Relational String Verification Using Multi-track
Automata *

Fang Yu, Tevfik Bultar?, and Oscar H. Ibarfa

! National Chengchi University, Taipei, Taiwan
yuf @ccu. edu. tw
2 University of California, Santa Barbara, CA, USA
{bul tan, ibarra}@s. ucsb. edu

Abstract. Verification of string manipulation operations is a cru@abblem in
computer security. In this paper, we present a new reldtigtniag verification
technique based on multi-track automata. Our approachpahta of verifying
properties that depend on relations among string variafles enables us to
prove that vulnerabilities that result from improper sgrmanipulation do not ex-
istin a given program. Our main contributions in this pagger be summarized as
follows: (1) We formally characterize the string verificatiproblem as the reach-
ability analysis ofstring systemand show decidability/undecidability results for
several string analysis problems. (2) We develop a soundslcranalysis tech-
nique for string verification that over-approximates thecteable states of a given
string system using multi-track automata and summariaa(®) We evaluate the
presented techniques with respect to several string dedlgachmarks extracted
from real web applications.

1 Introduction

The most important Web application vulnerabilities are thui@adequate manipulation
of string variables [11]. In this paper we investigate #teng verification problem:
Given a program that manipulates strings, we want to veissegtions about string
variables. For example, we may want to check that at a ceptaigram point a string
variable cannot contain a specific set of characters. Tipie bf checks can be used
to prevent SQL injection attacks where a malicious usewuithes special characters in
the input string to inject unintended commands to the gedhat the Web application
constructs (using the input provided by the user) and sendsickend database. As
another example, we may want to check that at a certain pmogoént a string variable
should be prefix or suffix of another string variable. Thiseygf checks can be used
to prevent Malicious File Execution (MFE) attacks where Véigiplication developers
concatenate potentially hostile user input with file fuoos that lead to inclusion or
execution of untrusted files by the Web server.

We formalize the string verification problem as reachabdibalysis ofstring sys-
tems(Section 2). After demonstrating that the string analys@abfem is undecidable

* This work is supported by NSC grant 99-2218-E-004-002-M¥8d NSF grants CCF-
0916112, CCF-0716095, and CCF-0524136.

in general, we present and implement a forward symbolicha&aitity analysis tech-
nigue that computes an over-approximation of the reachsibtes of a string system
using widening and summarization (Section 4). We use natik deterministic finite
automata (DFAs) as a symbolic representation to encodeetlad possible values that
string variables can take at a given program point. Unlikerpstring analysis tech-
niques, our analysis iglational, i.e., it is able to keep track of the relationships among
the string variables, improving the precision of the stramalysis and enabling ver-
ification of invariants such aX; = X, whereX; and X, are string variables. We
develop the precise construction of multi-track DFAs forelr word equations, such
ascy Xjc2 = ¢} Xac, and show that non-linear word equations (suctKas= X, X3)
cannot be characterized precisely as a multi-track DFAt{&e8). We propose a reg-
ular approximation for non-linear equations and show hasgéhconstructions can be
used to compute the post-condition of branch conditionsas@jnment statements that
involve concatenation. We use summarization for inteicpdural analysis by generat-
ing a multi-track automaton (transducer) characterizimg elationship between the
input parameters and the return values of each proceducddSd). To be able to use
procedure summaries during our reachability analysisalign multi-track automata
so that normalized automata are closed under intersedferimplemented these al-
gorithms using the MONA automata package [5] and analyzeerabPHP programs
demonstrating the effectiveness of our string analysisriggies (Section 5).

Related Work. The use of automata as a symbolic representation for veiifichas
been investigated in other contexts [4]. In this paper, veei$oon verification of string
manipulation operations, which is essential to detect ardgmt crucial web vulnera-
bilities. Due to its importance in security, string anayas been widely studied. One
influential approach has been grammar-based string asalyai statically computes
an over-approximation of the values of string expressiankava programs [6] which
has also been used to check for various types of errors in \Melications [8, 9, 13].
In [9, 13], multi-track DFAs, known asransducersare used to model replacement
operations. There are also several recent string anatysis that use symbolic string
analysis based on DFA encodings [7,12, 15, 16]. Some of therbased on symbolic
execution and use a DFA representation to model and verystting manipulation
operations in Java programs [7,12]. In our earlier work, \&eehused a DFA based
symbolic reachability analysis to verify the correctnefsstong sanitization operations
in PHP programs [14-16]. Unlike the approach we proposedigpaper, all of the re-
sults mentioned above use single track DFA and encode thieabke configurations of
each string variable separately. Our multi-track autoreatzoding not only improves
the precision of the string analysis but also enables vatifin of properties that cannot
be verified with the previous approaches. We have also iigpatstl the boundary of
decidability for the string verification problem. Bjgrnérad. [2] show the undecidabil-
ity result with replacement operation. In this paper we @brsonly concatenation and
show that string verification problem is undecidable everdfgterministic string sys-
tems with only three unary string variables and non-deteistic string systems with
only two string variables if the comparison of two variabées allowed.

