
Relational String Verification Using Multi-track
Automata ⋆

Fang Yu1, Tevfik Bultan2, and Oscar H. Ibarra2

1 National Chengchi University, Taipei, Taiwan
yuf@nccu.edu.tw

2 University of California, Santa Barbara, CA, USA
{bultan, ibarra}@cs.ucsb.edu

Abstract. Verification of string manipulation operations is a crucialproblem in
computer security. In this paper, we present a new relational string verification
technique based on multi-track automata. Our approach is capable of verifying
properties that depend on relations among string variables. This enables us to
prove that vulnerabilities that result from improper string manipulation do not ex-
ist in a given program. Our main contributions in this paper can be summarized as
follows: (1) We formally characterize the string verification problem as the reach-
ability analysis ofstring systemsand show decidability/undecidability results for
several string analysis problems. (2) We develop a sound symbolic analysis tech-
nique for string verification that over-approximates the reachable states of a given
string system using multi-track automata and summarization. (3) We evaluate the
presented techniques with respect to several string analysis benchmarks extracted
from real web applications.

1 Introduction

The most important Web application vulnerabilities are dueto inadequate manipulation
of string variables [11]. In this paper we investigate thestring verification problem:
Given a program that manipulates strings, we want to verify assertions about string
variables. For example, we may want to check that at a certainprogram point a string
variable cannot contain a specific set of characters. This type of checks can be used
to prevent SQL injection attacks where a malicious user includes special characters in
the input string to inject unintended commands to the queries that the Web application
constructs (using the input provided by the user) and sends to a backend database. As
another example, we may want to check that at a certain program point a string variable
should be prefix or suffix of another string variable. This type of checks can be used
to prevent Malicious File Execution (MFE) attacks where Webapplication developers
concatenate potentially hostile user input with file functions that lead to inclusion or
execution of untrusted files by the Web server.

We formalize the string verification problem as reachability analysis ofstring sys-
tems(Section 2). After demonstrating that the string analysis problem is undecidable

⋆ This work is supported by NSC grant 99-2218-E-004-002-MY3,and NSF grants CCF-
0916112, CCF-0716095, and CCF-0524136.

2

in general, we present and implement a forward symbolic reachability analysis tech-
nique that computes an over-approximation of the reachablestates of a string system
using widening and summarization (Section 4). We use multi-track deterministic finite
automata (DFAs) as a symbolic representation to encode the set of possible values that
string variables can take at a given program point. Unlike prior string analysis tech-
niques, our analysis isrelational, i.e., it is able to keep track of the relationships among
the string variables, improving the precision of the stringanalysis and enabling ver-
ification of invariants such asX1 = X2 whereX1 andX2 are string variables. We
develop the precise construction of multi-track DFAs for linear word equations, such
asc1X1c2 = c′1X2c

′
2 and show that non-linear word equations (such asX1 = X2X3)

cannot be characterized precisely as a multi-track DFA (Section 3). We propose a reg-
ular approximation for non-linear equations and show how these constructions can be
used to compute the post-condition of branch conditions andassignment statements that
involve concatenation. We use summarization for inter-procedural analysis by generat-
ing a multi-track automaton (transducer) characterizing the relationship between the
input parameters and the return values of each procedure (Section 4). To be able to use
procedure summaries during our reachability analysis wealign multi-track automata
so that normalized automata are closed under intersection.We implemented these al-
gorithms using the MONA automata package [5] and analyzed several PHP programs
demonstrating the effectiveness of our string analysis techniques (Section 5).

Related Work. The use of automata as a symbolic representation for verification has
been investigated in other contexts [4]. In this paper, we focus on verification of string
manipulation operations, which is essential to detect and prevent crucial web vulnera-
bilities. Due to its importance in security, string analysis has been widely studied. One
influential approach has been grammar-based string analysis that statically computes
an over-approximation of the values of string expressions in Java programs [6] which
has also been used to check for various types of errors in Web applications [8, 9, 13].
In [9, 13], multi-track DFAs, known astransducers, are used to model replacement
operations. There are also several recent string analysis tools that use symbolic string
analysis based on DFA encodings [7, 12, 15, 16]. Some of them are based on symbolic
execution and use a DFA representation to model and verify the string manipulation
operations in Java programs [7, 12]. In our earlier work, we have used a DFA based
symbolic reachability analysis to verify the correctness of string sanitization operations
in PHP programs [14–16]. Unlike the approach we proposed in this paper, all of the re-
sults mentioned above use single track DFA and encode the reachable configurations of
each string variable separately. Our multi-track automataencoding not only improves
the precision of the string analysis but also enables verification of properties that cannot
be verified with the previous approaches. We have also investigated the boundary of
decidability for the string verification problem. Bjørner et al. [2] show the undecidabil-
ity result with replacement operation. In this paper we consider only concatenation and
show that string verification problem is undecidable even for deterministic string sys-
tems with only three unary string variables and non-deterministic string systems with
only two string variables if the comparison of two variablesare allowed.

