
Model Counting Strings

\[X \in (0|(1(01^*0)^1))* \]

Q: How many solutions for \(X \)? A: Infinitely many!
Model Counting Strings

\[X \in (0(1(01^*0)^1))^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?
Model Counting Strings

\[X \in (0|((1(01*0)*1))*)^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?

A counting sequence for language \(L \) encodes

\[a_k = |\{s : s \in L, \text{len}(s) = k\}| \]
Model Counting Strings

\[X \in (0 | (1(01^*0)^*1))^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?

A counting sequence for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]
Model Counting Strings

\[X \in (0|(1(01^*0)^*1))^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?

A counting sequence for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[a_0 = 1 \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
</tbody>
</table>
Model Counting Strings

\[X \in (0|(1(01^*0)^*1))^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?

A counting sequence for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[a_0 = 1, \ a_1 = 1 \]

\[
\begin{array}{ccc}
 k & X & a_k \\
 0 & \varepsilon & 1 \\
 1 & 0 & 1 \\
\end{array}
\]
Model Counting Strings

\[X \in (0|((1(01^*0)^1)))^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?

A counting sequence for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[a_0 = 1, \quad a_1 = 1, \quad a_2 = 1 \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>
Model Counting Strings

\[X \in (0|1(01^*0)^*1))^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?

A counting sequence for language \(\mathcal{L} \) encodes

\[a_k = |\{s : s \in \mathcal{L}, \text{len}(s) = k\}| \]

\(a_0 = 1, a_1 = 1, a_2 = 1, a_3 = 1 \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>1</td>
</tr>
</tbody>
</table>
Model Counting Strings

\[X \in (0|1(01^*0^*1))^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?

A counting sequence for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[a_0 = 1, \ a_1 = 1, \ a_2 = 1, \ a_3 = 1, \ a_4 = 3 \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1001, 1100, 1111</td>
<td>3</td>
</tr>
</tbody>
</table>
Model Counting Strings

\[X \in (0|(1(01^*0)^*1))^* \]

Q: How many solutions for \(X \)? A: Infinitely many!

Q: How many solutions for \(X \) of length \(k \)?

A counting sequence for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[a_0 = 1, a_1 = 1, a_2 = 1, a_3 = 1, a_4 = 3, a_5 = 5, \ldots \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1001, 1100, 1111</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>10010, 10101, 11000, 11011, 11110</td>
<td>5</td>
</tr>
</tbody>
</table>
Outline

- Motivation and Background
- Model Counting Boolean Formulas
- String Model Counting
 - Automata-Based Methods
 - Non-Automata-Based Method
- String Model Counting Benchmarks
Deterministic Finite Automata
Deterministic Finite Automata

\[X \in (0|(1(01^*0)^*1))^* \]
Deterministic Finite Automata

\[X \in (0|(1(01^*0)^*1))^* \]
Deterministic Finite Automata

\[X \in (0|(1(01^*0)^*1))^* \]

\[|\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \equiv |\{ \pi : \pi \text{ is accepting path of length } k \}| \]
Deterministic Finite Automata

\[X \in (0|(1(01^*0)^*1))^* \]

\[
\begin{align*}
|\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| & \equiv |\{ \pi : \pi \text{ is accepting path of length } k \}| \\
\text{String Counting} & \equiv \text{Path Counting}
\end{align*}
\]
How to count paths of length k?
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

a_k
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

$a_k(s) =$
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

$$a_k(s) = a_{k-1}(s')$$
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

$$a_k(s) = a_{k-1}(s')$$
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

$$a_k(s) = a_{k-1}(s')$$
Deterministic Finite Automata

How to count paths of length \(k \)?