prog ::= decl" func

decl::=decl id™;

func::=id (id*) begi n decl’ Istmt"™ end

Istmt::=|:stmt

stmt::=seqstmt i f expt hen gotol;|gotoL; wherelLis a setoflabels
|'i nput id; | out put exg | assert exp

seqstmt=id :=sexp | id :=cal | id (sexp™);

exp::= bexp| expA exp| - exp

bexp::= atom= sexp

sexp::= sexpatom| atom| suffixid) | prefixid)

atom:=id | c, wherecis a string constant

Fig. 1. The syntax of string systems

2 String Systems

We define the syntax of string systems in Figure 1. We only idenstring variables
and hence variable declarations need not specify a typst#@ttments are labeled. We
only consider one string operation (concatenation) in oamal model; however, our
symbolic string analysis techniques can be extended tol@adnplex string opera-
tions (such as replacement [15]). Function calls use galldlue parameter passing.
We allow goto statements to be non-deterministic (if a gtatesnent has multiple tar-
get labels, then one of them is chosen non-deterministicéfiia string system contains
a non-deterministic goto statement it is called a non-deitastic string system, other-
wise, it is called a deterministic string system.

In order to identify different classes of string systems wi# use the following
notation. LetS(X1, Xo, ..., X,,) denote a string system with string variablgs, X5,
..., X,, and a finite set of labeled instructions. We will use the tstfe and NV to de-
note deterministic and non-deterministic string systemaspectively. We will use the
letters B and U to denote if the alphabet used by the string variables is thary
alphabet{a, b} or the unary alphabdiu }, respectively. We will usé(to denote an al-
phabet of arbitrary size. For examplel/ .S (X1, X5, X3) denotes a deterministic string
system with three variables and the unary alphabet whe¥daS (X, X»2) denotes a
nondeterministic string system with two variables and timauty alphabet. We will de-
note the set of assignment instructions allowed in a strystesn as a superscript and
the set of expressions involved in conditional branch irdions as subscript. Hence,
DUS (X4, Xo, X3)§§f§;§(2zxg denotes a deterministic string system with three vari-
ablesX;, X5, andX3, and the unary alphabét } where the assignment instructions are
of the formX; := Xja, Xs := Xsa, or X3 := X3a (i.e., we only allow concatenation
of one symbol to a string variable in each assignment instnicand the conditional
branch instructions can only be of the forihX3 = X; goto L orif X5 = X, goto L
(i.e., we only allow equality checks and do not allow comgamniof X; and X5.)

The halting problemfor string systems is the problem of deciding, given a string
systemsS, where initially the string variables are initialized tathull string,c, whether
S will halt on some execution. More generally, teachability problem for string sys-
tems(which need not halt) is the problem of deciding, given angtisystemS and a

configurationC' (i.e., the instruction label and the values of the varighlebether at
some point during a computatio@, will be reached. Note that we define the halting
and the reachability conditions using existential quaratfon over the execution paths,
i.e., the halting and the reachability conditions hold érhexists an execution path that
halts or reaches the target configuration, respectivelgceleif the halting problem is
undecidable, then the reachability problem is undecidable

Lemma 1. The halting problem foDU S (X1, X5, X3) ' =3, %, _x, is undecidable.

Proof. It is well-known that the halting problem for two-counter chines, where ini-
tially both counters are 0, is undecidable [10]. During thkeaaition of a counter ma-
chine, at each step, a counter can be incremented by 1, dectedby 1, and tested for
zero. The counters can only assume nonnegative values.

We will show that a two-counter machidé can be simulated with a string system
S(X1, X2, X3) in DUS(X1, Xo, X3)3 =3 %, _x,- The states of\/ can be repre-
sented as labels in the string systémThe states where the counter-machidehalts
will be represented with the halt instruction in string gystS. We will use the lengths
of the stringsX;, X, and X3 to simulate the values of the counté&rs andCs. The
value ofC; will be simulated by X, | — | X3/, and the value of’; will be simulated by
| Xao| — | X5].

The counter machind/ starts from the initial configuratiofy, 0,0) where g
denotes the initial state and the two integer values reptéke initial values of coun-
tersC, and Cs, respectively. The initial configuration of the string sstS will be
(qo, €, €,€) wheregqq is the label of the first instruction, and the strings, ¢ are the
initial values of the string variable&;, X, and X3, respectively. The instructions of
the counter-machin€ will be simulated as follows (where each statement is foldw
by a goto statement that transitions to the next state auictsbn):

Counter machine String system

inc & X1 :=Xia
inc Cy Xo := Xoa
deCCl Xy = Xoa; X3 := X3a
deCCQ X1 = Xla; X3 := X3a

if (CL=0) if (X1 =X3)
if (Co=0) if (X2=X3)

Note that although this transformation will allow the simt@ld counter values to pos-
sibly take negative values, this can be fixed by adding a ¢iomail branch instruction
before each decrement that checks that the simulated cowaites is not zero before
the instructions simulating the decrement instructiorxisceited. The string syste
constructed from\/ based on these rules will simulaté¢. Hence, halting problem is
undecidable for the string systemsi/ (X1, X2, X3) % =3 %, _x,-

In the proof of the theorem above, comparisons are only g and X; and
betweenX3; and X,. Suppose we have 4 variabl&s, X,, X3, X4, and we only allow
comparisons betweek; and X3 and betweerX; and X 4. Thus, comparisons are only
between the same variables. We denote this class of strirelersg as:
DUS(X1, Xa, X3, X)X 25 %, - x,-

Lemma 2. The halting problem foDU S(X1, X2, X3, X4) =3 %, _, is undecid-
able.