3

prog ::= decl∗ func∗

decl ::= decl id+;
func ::= id (id∗) begin decl∗ lstmt+ end
lstmt ::= l:stmt
stmt::= seqstmt| if expthen goto l; | goto L; whereL is a set of labels

| input id; | output exp; | assert exp;
seqstmt::=id := sexp; | id := call id (sexp∗);
exp::= bexp| exp∧ exp| ¬ exp
bexp::= atom= sexp
sexp::= sexp.atom| atom| suffix(id) | prefix(id)
atom::= id | c, wherec is a string constant

Fig. 1.The syntax of string systems

2 String Systems

We define the syntax of string systems in Figure 1. We only consider string variables
and hence variable declarations need not specify a type. Allstatements are labeled. We
only consider one string operation (concatenation) in our formal model; however, our
symbolic string analysis techniques can be extended to handle complex string opera-
tions (such as replacement [15]). Function calls use call-by-value parameter passing.
We allow goto statements to be non-deterministic (if a goto statement has multiple tar-
get labels, then one of them is chosen non-deterministically). If a string system contains
a non-deterministic goto statement it is called a non-deterministic string system, other-
wise, it is called a deterministic string system.

In order to identify different classes of string systems we will use the following
notation. LetS(X1, X2, . . . , Xn) denote a string system with string variablesX1, X2,
. . ., Xn and a finite set of labeled instructions. We will use the letters D andN to de-
note deterministic and non-deterministic string systems,respectively. We will use the
lettersB and U to denote if the alphabet used by the string variables is the binary
alphabet{a, b} or the unary alphabet{a}, respectively. We will useK to denote an al-
phabet of arbitrary size. For example,DUS(X1, X2, X3) denotes a deterministic string
system with three variables and the unary alphabet whereasNBS(X1, X2) denotes a
nondeterministic string system with two variables and the binary alphabet. We will de-
note the set of assignment instructions allowed in a string system as a superscript and
the set of expressions involved in conditional branch instructions as subscript. Hence,
DUS(X1, X2, X3)

Xi:=Xia
X1=X3,X2=X3

denotes a deterministic string system with three vari-
ablesX1, X2, andX3, and the unary alphabet{a}where the assignment instructions are
of the formX1 := X1a, X2 := X2a, or X3 := X3a (i.e., we only allow concatenation
of one symbol to a string variable in each assignment instruction) and the conditional
branch instructions can only be of the form:if X3 = X1 gotoL or if X3 = X2 gotoL
(i.e., we only allow equality checks and do not allow comparison ofX1 andX2.)

The halting problemfor string systems is the problem of deciding, given a string
systemS, where initially the string variables are initialized to the null string,ǫ, whether
S will halt on some execution. More generally, thereachability problem for string sys-
tems(which need not halt) is the problem of deciding, given a string systemS and a

4

configurationC (i.e., the instruction label and the values of the variables), whether at
some point during a computation,C will be reached. Note that we define the halting
and the reachability conditions using existential quantification over the execution paths,
i.e., the halting and the reachability conditions hold if there exists an execution path that
halts or reaches the target configuration, respectively. Hence, if the halting problem is
undecidable, then the reachability problem is undecidable.

Lemma 1. The halting problem forDUS(X1, X2, X3)
Xi:=Xia
X1=X3,X2=X3

is undecidable.

Proof. It is well-known that the halting problem for two-counter machines, where ini-
tially both counters are 0, is undecidable [10]. During the execution of a counter ma-
chine, at each step, a counter can be incremented by 1, decremented by 1, and tested for
zero. The counters can only assume nonnegative values.

We will show that a two-counter machineM can be simulated with a string system
S(X1, X2, X3) in DUS(X1, X2, X3)

Xi:=Xia
X1=X3,X2=X3

. The states ofM can be repre-
sented as labels in the string systemS. The states where the counter-machineM halts
will be represented with the halt instruction in string systemS. We will use the lengths
of the stringsX1, X2 andX3 to simulate the values of the countersC1 andC2. The
value ofC1 will be simulated by|X1| − |X3|, and the value ofC2 will be simulated by
|X2| − |X3|.

The counter machineM starts from the initial configuration(q0, 0, 0) whereq0

denotes the initial state and the two integer values represent the initial values of coun-
tersC1 andC2, respectively. The initial configuration of the string system S will be
(q0, ǫ, ǫ, ǫ) whereq0 is the label of the first instruction, and the stringsǫ, ǫ, ǫ are the
initial values of the string variablesX1, X2 andX3, respectively. The instructions of
the counter-machineC will be simulated as follows (where each statement is followed
by a goto statement that transitions to the next state or instruction):

Counter machine String system
inc C1 X1 := X1a
inc C2 X2 := X2a
decC1 X2 := X2a; X3 := X3a
decC2 X1 := X1a; X3 := X3a
if (C1 = 0) if (X1 = X3)
if (C2 = 0) if (X2 = X3)

Note that although this transformation will allow the simulated counter values to pos-
sibly take negative values, this can be fixed by adding a conditional branch instruction
before each decrement that checks that the simulated counter value is not zero before
the instructions simulating the decrement instruction is executed. The string systemS
constructed fromM based on these rules will simulateM . Hence, halting problem is
undecidable for the string systems inDUS(X1, X2, X3)

Xi:=Xia
X1=X3,X2=X3

.

In the proof of the theorem above, comparisons are only betweenX3 andX1 and
betweenX3 andX2. Suppose we have 4 variablesX1, X2, X3, X4, and we only allow
comparisons betweenX1 andX3 and betweenX2 andX4. Thus, comparisons are only
between the same variables. We denote this class of string systems as:
DUS(X1, X2, X3, X4)

Xi:=Xia
X1=X3,X2=X4

.

5

Lemma 2. The halting problem forDUS(X1, X2, X3, X4)
Xi:=Xia
X1=X3,X2=X4

is undecid-
able.