Dynamic Programming

\[
a_k(s) = \sum_{s' \to s} a_{k-1}(s')
\]
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

Initial Conditions

$$a_k(s) = \sum_{s' \rightarrow s} a_{k-1}(s')$$
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

Initial Conditions

$a_0(0) = 1$

$$a_k(s) = \sum_{s' \rightarrow s} a_{k-1}(s')$$
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

Initial Conditions

$$a_0(0) = 1, a_0(1) = 0, a_0(2) = 0$$

$$a_k(s) = \sum_{s' \rightarrow s} a_{k-1}(s')$$
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

Initial Conditions

$$a_0(0) = 1, \ a_0(1) = 0, \ a_0(2) = 0$$

System of Recurrences

$$a_k(0) = a_{k-1}(0) + a_{k-1}(1)$$
Deterministic Finite Automata

How to count paths of length k?

Dynamic Programming

Initial Conditions

$$a_0(0) = 1, \ a_0(1) = 0, \ a_0(2) = 0$$

System of Recurrences

$$a_k(0) = a_{k-1}(0) + a_{k-1}(1)$$
$$a_k(1) = a_{k-1}(0) + a_{k-1}(2)$$
$$a_k(2) = a_{k-1}(1) + a_{k-1}(2)$$
Deterministic Finite Automata

How to count paths of length k?

Matrix Exponentiation

System of Recurrences

$$a_k(0) = a_{k-1}(0) + a_{k-1}(1)$$

$$a_k(1) = a_{k-1}(0) + a_{k-1}(2)$$

$$a_k(2) = a_{k-1}(1) + a_{k-1}(2)$$

$$
\begin{pmatrix}
 a_0(k) \\
 a_1(k) \\
 a_2(k)
\end{pmatrix}
=
\begin{pmatrix}
 1 & 1 & 0 \\
 1 & 0 & 1 \\
 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
 a_0(k-1) \\
 a_1(k-1) \\
 a_2(k-1)
\end{pmatrix}
$$

$$a_k = (A^k)_{0,0}$$
Deterministic Finite Automata

How to count paths of length k?

System of Recurrences

\[
\begin{align*}
a_k(0) &= a_{k-1}(0) + a_{k-1}(1) \\
a_k(1) &= a_{k-1}(0) + a_{k-1}(2) \\
a_k(2) &= a_{k-1}(1) + a_{k-1}(2)
\end{align*}
\]
Deterministic Finite Automata

How to count paths of length k?

System of Recurrences

\[
\begin{align*}
a_k(0) &= a_{k-1}(0) + a_{k-1}(1) \\
a_k(1) &= a_{k-1}(0) + a_{k-1}(2) \\
a_k(2) &= a_{k-1}(1) + a_{k-1}(2)
\end{align*}
\]

\[
\begin{pmatrix}
a_0(k) \\
a_1(k) \\
a_2(k)
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
a_0(k-1) \\
a_1(k-1) \\
a_2(k-1)
\end{pmatrix}
\]
Deterministic Finite Automata

How to count paths of length k?

Matrix Exponentiation

System of Recurrences

\[
\begin{align*}
a_k(0) &= a_{k-1}(0) + a_{k-1}(1) \\
a_k(1) &= a_{k-1}(0) + a_{k-1}(2) \\
a_k(2) &= a_{k-1}(1) + a_{k-1}(2)
\end{align*}
\]

\[
\begin{pmatrix}
a_0(k) \\
a_1(k) \\
a_2(k)
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
^k
\begin{pmatrix}
a_0(k-1) \\
a_1(k-1) \\
a_2(k-1)
\end{pmatrix}
\]
How to count paths of length k?

Matrix Exponentiation

System of Recurrences

$$a_k(0) = a_{k-1}(0) + a_{k-1}(1)$$
$$a_k(1) = a_{k-1}(0) + a_{k-1}(2)$$
$$a_k(2) = a_{k-1}(1) + a_{k-1}(2)$$

$$\begin{pmatrix}
a_0(k) \\
a_1(k) \\
a_2(k)
\end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}^k \begin{pmatrix} 1 \\
0 \\
0
\end{pmatrix}$$

$$a_k = (A^k)_{0,F}$$
Deterministic Finite Automata

How to count paths of length k?