Proof. We can modify the proof of Theorer? so thatXs; and X, are essentially
identical copies (i.e., they are incremented simultanigdLEhe comparison between
X3 andX; (respectively, betweeR ;3 andX5) in the construction above is now reduced
to comparison betweelN; and X (respectively, betweeX, and X5). It follows the
halting problem for these programs is also undecidable. a0

Lemma 3. The halting problem foV BS(X;, X,)%i"=¢¢ is undecidable.

Proof. Given an instancéC, D) of PCP, where”' = (cy, ..., ¢,) andD = (dy, ..., d,),
define constant strings:y, ..., ¢y, du, ..., d,, }, Wherec;, d; are non-null strings over al-
phabet{a, b}, we construct a string systefin N BS (X1, X»)y' =3¢ as follows:
O:gotolor2or...orn

1: Xy := Xj¢q and X5 := Xody; goto 0 or n+1

2: X1 := Xjeo and X5 := Xsds; goto 0 or n+1

n: X := Xy¢, andXs := X»d,; goto 0 or n+1

n+1:if X; = X, goton+2 elsegoto 1

n+2: halt

Clearly, there is a computation that will reach the haltrimstion if and only if the PCP
instanceC, D) has a solution. The theorem follows.

Lemma 4. The halting problem foD K S(X1, Xo) %' =3 ~*=** is decidable.

Proof. Let S be a string system i K S(X;, Xz)ﬁifjg;“’X“:“Xi andk be its length
(i.e., number of instructions), including the assignmgatsl the conditional and un-
conditional branch statements.

Label the instructions of by 1, ..., k. We can think of each assignment, A as
equivalent to the instruction,: A; gotoi + 1. Hence, every instruction except the halt
instruction and th& statements hasgoto.

By an “execution of a positivé statement”, we mean that when tifiestatement is
executed X; = Xs.

During the computation of), if it is not in an infinite loop, then the interval (i.e.,
number of steps) between the executions of any two consequiisitiveif statements
is at mostk. The reason for this is that during the intervéilexecutes onlgoto's and
assignment statements wigoto's (note that a non-positivié statement leads directly
to the instruction following théf). Hence, the number of steps would be at migst
since there are at moktgoto's and assignments withoto's.

Now, an execution of a positivié statement leads togoto label, and there are at
mostk different labels. It follows that i5' is not in an infinite loop, it cannot run more
thank.k = k2 steps.

The above theorem can be generalized. Consider the clastefrdnistic multi-
variable programs, where the variables arg X5, ..., X;. Assignments can be of the
form: X; := X,a or X; := aX; wherel < ¢ < k anda is a symbol over some (not-
necessarily) unary alphabgt Conditional branch instructions can contain expressions

()]

1. input Xi; 1. X1 := a;

2: input X2; 2: X2 := a;

3: if (X1 = X2) goto 6; 3: X1 := Xl.b;

4: X1:=X2.c; 4: X2 := X2.b;

5: goto 7; 5: assert (X1=X2);

6: X1:=Xl.c; 6: goto 3;

7: assert (X1 = X2.c¢);

Fig. 2. An example with a branch statement Fig. 3.An example with a loop

of the formX; = X, orc 0 X; wherec is a constant string aritlis =, prefix or suffiz.
Note that only in a conditional branch statement we onlyakguality check between
the two variablesX; and X5, i.e., no other variables can be compared for equality.
Label all the instructions in the program with2, ..., n, wheren is the number of in-
structions. The program may or may not have a halt instrac@mnsider the following
reachability problem: Given configuratidh, z1, 22, ..., 5) (WhereL is a label in the
program, and the;’s are strings representing the values of the variablgs), will

the program starting from the initial configuratibh e, ¢, .., €) ever enter configuration
(L, 1,2, ..., 21)? We can show the following:

Lemma 5. The reachability problem for

Xi::Xia.,Xi::aXi . .
DES(X1,Xa, o X)X, X0 oo emprefie(Xo),e=suffin(X,) 1S decidable.

Now let us consider the set of multi-variable (i.e., not rettd to two or three
variables) nondeterministic string systems where the asgjgnments are of the form
X, := dX;c, whered, ¢ are constant strings over some alphabet (not necessaaty un
or binary), and thef statements only involve comparing a variable with a coristan
string, i.e., of the forme X; wherec is a constant string, anlcan be=, prefiz or

suffiz.

Lemma 6. The reachability problem for

NEKS(X1, Xo ooy Xa) o e () emsugrin(x,) 1S deCidable.