Proof. We can modify the proof of Theorem?? so thatX3 and X4 are essentially
identical copies (i.e., they are incremented simultaneously). The comparison between
X3 andX1 (respectively, betweenX3 andX2) in the construction above is now reduced
to comparison betweenX3 andX1 (respectively, betweenX4 andX2). It follows the
halting problem for these programs is also undecidable. ⊓⊔

Lemma 3. The halting problem forNBS(X1, X2)
Xi:=Xic
X1=X2

is undecidable.

Proof. Given an instance(C, D) of PCP, whereC = (c1, ..., cn) andD = (d1, ..., dn),
define constant strings{c1, ..., cn, d1, ..., dn}, whereci, di are non-null strings over al-
phabet{a, b}, we construct a string systemS in NBS(X1, X2)

Xi:=Xic
X1=X2

as follows:
0: goto 1 or 2 or ... or n
1: X1 := X1c1 andX2 := X2d1; goto 0 or n+1
2: X1 := X1c2 andX2 := X2d2; goto 0 or n+1
. . .
n: X1 := X1cn andX2 := X2dn; goto 0 or n+1
n+1: if X1 = X2 goto n+2 else go to 1
n+2: halt
Clearly, there is a computation that will reach the halt instruction if and only if the PCP
instance(C, D) has a solution. The theorem follows.

Lemma 4. The halting problem forDKS(X1, X2)
Xi:=Xia,Xi:=aXi

X1=X2
is decidable.

Proof. Let S be a string system inDKS(X1, X2)
Xi:=Xia,Xi:=aXi

X1=X2
andk be its length

(i.e., number of instructions), including the assignments, and the conditional and un-
conditional branch statements.

Label the instructions ofS by 1, ..., k. We can think of each assignment,i : A as
equivalent to the instruction,i : A; goto i + 1. Hence, every instruction except the halt
instruction and theif statements has agoto.

By an “execution of a positiveif statement”, we mean that when theif statement is
executed,X1 = X2.

During the computation ofS, if it is not in an infinite loop, then the interval (i.e.,
number of steps) between the executions of any two consecutive positiveif statements
is at mostk. The reason for this is that during the interval,S executes onlygoto’s and
assignment statements withgoto’s (note that a non-positiveif statement leads directly
to the instruction following theif). Hence, the number of steps would be at mostk,
since there are at mostk goto’s and assignments withgoto’s.

Now, an execution of a positiveif statement leads to agoto label, and there are at
mostk different labels. It follows that ifS is not in an infinite loop, it cannot run more
thank.k = k2 steps.

The above theorem can be generalized. Consider the class of deterministic multi-
variable programs, where the variables areX1, X2, ..., Xk. Assignments can be of the
form: Xi := Xia or Xi := aXi where1 ≤ i ≤ k anda is a symbol over some (not-
necessarily) unary alphabetΣ. Conditional branch instructions can contain expressions

6

1: input X1;
2: input X2;
3: if (X1 = X2) goto 6;
4: X1:=X2.c;
5: goto 7;
6: X1:=X1.c;
7: assert (X1 = X2.c);

Fig. 2.An example with a branch statement

1: X1 := a;
2: X2 := a;
3: X1 := X1.b;
4: X2 := X2.b;
5: assert (X1=X2);
6: goto 3;

Fig. 3.An example with a loop

of the formX1 = X2 or c θ Xi wherec is a constant string andθ is =, prefix or suffix .
Note that only in a conditional branch statement we only allow equality check between
the two variablesX1 andX2, i.e., no other variables can be compared for equality.
Label all the instructions in the program with1, 2, ..., n, wheren is the number of in-
structions. The program may or may not have a halt instruction. Consider the following
reachability problem: Given configuration(L, x1, x2, ..., xk) (whereL is a label in the
program, and thexi’s are strings representing the values of the variablesXi’s), will
the program starting from the initial configuration(1, ǫ, ǫ, .., ǫ) ever enter configuration
(L, x1, x2, ..., xk)? We can show the following:

Lemma 5. The reachability problem for
DKS(X1, X2, . . . , Xk)Xi:=Xia,Xi:=aXi

X1=X2,c=Xi,c=prefix(Xi),c=suffix(Xi)
is decidable.

Now let us consider the set of multi-variable (i.e., not restricted to two or three
variables) nondeterministic string systems where the onlyassignments are of the form
Xi := dXic, whered, c are constant strings over some alphabet (not necessarily unary
or binary), and theif statements only involve comparing a variable with a constant
string, i.e., of the formc θXi wherec is a constant string, andθ can be=, prefix or
suffix .

Lemma 6. The reachability problem for
NKS(X1, X2, . . . , Xk)Xi:=dXic

c=Xi,c=prefix(Xi),c=suffix(Xi)
is decidable.