Matrix Exponentiation

System of Recurrences

$$a_k(0) = a_{k-1}(0) + a_{k-1}(1)$$
$$a_k(1) = a_{k-1}(0) + a_{k-1}(2)$$
$$a_k(2) = a_{k-1}(1) + a_{k-1}(2)$$

$$\begin{pmatrix}
a_0(k) \\
a_1(k) \\
a_2(k)
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}^k
\begin{pmatrix}
a_0(k-1) \\
a_1(k-1) \\
a_2(k-1)
\end{pmatrix}$$

$$a_k = (A^k)_{0,F}$$

$$a_4 = (A^4)_{0,0} = 3$$
Generating functions are a way to compactly represent (possibly infinite) sequences.

\[g(z) = \frac{1}{1 - z} = \sum_{k=0}^{\infty} a_k z^k \]

Sequence element \(a_k \) is the \(k \)th Taylor series coefficient of \(g(z) \).
Generating functions are a way to compactly represent (possibly infinite) sequences.
Generating functions are a way to compactly represent (possibly infinite) sequences.

\[g(z) = \frac{1}{(1 - z)^3} \]
Generating functions are a way to compactly represent (possibly infinite) sequences.

\[
g(z) = \frac{1}{(1 - z)^3} = \sum_{k=0}^{\infty} a_k z^k
\]
Generating functions are a way to compactly represent (possibly infinite) sequences.

\[g(z) = \frac{1}{(1 - z)^3} = \sum_{k=0}^{\infty} a_k z^k \]

\[g(z) = 1z^0 + 3z^1 + 6z^2 + 10z^3 + 15z^4 + \ldots \]
Generating functions are a way to compactly represent (possibly infinite) sequences.

\[g(z) = \frac{1}{(1 - z)^3} = \sum_{k=0}^{\infty} a_k z^k \]

\[g(z) = 1z^0 + 3z^1 + 6z^2 + 10z^3 + 15z^4 + \ldots \]

\[g(z) = a_0 z^0 + a_1 z^1 + a_2 z^2 + a_3 z^3 + a_4 z^4 + \ldots \]
Generating functions are a way to compactly represent (possibly infinite) sequences.

\[g(z) = \frac{1}{(1 - z)^3} = \sum_{k=0}^{\infty} a_k z^k \]

\[g(z) = 1 z^0 + 3 z^1 + 6 z^2 + 10 z^3 + 15 z^4 + \ldots \]

\[g(z) = a_0 z^0 + a_1 z^1 + a_2 z^2 + a_3 z^3 + a_4 z^4 + \ldots \]

Sequence element \(a_k \) is the \(k^{th} \) Taylor series coefficient of \(g(z) \).
The Taylor series of a function $g(z)$ that is differentiable at 0 is the power series

$$g(0) + \frac{g'(0)}{1!} x + \frac{g''(0)}{2!} x^2 + \frac{g'''(0)}{3!} x^3 + \cdots.$$
The Taylor series of a function $g(z)$ that is differentiable at 0 is the power series

$$g(0) + \frac{g'(0)}{1!} x + \frac{g''(0)}{2!} x^2 + \frac{g'''(0)}{3!} x^3 + \cdots.$$

which can be written in the more compact sigma notation as

$$\sum_{n=0}^{\infty} \frac{g^{(n)}(a)}{n!} (x - a)^n$$

where $n!$ denotes the factorial of n and $g^{(n)}(a)$ denotes the n-th derivative of f evaluated at the point a.

\[X \in (0|(1(01^*0)^*1))^* \]
\[X \in (0| (1(01*0)*1))^* \]

A generating function for language \(\mathcal{L} \) encodes

\[a_k = |\{s : s \in \mathcal{L}, \text{len}(s) = k\}| \]
\[X \in (0|(1(01^*0)^*1))^* \]

A generating function for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[g(z) = \]
\[X \in (0|1(01^*0)^*1)^* \]

A generating function for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[g(z) = z^0 \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
</tbody>
</table>
\[X \in (0|(1(01^*0)^*1))^* \]

A generating function for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[g(z) = 1z^0 + 1z^1 \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
\[X \in (0|(1(01*0)*1))^{*} \]