Proof. Let F' be a program irH{ s with variablesXy, ..., X;. Assume for nowk = 2.
We construct a nondeterministic 4-tape finite automatmwheres tape®;, To, T3, Ty
are used to simulate the concatenations to variakleand X5 as in the proof of the
above corollary. Letn be the maximum length of all constant strings appearing in
the programF’. M simulates the computation df by reading symbols on the four
tapes, as in proof of the corollary. It also keeps track ofratmd prefixes of strings
in the the variables, which change dynamically. During timeusation of F', we will
be concatenating constant strings to the variables. Thadifire a variable has a string
of length> m, we can stop updating the prefixes without affecting the ftian of
the “if” statements. It follows that the amount of memory weed to keep track of
the prefixes is finite and depends only on the specifications.dience the number
of states ofM is finite. Since emptiness for multi-tape finite automatadasidable, it
follows that reachability is decidable. The constructidmenwk > 2 is obvious (now\/
will have 2k tapes.) a

Examples of String SystemsConsider the string system in Fig. 2. Existing automata-
based string analysis techniques are not able to prove Hegtis at the end of this
program segment since they use single-track automata.id&ores symbolic analysis
technique that uses one automaton for each variable at eagham point to represent
the set of values that the variables can take at that progoémt. fJsing this symbolic
representation we can do a forward fixpoint computation topate the reachable state
space of the program. For example, the automaton for varigblat the beginning of
statement 2, call ifi/x, », will recognize the sef(Myx, ») = X* to indicate that the
input can be any string. Similarly, the automaton for vagaki, at the beginning of
statement 3, call by, 3, will recognize the sef(Mx, 35) = X*. The question is how
to handle the branch condition in statement 3. If we are usiimgje track automata, all
we can do at the beginning of statement 6 is the followl@'/x, ¢) = L(Mx,) =
L(Mx, 3)NL(Mx, 3). The situation with the else branch is even worse. All we aan d
atline 4istosefl(Mx, 4) = L(Mx, 3) andL(Mx, 4) = L(Myx, 3). Both branches
will result in L(Mx, 7) = X*.candL(Mx,) = X*, which is clearly not strong
enough to prove the assertion.

Using the techniques presented in this paper, we can védrdyassertion in the
above program. In our approach, we use a single multi-tratdmaaton for each pro-
gram point, where each track of the automaton corresponaisdatring variable. For
the above example, the multi-track automaton at the beginof statement 3 will
accept any pairs of string&’y, Xo where X1, Xo € X*. However, the multi-track
automaton at the beginning of statement 6 will only acceptspaf strings X, X»
whereX,, Xo € X* and X; = X,. We compute the post-conditid@X;.(X; =
X2) A (X] = X;.¢))[X1/X1] and generate the multi-track automaton that only accepts
pairs of stringsX;, Xs whereX;, X, € X* andX; = Xs.c. Similarly, the multi-track
automaton at the beginning of statement 4 will only acceptspaf strings X;, X»
where X, X5 € Y* and X; # X,, and after the assignment, we will generate the
multi-track automaton that only accepts pairs of stridgs X, whereX;, Xy, € X*
andX; = Xs.c. Hence, we are able to prove the assertion in statement 7.

Now, consider the string system in Fig. 3. which containsrdimite loop. If we
try to compute the reachable configurations of this progrgntdsatively adding con-
figurations that can be reached after a single step of exgtudur analysis will never
terminate. We incorporate a widening operator to accedeyat symbolic reachability
computation and compute an over-approximation of the fixipthiat characterizes the
reachable configurations. Note that the assertion in tligrnam segment is not explic-
itly established, i.e., there is no assignment, suckas= X», or branch condition,
such asX; = Xs, that implies that this assertion holds. Also, the assexjecifies the
equality among two string variables. Analysis techniqured encode reachable states
using multiple single-track DFAs will raise a false alarincg, individually,X; can be
abb and X, can bead at program point 5, but they cannot take these values at the sa
time. It is not possible to express such a constraint usimgjesitrack automata.

For this example, our multi-track automata based strindyaisatechnique termi-
nates in three iterations and computes the precise resudt.nulti-track automaton
that characterizes the values of string variabtgsand X, at program point 5, call it
Ms, recognizes the languagk(Ms) = (a,a)(b,b)*". SinceL(M;) C L(X; = X»),

we conclude that the assertion holds. Although in this chserésult of our analysis
is precise, it is not guaranteed to be precise in general.edewyit is guaranteed to
be an over-approximation of the reachable configuratioeadd, our analysis is sound
and if we conclude that an assertion holds, the assertiamasagteed to hold for every
program execution.

3 Regular Approximation of Word Equations

Our string analysis is based on the following observati¢hsThe transitions and the
configurations of a string system can be symbolically ressmesd using word equations
with existential quantification, (2) word equations can &eresented/approximated us-
ing multi-track DFAs, which are closed under intersectionion, complement, and
projection, and (3) the operations required during reaitihabnalysis (such as equiv-
alence checking) can be computed on DFAs.

Multi-track DFAs A multi-track DFA is a DFA but over the alphabet that consts
many tracks. Am-track alphabet is defined &8 U {A})", whereX ¢ X' is a special
symbol for padding. We use[i] (1 < i < n)to denote thé*" track ofw € (JU{A})".
An alignedmulti-track DFA is a multi-track DFA where all tracks aretlgfstified (i.e.,
N's are right justified). That is, ifv is accepted by an alignedtrack DFA M, then
for1 < i < n,wli] € **. We also usei[i] € X* to denote the longest-free
prefix ofwli]. It is clear that aligned multi-track DFA languages are etbander inter-
section, union, and homomorphism. L, be the alignech-track DFA that accepts
the (aligned) universe, i.e{w | Vi.w[i] € X*X*}. The complement of the language
accepted by an aligned-track DFA M is defined bycomplement modulo alignment
i.e., the intersection of the complementof)) with L(M,,). For the following de-
scriptions, a multi-track DFA is an aligned multi-track Diehless we explicitly state
otherwise.