Proof. Let F be a program inHN with variablesX1, ..., Xk. Assume for nowk = 2.
We construct a nondeterministic 4-tape finite automatonM , wheres tapesT1, T2, T3, T4

are used to simulate the concatenations to variablesX1 andX2 as in the proof of the
above corollary. Letm be the maximum length of all constant strings appearing in
the programF . M simulates the computation ofF by reading symbols on the four
tapes, as in proof of the corollary. It also keeps track of bounded prefixes of strings
in the the variables, which change dynamically. During the simulation of F , we will
be concatenating constant strings to the variables. The first time a variable has a string
of length≥ m, we can stop updating the prefixes without affecting the simulation of
the “if” statements. It follows that the amount of memory we need to keep track of
the prefixes is finite and depends only on the specifications ofF . Hence the number
of states ofM is finite. Since emptiness for multi-tape finite automata is decidable, it
follows that reachability is decidable. The construction whenk ≥ 2 is obvious (nowM
will have2k tapes.) ⊓⊔

7

Examples of String SystemsConsider the string system in Fig. 2. Existing automata-
based string analysis techniques are not able to prove the assertion at the end of this
program segment since they use single-track automata. Consider a symbolic analysis
technique that uses one automaton for each variable at each program point to represent
the set of values that the variables can take at that program point. Using this symbolic
representation we can do a forward fixpoint computation to compute the reachable state
space of the program. For example, the automaton for variable X1 at the beginning of
statement 2, call itMX1,2, will recognize the setL(MX1,2) = Σ∗ to indicate that the
input can be any string. Similarly, the automaton for variable X2 at the beginning of
statement 3, call itMX2,3, will recognize the setL(MX2,3) = Σ∗. The question is how
to handle the branch condition in statement 3. If we are usingsingle track automata, all
we can do at the beginning of statement 6 is the following:L(MX1,6) = L(MX2,6) =
L(MX1,3)∩L(MX2,3). The situation with the else branch is even worse. All we can do
at line 4 is to setL(MX1,4) = L(MX1,3) andL(MX2,4) = L(MX2,3). Both branches
will result in L(MX1,7) = Σ∗.c andL(MX2,7) = Σ∗, which is clearly not strong
enough to prove the assertion.

Using the techniques presented in this paper, we can verify the assertion in the
above program. In our approach, we use a single multi-track automaton for each pro-
gram point, where each track of the automaton corresponds toone string variable. For
the above example, the multi-track automaton at the beginning of statement 3 will
accept any pairs of stringsX1, X2 whereX1, X2 ∈ Σ∗. However, the multi-track
automaton at the beginning of statement 6 will only accept pairs of stringsX1, X2

whereX1, X2 ∈ Σ∗ andX1 = X2. We compute the post-condition(∃X1.(X1 =
X2)∧ (X ′

1 = X1.c))[X1/X ′
1] and generate the multi-track automaton that only accepts

pairs of stringsX1, X2 whereX1, X2 ∈ Σ∗ andX1 = X2.c. Similarly, the multi-track
automaton at the beginning of statement 4 will only accept pairs of stringsX1, X2

whereX1, X2 ∈ Σ∗ andX1 6= X2, and after the assignment, we will generate the
multi-track automaton that only accepts pairs of stringsX1, X2 whereX1, X2 ∈ Σ∗

andX1 = X2.c. Hence, we are able to prove the assertion in statement 7.

Now, consider the string system in Fig. 3. which contains an infinite loop. If we
try to compute the reachable configurations of this program by iteratively adding con-
figurations that can be reached after a single step of execution, our analysis will never
terminate. We incorporate a widening operator to accelerate our symbolic reachability
computation and compute an over-approximation of the fixpoint that characterizes the
reachable configurations. Note that the assertion in this program segment is not explic-
itly established, i.e., there is no assignment, such asX1 := X2, or branch condition,
such asX1 = X2, that implies that this assertion holds. Also, the assertion specifies the
equality among two string variables. Analysis techniques that encode reachable states
using multiple single-track DFAs will raise a false alarm, since, individually,X1 can be
abb andX2 can beab at program point 5, but they cannot take these values at the same
time. It is not possible to express such a constraint using single-track automata.

For this example, our multi-track automata based string analysis technique termi-
nates in three iterations and computes the precise result. The multi-track automaton
that characterizes the values of string variablesX1 andX2 at program point 5, call it
M5, recognizes the language:L(M5) = (a, a)(b, b)+. SinceL(M5) ⊆ L(X1 = X2),

8

we conclude that the assertion holds. Although in this case the result of our analysis
is precise, it is not guaranteed to be precise in general. However, it is guaranteed to
be an over-approximation of the reachable configurations. Hence, our analysis is sound
and if we conclude that an assertion holds, the assertion is guaranteed to hold for every
program execution.

3 Regular Approximation of Word Equations

Our string analysis is based on the following observations:(1) The transitions and the
configurations of a string system can be symbolically represented using word equations
with existential quantification, (2) word equations can be represented/approximated us-
ing multi-track DFAs, which are closed under intersection,union, complement, and
projection, and (3) the operations required during reachability analysis (such as equiv-
alence checking) can be computed on DFAs.

Multi-track DFAs A multi-track DFA is a DFA but over the alphabet that consistsof
many tracks. Ann-track alphabet is defined as(Σ ∪ {λ})n, whereλ 6∈ Σ is a special
symbol for padding. We usew[i] (1 ≤ i ≤ n) to denote theith track ofw ∈ (Σ∪{λ})n.
An alignedmulti-track DFA is a multi-track DFA where all tracks are left justified (i.e.,
λ’s are right justified). That is, ifw is accepted by an alignedn-track DFA M , then
for 1 ≤ i ≤ n, w[i] ∈ Σ∗λ∗. We also usêw[i] ∈ Σ∗ to denote the longestλ-free
prefix ofw[i]. It is clear that aligned multi-track DFA languages are closed under inter-
section, union, and homomorphism. LetMu be the alignedn-track DFA that accepts
the (aligned) universe, i.e.,{w | ∀i.w[i] ∈ Σ∗λ∗}. The complement of the language
accepted by an alignedn-track DFAM is defined bycomplement modulo alignment,
i.e., the intersection of the complement ofL(M) with L(Mu). For the following de-
scriptions, a multi-track DFA is an aligned multi-track DFAunless we explicitly state
otherwise.