A generating function for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[g(z) = 1z^0 + 1z^1 + 1z^2 \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>
\[X \in (0|(1(01\ast0)^*1))^* \]

A generating function for language \(\mathcal{L} \) encodes

\[a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}| \]

\[g(z) = 1z^0 + 1z^1 + 1z^2 + 1z^3 \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(X)</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>1</td>
</tr>
</tbody>
</table>
\[X \in (0|1(01^*0)^*1))^* \]

A generating function for language \(\mathcal{L} \) encodes

\[a_k = |\{s : s \in \mathcal{L}, \text{len}(s) = k\}| \]

\[g(z) = 1z^0 + 1z^1 + 1z^2 + 1z^3 + 3z^4 \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\mathcal{X})</th>
<th>(a_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1001, 1100, 1111</td>
<td>3</td>
</tr>
</tbody>
</table>
$X \in (0\{(101*0)*1\})^*$

A generating function for language \mathcal{L} encodes

$$a_k = |\{ s : s \in \mathcal{L}, \text{len}(s) = k \}|$$

g(z) = 1z^0 + 1z^1 + 1z^2 + 1z^3 + 3z^4 + 5z^5 + \ldots

<table>
<thead>
<tr>
<th>k</th>
<th>X</th>
<th>a_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ε</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1001, 1100, 1111</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>10010, 10101, 11000, 11011, 11110</td>
<td>5</td>
</tr>
</tbody>
</table>
Deterministic Finite Automata

How to count paths of length k?

\[
A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}
\]

\[
g(z) = \det(I - zA)_{i,j} (-1)^{n-1} \det(I - zA) = 1 - z - z^2 (z - 1) (2z^2 + z - 1)
\]

\[
g(z) = 1 + z + z^2 + z^3 + 3z^4 + 5z^5 + \ldots
\]
Deterministic Finite Automata

How to count paths of length k?

Generating Functions

$$A = \begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

$$g(z) = \frac{\det(I - zA : i, j)}{(-1)^n \det(I - zA)}$$
Deterministic Finite Automata

How to count paths of length k?

Generating Functions

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$g(z) = \frac{\det(I - zA : i, j)}{(-1)^n \det(I - zA)}$$

$$g(z) = \frac{1 - z - z^2}{(z - 1)(2z^2 + z - 1)}$$
How to count paths of length k?

Generating Functions

$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

$g(z) = \frac{\det(I - zA : i, j)}{(-1)^n \det(I - zA)}$

$g(z) = \frac{1 - z - z^2}{(z - 1)(2z^2 + z - 1)}$

$g(z) = 1z^0 + 1z^1 + 1z^2 + 1z^3 + 3z^4 + 5z^5 + \ldots$
Good job, Will Hunting!!!

This is correct. Who did this?
Automata-Based Model Counter (ABC)

Automata-Based Model Counter (ABC)

String Constraints \rightarrow ABC \rightarrow Counting Function $f(k)$
Automata-Based Model Counter (ABC)

String Constraints \rightarrow ABC \rightarrow Counting Function $f(k)$

String Length, k
Automata-Based Model Counter (ABC)

String Constraints \rightarrow ABC \rightarrow Counting Function $f(k)$

String Length, k \downarrow

Number of solutions of length k
Automata-Based Model Counter (ABC)

Idea: Convert string constraints to DFA. Count paths in DFA.
Password Changing Policy

Constraint on NEW_P

(declare-fun NEW_P () String)

(not (contains (toLower NEW_P) "abc-16"))
(not (contains "abc-16" (toLower NEW_P)))
(not (contains (toLower NEW_P) "61-cba"))
(not (contains "61-cba" (toLower NEW_P)))

(check-sat)
(model-count)
Password Changing Policy

Figure: Solution DFA for all possible values of NEWP.
Password Changing Policy

Figure: Transition matrix for DFA for all possible values of NEWP.
Password Changing Policy