Word Equations A word equation is an equality relation of two words that catenate
variables from a finite s& and words from a finite set of constagtsThe general form
of word equations is defined as...v, = v} ...v),, whereVi,v;,v; € X UC. The
following theorem identifies the basic forms of word equasioFor example, a word
equationf : X1 = XodX3X4 is equivalent tod Xy, , Xk, . X1 = XoXp, A Xk, =
ka2 A Xp, = X3X4.

Theorem 1. Word equations and Boolean combinations (\ and V) of these equa-
tions can be expressed using equations of the f@im= Xsc, X1 = c¢Xo, ¢ = X1 X5,
X; = X2 X3, Boolean combinations of such equations and existentiahtification.

Let f be a word equation ov&X= { X, Xo,..., X,,} and f[¢/ X | denote a new
equation whereX is replaced withe for all X that appears irf. We say that am-
track DFA M under-approximateg if for all w € L(M), flw[l]/ X1, ..., w[n]/X,]
holds. We say that an-track DFA M over-approximateg if for any sq,...,s, € X*
wheref[s1/X1, ..., s,/X,] holds, there exista) € L(M) such that for alll < i <
n,w[i] = s;. We call M precisewith respect tof if M both under-approximates and
over-approximatesg.

Definition 1. A word equationf is regularly expressible if and only if there exists a
multi-track DFAM such thatM is precise with respect tgé.

Theorem 2. 1. X; = Xac, X1 = ¢Xoq, ande = X; X, are regularly expressible, as
well as their Boolean combinations.
2. X, = c¢X5 isregularly expressible but the correspondimfghas exponential num-
ber of states in the length of
3. X; = Xy X3 is not regularly expressible.

We are able to compute multi-track DFAs that are precise vafipect to word equa-
tions: X; = Xsc, X7 = ¢Xs, ande = X7 X5. SinceX; = X, X3 is not regularly ex-
pressible, below, we describe how to compute DFAs that aqmpitte such non-linear
word equations. Using the DFA constructions for these fasibforms we can con-
struct multi-track DFAs for all word equations and their Been combinations (if the
word equation contains a non-linear term then the congdubf-A will approximate
the equation, otherwise it will be precise). The Booleanrapens conjunction, dis-
junction and negation can be handled with intersectiommurand complement mod-
ulo alignment of the multi-track DFAs, respectively. Eristial quantification on the
other hand, can be handled using homomorphism, where giwendequatiory and a
multi-track automatod/ such thatV/ is precise with respect tf, then the multi-track
automatonM |; is precise with respect t8.X;.f where M |; denotes the result of
erasing the!” track (by homomorphism) af/.

Construction of X; = X5 X3 Since Theorem 2 shows that; = X, X3 is not reg-
ularly expressible, it is necessary to construct a consigevéover or undel) approx-
imation of X; = X, X5. We first propose armver approximation construction for
X1 = XoX3. Let My = <Q1,2,51711,F1>, M, = <Q2,2,52,IQ,FQ>, andM3 =
(Qs, X, 83, Is, F5) accept values of(;, X,, and X3, respectivelyM = (Q, (X U
{A})3,6,1, F) is constructed as follows.

- QCQ1xQ2xQ3x%xQs,
— I = (11,127137]3)'

- Va,be X, 6((r,p,s,5), (a,a,b)) = (61(r,a), 02(p,a), d3(s,b), s),

—Va,be X,pe Fy,s¢ F3,0((r,p,s,5),(a,\, b)) = (61(r,a), p, 05(s,b), 03(s", a)),
—VYae X, pe Fy,s€ F3,6((r,p,s,8),(a,\,\)) = (01(r,a),p, s 53(5 a)),
—VYae X, p& Fy,s€ F3,0((r,p,s,5),(a,a,\) = (01(r,a), d2(p,a), s, s'),

— F={(r,p,s,8") |re Fi,pe€ Fy,s € F5,s' € F3}.

The intuition is as followsM tracesM;, M, andM; on the first, second and third
tracks, respectively, and makes sure that the first and deicacks match each other.
After reaching an accepting state i, M enforces the second track to beand
starts to tracé\/s on the first track to ensure the rest (suffix) is acceptedhy |Q)| is
O(|Q1] X |Q2] x |Qs] + |Q1] x |Qs] x |Qs]). For allw € L(M), the following hold:

— w[l] € L(M), w[2] € L(M3),w[3] € L(Ms3),
— w[l] = w[2]w" andw’ € L(Ms),

10

Note thatw’ may not be equal tab[3], i.e., there existsv € L(M), w[l] #
w[2]w[3], and hencél is not precise with respect t8; = X, X3. On the other hand,
for any w such thatw[1] = @[2]w[3], we havew € L(M), henceM is a regular
overapproximation ofX; = X, Xs.