Word Equations A word equation is an equality relation of two words that concatenate
variables from a finite setX and words from a finite set of constantsC. The general form
of word equations is defined asv1 . . . vn = v′1 . . . v′m, where∀i, vi, v

′
i ∈ X ∪ C. The

following theorem identifies the basic forms of word equations. For example, a word
equationf : X1 = X2dX3X4 is equivalent to∃Xk1

, Xk2
.X1 = X2Xk1

∧ Xk1
=

dXk2
∧ Xk2

= X3X4.

Theorem 1. Word equations and Boolean combinations (¬, ∧ and∨) of these equa-
tions can be expressed using equations of the formX1 = X2c, X1 = cX2, c = X1X2,
X1 = X2X3, Boolean combinations of such equations and existential quantification.

Let f be a word equation overX= {X1, X2, . . . , Xn} andf [c/X] denote a new
equation whereX is replaced withc for all X that appears inf . We say that ann-
track DFAM under-approximatesf if for all w ∈ L(M), f [ŵ[1]/X1, . . . , ŵ[n]/Xn]
holds. We say that ann-track DFAM over-approximatesf if for any s1, . . . , sn ∈ Σ∗

wheref [s1/X1, . . . , sn/Xn] holds, there existsw ∈ L(M) such that for all1 ≤ i ≤
n, ŵ[i] = si. We callM precisewith respect tof if M both under-approximates and
over-approximatesf .

9

Definition 1. A word equationf is regularly expressible if and only if there exists a
multi-track DFAM such thatM is precise with respect tof .

Theorem 2. 1. X1 = X2c, X1 = cX2, andc = X1X2 are regularly expressible, as
well as their Boolean combinations.

2. X1 = cX2 is regularly expressible but the correspondingM has exponential num-
ber of states in the length ofc.

3. X1 = X2X3 is not regularly expressible.

We are able to compute multi-track DFAs that are precise withrespect to word equa-
tions:X1 = X2c, X1 = cX2, andc = X1X2. SinceX1 = X2X3 is not regularly ex-
pressible, below, we describe how to compute DFAs that approximate such non-linear
word equations. Using the DFA constructions for these four basic forms we can con-
struct multi-track DFAs for all word equations and their Boolean combinations (if the
word equation contains a non-linear term then the constructed DFA will approximate
the equation, otherwise it will be precise). The Boolean operations conjunction, dis-
junction and negation can be handled with intersection, union, and complement mod-
ulo alignment of the multi-track DFAs, respectively. Existential quantification on the
other hand, can be handled using homomorphism, where given aword equationf and a
multi-track automatonM such thatM is precise with respect tof , then the multi-track
automatonM ⇂i is precise with respect to∃Xi.f whereM ⇂i denotes the result of
erasing theith track (by homomorphism) ofM .

Construction of X1 = X2X3 Since Theorem 2 shows thatX1 = X2X3 is not reg-
ularly expressible, it is necessary to construct a conservative (over or under) approx-
imation of X1 = X2X3. We first propose anover approximation construction for
X1 = X2X3. Let M1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉, andM3 =
〈Q3, Σ, δ3, I3, F3〉 accept values ofX1, X2, andX3, respectively.M = 〈Q, (Σ ∪
{λ})3, δ, I, F 〉 is constructed as follows.

– Q ⊆ Q1 × Q2 × Q3 × Q3,
– I = (I1, I2, I3, I3),
– ∀a, b ∈ Σ, δ((r, p, s, s′), (a, a, b)) = (δ1(r, a), δ2(p, a), δ3(s, b), s

′),
– ∀a, b ∈ Σ, p ∈ F2, s 6∈ F3, δ((r, p, s, s′), (a, λ, b)) = (δ1(r, a), p, δ3(s, b), δ3(s

′, a)),
– ∀a ∈ Σ, p ∈ F2, s ∈ F3, δ((r, p, s, s′), (a, λ, λ)) = (δ1(r, a), p, s, δ3(s

′, a)),
– ∀a ∈ Σ, p 6∈ F2, s ∈ F3, δ((r, p, s, s′), (a, a, λ)) = (δ1(r, a), δ2(p, a), s, s′),
– F = {(r, p, s, s′) | r ∈ F1, p ∈ F2, s ∈ F3, s

′ ∈ F3}.

The intuition is as follows:M tracesM1, M2 andM3 on the first, second and third
tracks, respectively, and makes sure that the first and second tracks match each other.
After reaching an accepting state inM2, M enforces the second track to beλ and
starts to traceM3 on the first track to ensure the rest (suffix) is accepted byM3. |Q| is
O(|Q1| × |Q2| × |Q3| + |Q1| × |Q3| × |Q3|). For allw ∈ L(M), the following hold:

– ŵ[1] ∈ L(M1), ŵ[2] ∈ L(M2), ŵ[3] ∈ L(M3),
– ŵ[1] = ŵ[2]w′ andw′ ∈ L(M3),

10

Note thatw′ may not be equal tôw[3], i.e., there existsw ∈ L(M), ŵ[1] 6=
ŵ[2]ŵ[3], and henceM is not precise with respect toX1 = X2X3. On the other hand,
for any w such thatŵ[1] = ŵ[2]ŵ[3], we havew ∈ L(M), henceM is a regular
over-approximation ofX1 = X2X3.