Figure: Transition matrix for DFA for all possible values of NEWP.
Generating function which enumerates NEW_P:

\[g(z) = \frac{8096z^{12} - 8128z^{11} + 32z^{10} + 16z^7 - 16z^6 - 256z^2 + 257z - 1}{194304z^{17} + 225920z^{16} + 241984z^{15} + \ldots + z^5 - 6114z^4 - 2280z^3 - 247z^2} \]
Password Changing Policy

Generating function which enumerates NEW_P:

\[g(z) = \frac{8096z^{12} - 8128z^{11} + 32z^{10} + 16z^7 - 16z^6 - 256z^2 + 257z - 1}{194304z^{17} + 225920z^{16} + 241984z^{15} + \ldots + z^5 - 6114z^4 - 2280z^3 - 247z^2} \]

\[g(z) = 247z^2 + 65759z^3 + 16842945z^4 + 4311810213z^5 + 1103823437965z^6 + \ldots \]
Password Changing Policy

Generating function which enumerates NEW_P:

\[g(z) = \frac{8096z^{12} - 8128z^{11} + 32z^{10} + 16z^7 - 16z^6 - 256z^2 + 257z - 1}{194304z^{17} + 225920z^{16} + 241984z^{15} + \ldots + z^5 - 6114z^4 - 2280z^3 - 247z^2} \]

\[g(z) = 247z^2 + 65759z^3 + 16842945z^4 + 4311810213z^5 + 1103823437965z^6 + \ldots \]

To answer our quantitative question:

- Brute force searching for password length = 6: \(256^6 = 2^{48}\) passwords.
Password Changing Policy

Generating function which enumerates NEW_P:

\[
g(z) = \frac{8096z^{12} - 8128z^{11} + 32z^{10} + 16z^{7} - 16z^{6} - 256z^{2} + 257z - 1}{194304z^{17} + 225920z^{16} + 241984z^{15} + \ldots + z^{5} - 6114z^{4} - 2280z^{3} - 247z^{2}}
\]

\[
g(z) = 247z^{2} + 65759z^{3} + 16842945z^{4} + 4311810213z^{5} + 1103823437965z^{6} + \ldots
\]

To answer our quantitative question:

- Brute force searching for password length = 6: \(256^6 = 2^{48}\) passwords.
- If adversary knows \(\text{old}_p\) and the policy: \(1103823437965 \approx 2^{40.0056}\) passwords.
Password Changing Policy

Generating function which enumerates NEW_P:

\[
g(z) = \frac{8096z^{12} - 8128z^{11} + 32z^{10} + 16z^7 - 16z^6 - 256z^2 + 257z - 1}{194304z^{17} + 225920z^{16} + 241984z^{15} + \ldots + z^5 - 6114z^4 - 2280z^3 - 247z^2}
\]

\[
g(z) = 247z^2 + 65759z^3 + 16842945z^4 + 4311810213z^5 + 1103823437965z^6 + \ldots
\]

To answer our quantitative question:

- Brute force searching for password length = 6: \(256^6 = 2^{48}\) passwords.
- If adversary knows \(\text{old}_p\) and the policy: \(1103823437965 \approx 2^{40.0056}\) passwords.
- Reduces search space by about factor of \(2^{7.9944}\)
Outline

- Motivation and Background
- Model Counting Boolean Formulas
- String Model Counting
 - Automata-Based Methods
 - Non-Automata-Based Method
- String Model Counting Benchmarks
SMC Model Counting

SMC Tool Online: https://github.com/loiluu/smc
SMC Model Counting

SMC Tool Online: https://github.com/loiluu/smc

Idea: go directly from constraints to $g(z)$ using transformations.
For a regular expression constraint, generating function can be derived recursively.
For a regular expression constraint, generating function can be derived recursively.

\[\varepsilon \mapsto 1z^0 \]
For a regular expression constraint, generating function can be derived recursively.

\[
\varepsilon \mapsto 1z^0 \\
C \mapsto 1z^1
\]
SMC Model Counting

For a regular expression constraint, generating function can be derived recursively.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>$1z^0$</td>
</tr>
<tr>
<td>c</td>
<td>$1z^1$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
</tbody>
</table>
SMC Model Counting