Below, we describe how to construct a reguladerapproximation ofX; = X5 X3
(which is necessary for conservative approximation ofét:iplement set). We use the
idea that ifL(M->) is a finite set language, one can construct the DEAhat satisfies
X; = X, X3 by explicitly taking the union of the construction of; = ¢X3 for
all ¢ € L(Ms). If L(My) is an infinite set language, we construct a reguilader
approximation ofX; = X,X3 by considering a (finite) subset @f(1>) where the
length is bounded. Formally speaking, for edch» 0 we can construch/, so that
w € L(My),w[l] = w[2]w[3], w[l] € L(M;), w[3] € L(Ms), w[2] € L(Ms) and
|w[2]] < k. It follows that M, is a regularunderapproximation ofX; = X, X3.

If L(M>) is a finite set language, there exigtgthe length of the longest accepted
word) whereL(My,) is precise with respect t8; = X, X5. If L(M>) is an infinite set
language, there does not exist sucko thatL(M},) is precise with respect t&; =
X2 X3, as we have proven non-regularity 8f = X5 X3.

4 Symbolic Reachability Analysis

Our symbolic reachability analysis involves two main stépsvard fixpoint computa-
tion and summarization.

Forward Fixpoint Computation The first phase of our analysis is a standard forward
fixpoint computation on multi-track DFAs. Each program gasassociated with a
single multi-track DFA, where each track is associated withingle string variable
X € X. We useM][l] to denote the multi-track automaton at the program ldbel
The forward fixpoint computation algorithm (Algorithm 1) @asstandard work-queue
algorithm.

Initially, for all labelsi, L(M][l]) = 0. We iteratively compute the post-images of
the statements and join the results to the correspondiragreaté. For astmt in the
form: X:= sexp, the post-image is computed as:

PosT(M, stmt) = (3X.M N ConsTRucT X' = sexp, +))[X/X'].

ConsTRruCT(exp, b) returns the DFA that accepts a regular approximatianpf where

b € {+,—} indicates the directionofer or under, respectively) of approximation if
needed. During the construction, we recursively push tigatiens) (and flip the di-
rection) inside to the basic expressiobsip), and use the corresponding construction
of multi-track DFAs discussed in the previous section. We fusiction summaries to
handle function calls. Each functiohis summarized as a finite state transducer, de-
noted as\/ ¢, which captures the relations among input variables (paters), denoted
as.X,, and return values. The return values are tracked in theubtrgick, denoted as
X,. We discuss the generation of the transdudgrbelow. For astmt in the form.X :=
call f(ei,...,en), the post-image is computed as:

posT(M, stmt) = (3X, X,,, ... X, .M 0 M; 0 Mg)[X/X,),

11

Algorithm 1 FORWARDRECAHABILITY ANALYSIS(lp)

1: Init(M);

2: queueW @;

3: WQ.enqueud(: stmto);
4: while WQ # NULL do

5. e:=WQ.dequeue(); Let bel : stmt;
6: if stmtis seqstmt then
7: m = POSTM]I], stmt);
8: PROPAGATHEm, [+ 1);
9: endif
10: if stmtisif expgot ol then
11: m = M[lJn CONSTRUCT(exp, +);
12: if L(m) # 0 then
13: PROPAGATEm, I');
14: end if
15: m = M[lJn CONSTRUCT(—exp, +);
16: if L(m) # (0 then
17: PROPAGATH(m, | + 1);
18: end if
19: endif
20: if stmtisassert expthen
21: m := CONSTRUCT(exp, —);
22: if L(MIl]) € L(m) then
23: ASSERTFAILED (1);
24: else
25: PROPAGATEMI],l + 1);
26: end if
27: endif
28: if stmtisgot o L then
29: for I’ € L do
30: PROPAGATE M [],l');
31: end for
32: endif
33: end while

Algorithm 2 PROPAGATE(m, [)

m = (mu M[)VM[l;
if m" ¢ M{[l] then

arwdbE

MIl] =m/;
W Q.enqueudy;
end if

12

f(X)
begin
1: goto 2, 3; (£, %) (A, a) (A a)
2: X =call f(Xa): @—»@9
3: return X
end
Fig. 4. A function and its summary DFA
where M; = ConsTRUCT(A\; X, = e;, +). The process terminates when we reach

a fixpoint. To accelerate the fixpoint computation, we extendautomata widening
operator [15], denoted &8, to multi-track automata. We identify equivalence classes
according to specific equivalence conditions and mergesstatthe same equivalence
class [1, 3]. The following lemma shows that the equalitatiehs among tracks are
preserved while widening multi-track automata.

Lemma 7. if L(M)C L(x =y)andL(M') C L(z = y), L(IMVM') C L(z = y).

Summarization We compute procedure summaries in order to handle proceédlise
We assume parameter-passing with call-by-value semaantitsve are able to handle
recursion. Each functioyi is summarized as a multi-track DFA, denotedMdsg, that
captures the relation among its input variables and retalues.

Consider the recursive functigh shown in Figure 4 with one parametgr.non-
deterministically returns its input (goto 3) or makes a salf (goto 2) by concatenating
its input and a constant. The generated summary for this function is also shown in
Figure 4.M; is a2-track DFA, where the first track is associated with its paetn
X,,, and the second track is associated wiih representing the return values. The
edge(X, X)) represents a set of identity edges. In other waffig, (X, X)) = ¢’ means
Va € X,6(q, (a,a)) = ¢'. The summary DFAV/; precisely captures the relatidfy, =
Xp, .a* between the input variable and the return values.