Below, we describe how to construct a regularunder-approximation ofX1 = X2X3

(which is necessary for conservative approximation of its complement set). We use the
idea that ifL(M2) is a finite set language, one can construct the DFAM that satisfies
X1 = X2X3 by explicitly taking the union of the construction ofX1 = cX3 for
all c ∈ L(M2). If L(M2) is an infinite set language, we construct a regularunder-
approximation ofX1 = X2X3 by considering a (finite) subset ofL(M2) where the
length is bounded. Formally speaking, for eachk ≥ 0 we can constructMk, so that
w ∈ L(Mk), ŵ[1] = ŵ[2]ŵ[3], ŵ[1] ∈ L(M1), ŵ[3] ∈ L(M3), ŵ[2] ∈ L(M2) and
|ŵ[2]| ≤ k. It follows that Mk is a regularunder-approximation ofX1 = X2X3.
If L(M2) is a finite set language, there existsk (the length of the longest accepted
word) whereL(Mk) is precise with respect toX1 = X2X3. If L(M2) is an infinite set
language, there does not exist suchk so thatL(Mk) is precise with respect toX1 =
X2X3, as we have proven non-regularity ofX1 = X2X3.

4 Symbolic Reachability Analysis

Our symbolic reachability analysis involves two main steps: forward fixpoint computa-
tion and summarization.

Forward Fixpoint Computation The first phase of our analysis is a standard forward
fixpoint computation on multi-track DFAs. Each program point is associated with a
single multi-track DFA, where each track is associated witha single string variable
X ∈ X. We useM [l] to denote the multi-track automaton at the program labell.
The forward fixpoint computation algorithm (Algorithm 1) isa standard work-queue
algorithm.

Initially, for all labels l, L(M [l]) = ∅. We iteratively compute the post-images of
the statements and join the results to the corresponding automata. For astmt in the
form: X := sexp, the post-image is computed as:

POST(M, stmt) ≡ (∃X.M ∩ CONSTRUCT(X ′ = sexp, +))[X/X ′].

CONSTRUCT(exp, b) returns the DFA that accepts a regular approximation ofexp, where
b ∈ {+,−} indicates the direction (over or under, respectively) of approximation if
needed. During the construction, we recursively push the negations (¬) (and flip the di-
rection) inside to the basic expressions (bexp), and use the corresponding construction
of multi-track DFAs discussed in the previous section. We use function summaries to
handle function calls. Each functionf is summarized as a finite state transducer, de-
noted asMf , which captures the relations among input variables (parameters), denoted
asXp, and return values. The return values are tracked in the output track, denoted as
Xo. We discuss the generation of the transducerMf below. For astmt in the formX :=
call f(e1, . . . , en), the post-image is computed as:

POST(M, stmt) ≡ (∃X, Xp1
, . . .Xpn

.M ∩ MI ∩ Mf)[X/Xo],

11

Algorithm 1 FORWARDRECAHABILITYANALYSIS(l0)
1: Init(M);
2: queueWQ;
3: WQ.enqueue(l0 : stmt0);
4: while WQ 6= NULL do
5: e := WQ.dequeue(); Lete be l : stmt;
6: if stmt is seqstmt then
7: m := POST(M [l], stmt);
8: PROPAGATE(m, l + 1);
9: end if

10: if stmt is if exp goto l′ then
11: m := M [l]∩ CONSTRUCT(exp,+);
12: if L(m) 6= ∅ then
13: PROPAGATE(m, l′);
14: end if
15: m := M [l]∩ CONSTRUCT(¬exp,+);
16: if L(m) 6= ∅ then
17: PROPAGATE(m, l + 1);
18: end if
19: end if
20: if stmt is assert exp then
21: m := CONSTRUCT(exp,−);
22: if L(M [l]) 6⊆ L(m) then
23: ASSERTFAILED (l);
24: else
25: PROPAGATE(M [l],l + 1);
26: end if
27: end if
28: if stmt is goto L then
29: for l′ ∈ L do
30: PROPAGATE(M [l],l′);
31: end for
32: end if
33: end while

Algorithm 2 PROPAGATE(m, l)
1: m′ := (m ∪ M [l])∇M [l];
2: if m′ 6⊆ M [l] then
3: M [l] := m′;
4: WQ.enqueue(l);
5: end if

12

f(X)
begin
1: goto 2, 3;
2: X: = call f(X.a);
3: return X;
end

Fig. 4.A function and its summary DFA

whereMI = CONSTRUCT(
∧

i Xpi
= ei, +). The process terminates when we reach

a fixpoint. To accelerate the fixpoint computation, we extendour automata widening
operator [15], denoted as∇, to multi-track automata. We identify equivalence classes
according to specific equivalence conditions and merge states in the same equivalence
class [1, 3]. The following lemma shows that the equality relations among tracks are
preserved while widening multi-track automata.

Lemma 7. if L(M) ⊆ L(x = y) andL(M ′) ⊆ L(x = y), L(M∇M ′) ⊆ L(x = y).

Summarization We compute procedure summaries in order to handle procedurecalls.
We assume parameter-passing with call-by-value semanticsand we are able to handle
recursion. Each functionf is summarized as a multi-track DFA, denoted asMf , that
captures the relation among its input variables and return values.