For a regular expression constraint, generating function can be derived recursively.

\[\varepsilon \mapsto 1z^0 \]
\[c \mapsto 1z^1 \]
\[A|B \mapsto A(z) + B(z) \]
\[A \circ B \mapsto A(z) \times B(z) \]
For a regular expression constraint, generating function can be derived recursively.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Corresponding Generating Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>$1z^0$</td>
</tr>
<tr>
<td>c</td>
<td>$1z^1$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
<tr>
<td>$A \circ B$</td>
<td>$A(z) \times B(z)$</td>
</tr>
<tr>
<td>A^*</td>
<td>$1/(1 - A(z))$</td>
</tr>
</tbody>
</table>
Regular Expressions

\[X \in (0|(1(01^*0)^*1))^* \]
Regular Expressions

\[X \in (0|((01*0)*1))^{\ast} \]

Diagram:

```
*   
|----|  
V   
|----|  
  0  
|----|  
   1  
|----|  
      *  
|----|   
0   
|----|  
   0  
|----|  
      *  
|----|   
      1  
|----|  
   1  
```

Generating Function:

\[g(z) = \frac{1}{1-z-z^2} \]
Regular Expressions

\[X \in (0|1(01^*0)^*1))^* \]
Regular Expressions

\[X \in (0|(1(01^*0)^*1))^* \]
Regular Expressions

\[X \in (0|(1(01^*0)^*1))^* \]
Regular Expressions

\[X \in (0| (1(01^*0)^*1))^* \]
Regular Expressions

\[X \in (0|((1(01^*0)^*1))^*) \]
Regular Expressions

\[X \in (0|(1(01^*0)^*1))^* \]
Regular Expressions

\[X \in (0(1(01^*0)^*)1))^* \]
Regular Expressions

\[X \in (0|(1(01^*0)^*1))^* \]
Regular Expressions

\[X \in (0|(1(01^*0)^*1))^* \]
Regular Expressions

\[X \in (0|(1(0^*0)^*1))^* \]
Regular Expressions

\[X \in (0|(101*0)*1))* \]

Generating Function:

\[g(z) = \frac{1}{1-z-\frac{z^2}{1-\frac{z^2}{1-z}}} \]
Regular Expressions

\[X \in (0 | (1(01^*0)^*1))^* \]

Generating Function:

\[g(z) = \frac{1}{1-z-\frac{z^2}{1-\frac{z^2}{1-z}}} \]

\[= \frac{1-z-z^2}{(z-1)(2z^2+z-1)} \]
Regular Expressions

\[X \in (0|1(01^*0)^*1))^* \]

Generating Function:

\[
g(z) = \frac{1}{1-z-\frac{z^2}{1-\frac{z^2}{1-z}}} = \frac{1-z-z^2}{(z-1)(2z^2+z-1)}
\]

\[
g(z) = 1z^0 + 1z^1 + 1z^2 + 1z^3 + 3z^4 + 5z^5 + \ldots
\]
Other operations in SMC

Specialized transformations for other operations

\[(s_1, s_2) \mapsto z_n (1 - Mz) (z + (1 - Mz)c(z)) \]

\[F_1 \lor F_2 \mapsto \begin{cases} \max (L_1(z), L_2(z)), \\ \min (U_1(z) + U_2(z), G(z)) \end{cases} \]

Also handle substring, length, negation, conjunction, …, with upper and lower bounds.
Other operations in SMC

<table>
<thead>
<tr>
<th>Specialized transformations for other operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{contains}(s_1, s_2) \mapsto \frac{z^n}{(1-Mz)(z^n + (1-Mz)c(z))})</td>
</tr>
</tbody>
</table>
Other operations in SMC

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contains(s_1, s_2)</code></td>
<td>$\mapsto (1-Mz)(z^n + (1-Mz)c(z))$</td>
</tr>
<tr>
<td>$F_1 \lor F_2$</td>
<td>$\mapsto [\max(L_1(z), L_2(z)), \min(U_1(z) + U_2(z), G(z))]$</td>
</tr>
</tbody>
</table>
Other operations in SMC