During the summarization phase, (possibly recursive)tions are summarized as
unaligned multi-track DFAs that specify the relations agdineir inputs and return
values. We first build (possibly cyclic) dependency graghspgecify how the inputs
flow to the return values. Each node in the dependency grapksisciated with an
unaligned multi-track DFA that traces the relation amornguis and the value of that
node. An unaligned multi-track DFA is a multi-track DFA wleers might not be right
justified. Return values of a function are represented withaaxiliary output track.
Given a functionf with n parameters)/ is an unalignedn + 1)-track DFA, wheren
tracks represent theinput parameters and one tra&k is the output track representing
the return values. We iteratively compute post images afhable relations and join
the results until we reach a fixpoint. Upon termination, themary is the union of the
unaligned DFAs associated with the return nodes. To comihese summaries at the
call site, we also propose an alignment algorithm to aligrtiiat\’s are right justified)
an unaligned multi-track DFA.

Once the summary DFA/; has been computed, it is not necessary to reanalyze
the body of f. To compute the post-image of a call fowe intersect the values of

13

input parameters witli/; and use existential quantification to obtain the returnesilu
Let M be a one-track DFA associated with whereL(M) = {b}. pos(M, X :=
cal | f(X)) returnsM’ whereL(M") = ba* for the example function shown above.
As another example, I6t/ be a2-track DFA associated witlX', Y that is precise with
respect toX = Y. Thenrosi(M, X :=cal | f(X)) returnsM’ which is precise
with respect taX = Y.a* precisely capturing the relation betwe&nandY” after the
execution of the function call. As discussed aba\#,is computed by3X, X,,, .M N
M N My)[X/X,), whereL(M;) = ConsTRUCT X, = X, +).

5 Experiments

We evaluate our approach against three kinds of benchmBrBasic benchmarks, 2)
XSS/SQLI benchmarks, and 3) MFE benchmarks. These ben&smgpresent typi-
cal string manipulating programs along with string projesrthat address severe web
vulnerabilities.

Basic benchmarkdhn the first set, we demonstrate that our approach can pragpfciin
equality properties of string systems. We wrote two smalgpams. CheckBranch (B1)
has if branch §; = X5) and else branchX; # X5). In the else branch, we assign
a constant string to X; and then assign the same constant string(fo\We check at
the merge point whetheX; = X,. In CheckLoop (B2) we assign variablég and
X, the same constant string at the beginning, and iteratiyghgad another constant
string to both in an infinite loop. We check wheth€y = X, at the loop exit. Lef\M/
accept the values oX; and X, upon termination. The equality assertion holds when
L(M) C L(M,), whereM, is ConsTRUCT(X; = X2, —). We use " to construct
(under approximation) automata for assertions to ens@redondness of our analysis.
Using multi-track DFAs, we prove the equality property (réstrue”) whereas we are
unable to prove it using single-track DFAs (result “falsa$)shown in Table 1 (B1 and
B2). Though these benchmark examples are simple, to th@best knowledge, there
are no other string analysis tools that can prove equalipgnties in these benchmarks.

XSS/SQLI benchmarks$n the second set, we check existence of Cross-Site Saiptin
(XSS) and SQL Injection (SQLI) vulnerabilities in Web aaltions with known vul-
nerabilities. We check whether at a specific program poirsgrsitive function may
take an attack string as its input. If so, we say that the @nogis vulnerable (result
“vul”) with respect to the given attack pattern. To ident{$S/SQLI attacks, we check
intersection emptiness against all possible input valbasreach a sensitive function
at a given program point and the attack strings specified agwdar language. Though
one can check such vulnerabilities using single-track DEA$, using multi-track au-
tomata, we can precisely interpret branch conditions, ss@&ww=3$ur | , that cannot
be precisely expressed using single-track automata, atadhaimore accurate charac-
terization of inputs of the sensitive functions. For thenarhbilities identified in these
benchmarks (S1 to S4), we did not observe false alarms thialt feom the approxima-
tion of the branch conditions.

14

MFE benchmarksThe last set of benchmarks show that the precision that srodd
using multi-track DFAs can help us in removing false alarmseyated by single-track
automata based string analysis. These benchmarks repraa&cious file execution
(MFE) attacks. Such vulnerabilities are caused becaussafsers directly use or con-
catenate potentially hostile input with file or stream fuioies, or improperly trust input
files. We systematically searched web applications for fanmgpoints that execute file
functions, such asncl ude andf open, whose arguments may be influenced by ex-
ternal inputs. At these program points, we check whetheretgeved files and the
external inputs are consistent with what the developeenthtWe manually generate
a multi-track DFAM,,,; that accepts a set of possible violations for each benchmark
and apply our analysis on the sliced program segments. Ugamirtation, we report
that the file function is vulnerable (result “vul”) if (M) N L(M,) # 0. M is the
composed DFA of the listed single-track DFAs in the singéek analysis. As shown
in Table 1 (M1 to M5), using multi-track DFAs we are able toifsethat MFE vulnera-
bilities do not exist (result “no”) whereas string analyssng single-track DFAS raises
false alarms for all these examples.