Consider the recursive functionf shown in Figure 4 with one parameter.f non-
deterministically returns its input (goto 3) or makes a selfcall (goto 2) by concatenating
its input and a constanta. The generated summary for this function is also shown in
Figure 4.Mf is a 2-track DFA, where the first track is associated with its parameter
Xp1

, and the second track is associated withXo representing the return values. The
edge(Σ, Σ) represents a set of identity edges. In other words,δ(q, (Σ, Σ)) = q′ means
∀a ∈ Σ, δ(q, (a, a)) = q′. The summary DFAMf precisely captures the relationXo =
Xp1

.a∗ between the input variable and the return values.
During the summarization phase, (possibly recursive) functions are summarized as

unaligned multi-track DFAs that specify the relations among their inputs and return
values. We first build (possibly cyclic) dependency graphs to specify how the inputs
flow to the return values. Each node in the dependency graph isassociated with an
unaligned multi-track DFA that traces the relation among inputs and the value of that
node. An unaligned multi-track DFA is a multi-track DFA whereλs might not be right
justified. Return values of a function are represented with an auxiliary output track.
Given a functionf with n parameters,Mf is an unaligned(n + 1)-track DFA, wheren
tracks represent then input parameters and one trackXo is the output track representing
the return values. We iteratively compute post images of reachable relations and join
the results until we reach a fixpoint. Upon termination, the summary is the union of the
unaligned DFAs associated with the return nodes. To composethese summaries at the
call site, we also propose an alignment algorithm to align (so thatλ’s are right justified)
an unaligned multi-track DFA.

Once the summary DFAMf has been computed, it is not necessary to reanalyze
the body off . To compute the post-image of a call tof we intersect the values of

13

input parameters withMf and use existential quantification to obtain the return values.
Let M be a one-track DFA associated withX whereL(M) = {b}. POST(M , X :=
call f(X)) returnsM ′ whereL(M ′) = ba∗ for the example function shown above.
As another example, letM be a2-track DFA associated withX, Y that is precise with
respect toX = Y . ThenPOST(M , X := call f(X)) returnsM ′ which is precise
with respect toX = Y.a∗ precisely capturing the relation betweenX andY after the
execution of the function call. As discussed above,M ′ is computed by(∃X, Xp1

.M ∩
MI ∩ Mf)[X/Xo], whereL(MI) = CONSTRUCT(Xp1

= X , +).

5 Experiments

We evaluate our approach against three kinds of benchmarks:1) Basic benchmarks, 2)
XSS/SQLI benchmarks, and 3) MFE benchmarks. These benchmarks represent typi-
cal string manipulating programs along with string properties that address severe web
vulnerabilities.

Basic benchmarks.In the first set, we demonstrate that our approach can prove implicit
equality properties of string systems. We wrote two small programs. CheckBranch (B1)
has if branch (X1 = X2) and else branch (X1 6= X2). In the else branch, we assign
a constant stringc to X1 and then assign the same constant string toX2. We check at
the merge point whetherX1 = X2. In CheckLoop (B2) we assign variablesX1 and
X2 the same constant string at the beginning, and iteratively append another constant
string to both in an infinite loop. We check whetherX1 = X2 at the loop exit. LetM
accept the values ofX1 andX2 upon termination. The equality assertion holds when
L(M) ⊆ L(Ma), whereMa is CONSTRUCT(X1 = X2, −). We use ”−” to construct
(under approximation) automata for assertions to ensure the soundness of our analysis.
Using multi-track DFAs, we prove the equality property (result “true”) whereas we are
unable to prove it using single-track DFAs (result “false”)as shown in Table 1 (B1 and
B2). Though these benchmark examples are simple, to the bestof our knowledge, there
are no other string analysis tools that can prove equality properties in these benchmarks.

XSS/SQLI benchmarks.In the second set, we check existence of Cross-Site Scripting
(XSS) and SQL Injection (SQLI) vulnerabilities in Web applications with known vul-
nerabilities. We check whether at a specific program point, asensitive function may
take an attack string as its input. If so, we say that the program is vulnerable (result
“vul”) with respect to the given attack pattern. To identifyXSS/SQLI attacks, we check
intersection emptiness against all possible input values that reach a sensitive function
at a given program point and the attack strings specified as a regular language. Though
one can check such vulnerabilities using single-track DFAs[15], using multi-track au-
tomata, we can precisely interpret branch conditions, suchas$www=$url, that cannot
be precisely expressed using single-track automata, and obtain more accurate charac-
terization of inputs of the sensitive functions. For the vulnerabilities identified in these
benchmarks (S1 to S4), we did not observe false alarms that result from the approxima-
tion of the branch conditions.

14

MFE benchmarks.The last set of benchmarks show that the precision that is obtained
using multi-track DFAs can help us in removing false alarms generated by single-track
automata based string analysis. These benchmarks represent malicious file execution
(MFE) attacks. Such vulnerabilities are caused because developers directly use or con-
catenate potentially hostile input with file or stream functions, or improperly trust input
files. We systematically searched web applications for program points that execute file
functions, such asinclude andfopen, whose arguments may be influenced by ex-
ternal inputs. At these program points, we check whether theretrieved files and the
external inputs are consistent with what the developers intend. We manually generate
a multi-track DFAMvul that accepts a set of possible violations for each benchmark,
and apply our analysis on the sliced program segments. Upon termination, we report
that the file function is vulnerable (result “vul”) ifL(M) ∩ L(Mvul) 6= ∅. M is the
composed DFA of the listed single-track DFAs in the single-track analysis. As shown
in Table 1 (M1 to M5), using multi-track DFAs we are able to verify that MFE vulnera-
bilities do not exist (result “no”) whereas string analysisusing single-track DFAs raises
false alarms for all these examples.