Specialized transformations for other operations

\(\text{contains}(s_1, s_2) \quad \mapsto \quad (1-Mz)(z^n+(1-Mz)c(z))\)

\(F_1 \lor F_2 \quad \mapsto \quad [\max(L_1(z), L_2(z)), \min(U_1(z) + U_2(z), G(z))]\)

Also handle substring, length, negation, conjunction, ... , with upper and lower bounds.
Outline

- Motivation and Background
- Model Counting Boolean Formulas
- String Model Counting
 - Automata-Based Methods
 - Non-Automata-Based Method
- String Model Counting Benchmarks
Experimental Comparison

Table: Log scaled comparison between SMC and ABC

<table>
<thead>
<tr>
<th></th>
<th>bound</th>
<th>SMC lower bound</th>
<th>SMC upper bound</th>
<th>ABC count</th>
</tr>
</thead>
<tbody>
<tr>
<td>nullhttpd</td>
<td>500</td>
<td>3752</td>
<td>3760</td>
<td>3760</td>
</tr>
<tr>
<td>ghttpd</td>
<td>620</td>
<td>4880</td>
<td>4896</td>
<td>4896</td>
</tr>
<tr>
<td>csplit</td>
<td>629</td>
<td>4852</td>
<td>4921</td>
<td>4921</td>
</tr>
<tr>
<td>grep</td>
<td>629</td>
<td>4676</td>
<td>4763</td>
<td>4763</td>
</tr>
<tr>
<td>wc</td>
<td>629</td>
<td>4281</td>
<td>4284</td>
<td>4281</td>
</tr>
<tr>
<td>obscure</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Experimental Comparison

JavaScript Benchmarks

- Kaluza benchmarks, extracted from JavaScript code via DSE, [Saxena, SSP 2010]

<table>
<thead>
<tr>
<th>Constraints</th>
<th>ABC</th>
<th>SMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>19,731</td>
<td>17,559</td>
</tr>
<tr>
<td>Average per constraint</td>
<td>0.32 seconds</td>
<td>0.26 seconds</td>
</tr>
<tr>
<td>Big</td>
<td>1,587</td>
<td>1,342</td>
</tr>
<tr>
<td>Average per constraint</td>
<td>0.34 seconds</td>
<td>5.29 seconds</td>
</tr>
</tbody>
</table>
Experimental Comparison

JavaScript Benchmarks

- Kaluza benchmarks, extracted from JavaScript code via DSE, [Saxena, SSP 2010]
- Small Constraints (19,731):
 - ABC: 19,731 constraints, average 0.32 seconds per constraint
 - SMC: 17,559 constraints, average 0.26 seconds per constraint.
JavaScript Benchmarks

- Kaluza benchmarks, extracted from JavaScript code via DSE, [Saxena, SSP 2010]

- **Small Constraints (19,731):**
 - ABC: 19,731 constraints, average 0.32 seconds per constraint
 - SMC: 17,559 constraints, average 0.26 seconds per constraint.

- **Big Constraints (1,587):**
 - ABC: 1,587 constraints, average 0.34 seconds per constraint
 - SMC: 1,342 constraints, average 5.29 seconds per constraint
What is this language?

\[X \in (0 | (10) \cdot 0) \cdot 1 \cdot L(X) = \{ s | s \text{ is a binary number divisible by } 3 \} \]

Idea: DFA can represent (some) relations on sets of binary integers. We can use similar techniques that we used for \#String to solve \#LIA.
What is this language?

\[X \in (0|(1(01*0)*1))\]
What is this language?

\[X \in (0|(1(01^*0)^*1))^* \]

\[L(X) = \{ s | s \text{ is a binary number divisible by 3} \} \]
What is this language?