Performance EvaluationWe have shown that multi-track DFAs can handle problems
that cannot be handled by multiple single-track DFAs, buhatsame time, they use
more time and memory. For these benchmarks, the cost setorgadiiie. As shown in
Table 1, in all tests, the multi-track DFAs that we computedeq for the composed
ones) are smaller than the product of the correspondindestrack DFAs. One advan-
tage of our implementation is symbolic DFA representatimmoyided by the MONA
DFA library [5]), in which transition relations of the DFA aurepresented as Multi-
terminal Binary Decision Diagrams (MBDDs). Using the syridB®FA representation
we avoid the potential exponential blow-up that can be chbgehe product alphabet.
However, in the worst case the size of the MBDD can still beosemtial in the number
of tracks.

6 Conclusion

In this paper, we presented a formal characterization ostitieg verification problem,

investigated the decidability boundary for string systearsd presented a novel veri-
fication technique for string systems. Our verification téghe is based on forward
symbolic reachability analysis with multi-track automatanservative approximations
of word equations and summarization. We demonstrated feetekeness of our ap-
proach on several benchmarks.

References

1. C. Bartzis and T. Bultan. Widening arithmetic automataCAV, pages 321-333, 2004.

2. N. Bjgrner, N. Tillmann, and A. Voronkov. Path feasilyilénalysis for string-manipulating
programs. INTACAS pages 307-321, 2009.

3. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract reguhodel checking. IICAV, pages
372-386, 2004.

15

Single-track Multi-track

Resul DFAs/ Composed DFA ‘ Time ‘LMem Resul‘ DFA L Time (LMem
Ben state(bdd) user+sys(se¢)kb) state(bdd)user+sys(se¢)(kb)
[Bl[false] 15(107), 15(107) /33(477) [0.027 + 0.00§410] true | 14(193) [0.070 + 0.009 918 |
[B2] false] 6(40), 6(40) /9(120) [0.022+0.009 484] true [5(60) [0.025+0.00¢ 293 |
SI] vl 2(20), 9(64), 17(148) 0.010+0.007 444] vul | 65(1629)] 0.195+0.15(1231
S2[wul 9(65), 42(376) 0.017+0.003 626 | vul |49(1205)| 0.059+0.00¢ 4232
S3] wul 11(106), 27(226) 0.032+0.003 838 vul [47(2714)[0.153+0.004 2684
S4] wul 53(423), 79(633) 0.062+0.0051696] vul | 79(1900)[0.226+0.003 2826
M1] wul 2(8), 28(208) / 56(801) 0.027+0.003 621] no [50(3551)[0.059+0.007 1294
M2[wul 2(20), 11(89) / 22(495) 0.013+0.004 555| no | 21(604) [0.040+0.004 996
M3[wul 2(20), 2(20) / 5(113) 0.008+0.007 417| no | 3(276) [0.018+0.001] 465
M4 | vul |24(181), 2(8), 25(188) / 1201(25949%).226+0.025 9495 no |181(9893) 0.784+0.07|19322
M5] vul | 2(8), 14(101), 15(108) / 211(3195)0.049+0.004 1676 no | 62(2423)| 0.097+0.005 1756

Table 1. Experimental results. DFA(S): the minimized DFA(s) asatail with the
checked program point. state: number of states. bdd: nuwibledd nodes. Bench-
mark: Application, script (line number). S1: MyEasyMarket, trans.php (218). S2:
PBLguestbook-1.32, pblguestbook.php (1210), S3:Aphpkti, saa.php (87), and S4:
BloggIT 1.0, admin.php (23). M1: PBLguestbook-1.32, plastibook.php (536). M2:
MyEasyMarket-4.1, prod.php (94). M3: MyEasyMarket-4.ghphp (189). M4: php-
fusion-6.01, dbbackup.php (111). M5: php-fusion-6.01, forupsine.php (28).

10.

11.

12.

13.

14.

15.

16.

. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Reguhodel checking. ICAV, pages

403-418, 2000.

. BRICS. The MONA projectht t p: / / www. bri cs. dk/ nona/ .
. A.S. Christensen, A. Mgller, and M. |. Schwartzbach. Beeanalysis of string expressions.

In SAS pages 1-18, 2003.

. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao.t&is analysis framework for

detecting sql injection vulnerabilities. BOMPSAC pages 87-96, 2007.

. C. Gould, Z. Su, and P. Devanbu. Static checking of dynalfyigenerated queries in

database applications. I8SE pages 645-654, 2004.

. Y. Minamide. Static approximation of dynamically gertethweb pages. IWWW pages

432-441, 2005.

M. Minsky. Recursive unsolvability of Post’s problemTafg and other topics in the theory
of Turing machines. Iinn. of Math (74)pages 437-455, 1961.

Open Web Application Security Project (OWASP). Top tenjert. http:// ww.
owasp. or g/, May 2010.

D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid.trAbsng symbolic execution
with string analysis. ITAICPART-MUTATIONpages 13-22, DC, USA, 2007.

G. Wassermann and Z. Su. Static detection of crosssifgting vulnerabilities. INCSE
pages 171-180, 2008.

F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An autombtesed string analysis tool for php.
In TACAS pages 154-157, 2010.

F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic gnirrification: An automata-based
approach. II'SPIN pages 306-324, 2008.

F. Yu, T. Bultan, and O. H. lbarra. Symbolic string vegfion: Combining string analysis
and size analysis. INACAS pages 322-336, 2009.