Performance Evaluation.We have shown that multi-track DFAs can handle problems
that cannot be handled by multiple single-track DFAs, but atthe same time, they use
more time and memory. For these benchmarks, the cost seems affordable. As shown in
Table 1, in all tests, the multi-track DFAs that we computed (even for the composed
ones) are smaller than the product of the corresponding single-track DFAs. One advan-
tage of our implementation is symbolic DFA representation (provided by the MONA
DFA library [5]), in which transition relations of the DFA are represented as Multi-
terminal Binary Decision Diagrams (MBDDs). Using the symbolic DFA representation
we avoid the potential exponential blow-up that can be caused by the product alphabet.
However, in the worst case the size of the MBDD can still be exponential in the number
of tracks.

6 Conclusion

In this paper, we presented a formal characterization of thestring verification problem,
investigated the decidability boundary for string systems, and presented a novel veri-
fication technique for string systems. Our verification technique is based on forward
symbolic reachability analysis with multi-track automata, conservative approximations
of word equations and summarization. We demonstrated the effectiveness of our ap-
proach on several benchmarks.

References

1. C. Bartzis and T. Bultan. Widening arithmetic automata. In CAV, pages 321–333, 2004.
2. N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-manipulating

programs. InTACAS, pages 307–321, 2009.
3. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. InCAV, pages

372–386, 2004.

15

Single-track Multi-track
Result DFAs/ Composed DFA Time Mem Result DFA Time Mem

Ben state(bdd) user+sys(sec)(kb) state(bdd)user+sys(sec)(kb)

B1 false 15(107), 15(107) /33(477) 0.027 + 0.006 410 true 14(193) 0.070 + 0.009 918
B2 false 6(40), 6(40) / 9(120) 0.022+0.008 484 true 5(60) 0.025+0.006 293

S1 vul 2(20), 9(64), 17(148) 0.010+0.002 444 vul 65(1629) 0.195+0.150 1231
S2 vul 9(65), 42(376) 0.017+0.003 626 vul 49(1205) 0.059+0.006 4232
S3 vul 11(106), 27(226) 0.032+0.003 838 vul 47(2714) 0.153+0.008 2684
S4 vul 53(423), 79(633) 0.062+0.005 1696 vul 79(1900) 0.226+0.003 2826

M1 vul 2(8), 28(208) / 56(801) 0.027+0.003 621 no 50(3551) 0.059+0.002 1294
M2 vul 2(20), 11(89) / 22(495) 0.013+0.004 555 no 21(604) 0.040+0.004 996
M3 vul 2(20), 2(20) / 5(113) 0.008+0.002 417 no 3(276) 0.018+0.001 465
M4 vul 24(181), 2(8), 25(188) / 1201(25949)0.226+0.025 9495 no 181(9893) 0.784+0.07 19322
M5 vul 2(8), 14(101), 15(108) / 211(3195)0.049+0.008 1676 no 62(2423) 0.097+0.005 1756

Table 1. Experimental results. DFA(s): the minimized DFA(s) associated with the
checked program point. state: number of states. bdd: numberof bdd nodes. Bench-
mark: Application, script (line number). S1: MyEasyMarket-4.1, trans.php (218). S2:
PBLguestbook-1.32, pblguestbook.php (1210), S3:Aphpkb-0.71, saa.php (87), and S4:
BloggIT 1.0, admin.php (23). M1: PBLguestbook-1.32, pblguestbook.php (536). M2:
MyEasyMarket-4.1, prod.php (94). M3: MyEasyMarket-4.1, prod.php (189). M4: php-
fusion-6.01, dbbackup.php (111). M5: php-fusion-6.01, forumsprune.php (28).

4. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. InCAV, pages
403–418, 2000.

5. BRICS. The MONA project.http://www.brics.dk/mona/.
6. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions.

In SAS, pages 1–18, 2003.
7. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis framework for

detecting sql injection vulnerabilities. InCOMPSAC, pages 87–96, 2007.
8. C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated queries in

database applications. InICSE, pages 645–654, 2004.
9. Y. Minamide. Static approximation of dynamically generated web pages. InWWW, pages

432–441, 2005.
10. M. Minsky. Recursive unsolvability of Post’s problem ofTag and other topics in the theory

of Turing machines. InAnn. of Math (74), pages 437–455, 1961.
11. Open Web Application Security Project (OWASP). Top ten project. http://www.

owasp.org/, May 2010.
12. D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic execution

with string analysis. InTAICPART-MUTATION, pages 13–22, DC, USA, 2007.
13. G. Wassermann and Z. Su. Static detection of cross-site scripting vulnerabilities. InICSE,

pages 171–180, 2008.
14. F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis tool for php.

In TACAS, pages 154–157, 2010.
15. F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic string verification: An automata-based

approach. InSPIN, pages 306–324, 2008.
16. F. Yu, T. Bultan, and O. H. Ibarra. Symbolic string verification: Combining string analysis

and size analysis. InTACAS, pages 322–336, 2009.