\(X \in (0|(01^*0)^*1))^* \)

\(L(X) = \{s | s \text{ is a binary number divisible by } 3\} \)
What is this language?

\[X \in (0|(1(01*0)*1)))^* \]

\[L(X) = \{ s | s \text{ is a binary number divisible by 3} \} \]

Idea: DFA can represent (some) relations on sets of binary integers. We can use similar techniques that we used for \#String to solve \#LIA.
Quantifier-Free Linear Integer Arithmetic (\(\mathbb{Z}, +, <\)).
Quantifier-Free Linear Integer Arithmetic ($\mathbb{Z}, +, <$).

Constraints of the form:

$$Ax < B, x \in \mathbb{Z}^n$$
Quantifier-Free Linear Integer Arithmetic \((\mathbb{Z}, +, <) \).

Constraints of the form:

\[
Ax < B, \ x \in \mathbb{Z}^n
\]

It is possible to represent the solutions to a set of LIA constraints as a binary multi-track DFA.
Binary Multi-track DFA

Solution DFA for LIA constraints.

- Read bits of x and y from most to least significant.
- Alphabet is a tuple of bits: \(\begin{pmatrix} b_x \\ b_y \end{pmatrix} \)

Solution DFA for the constraint $x > y$.

\[
\begin{align*}
(0, 0), (1, 0) & \quad \rightarrow \quad (0, 0), (0, 1), (1, 1) \\
1 & \quad \rightarrow \quad (0, 0), (0, 1), (1, 1), (1, 1) \\
0 & \quad \rightarrow \quad (0, 0), (0, 1), (1, 0), (1, 1) \\
0 & \quad \rightarrow \quad (0, 0), (0, 1), (1, 0), (1, 1)
\end{align*}
\]
Solution DFA for LIA constraints.

- Read bits of x and y from most to least significant.
- Alphabet is a tuple of bits: $\begin{pmatrix} b_x \\ b_y \end{pmatrix}$

Solution DFA for the constraint $x > y$.

Solutions of length $n \equiv$ solutions within bound 2^n
Counting Techniques for Different Theories

- **Boolean**

/model COUNTING SUMMARY

Counting Techniques for Different Theories

- Boolean
Model Counting Summary

Counting Techniques for Different Theories

- **Boolean**
 - Truth Table (Brute Force)
 - DPLL
<table>
<thead>
<tr>
<th>Counting Techniques for Different Theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Boolean</td>
</tr>
<tr>
<td>▪ Truth Table (Brute Force)</td>
</tr>
<tr>
<td>▪ DPLL</td>
</tr>
<tr>
<td>• Strings</td>
</tr>
<tr>
<td>▪ DFA with Dynamic Programming, Matrix Multiplication, GFs</td>
</tr>
<tr>
<td>▪ Regular Expression with GFs</td>
</tr>
</tbody>
</table>
Model Counting Summary

Counting Techniques for Different Theories

- **Boolean**
 - Truth Table (Brute Force)
 - DPLL

- **Strings**
 - DFA with Dynamic Programming, Matrix Multiplication, GFs
 - Regular Expression with GFs

- **Linear Integer Arithmetic**
 - Binary Multi-track DFA
Related work on model counting

- Sedgewick. Analytic Combinatorics Chapter 5: Generating Functions. 2009
- Pugh. Counting Solutions to Presburger Formulas: How and Why. 1994
- Parker. An Automata-Theoretic Algorithm for Counting Solutions to Presburger Formulas. Compiler Construction 2004
- Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Mathematics of Operations Research 1994
- De Loera. Effective lattice point counting in rational convex polytopes. JSC 2004
- Verdoolaege. Counting integer points in parametric polytopes using Barvinok's Rational Functions. 2007
- Kopf. Symbolic Polytopes for Quantitative Interpolation and Verification. CAV 2015
- Luu. A Model Counter For Constraints Over Unbounded Strings. PLDI 2014
- Ravikumara. Weak minimization of DFA - an algorithm and applications. Implementation and Application of Automata 2004
- Chomsky. The Algebraic Theory of Context-Free Languages. 1963
- Birnbaum. The good old Davis-Putnam procedure helps counting models. JAIR 1999
Thank you.