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ABSTRACT
Correct validation and sanitization of user input is crucial
in web applications for avoiding security vulnerabilities and
erroneous application behavior. We present an automated
differential repair technique for input validation and saniti-
zation functions. Differential repair can be used within an
application to repair client and server-side code with respect
to each other, or across applications in order to strengthen
the validation and sanitization checks. Given a reference and
a target function, our differential repair technique strength-
ens the validation and sanitization operations in the tar-
get function based on the reference function. It does this
by synthesizing three patches: a validation, a length, and
a sanitization patch. Our automated patch synthesis algo-
rithms are based on forward and backward symbolic string
analyses that use automata as a symbolic representation.
Composition of the three automatically synthesized patches
with the original target function results in the repaired func-
tion, which provides stronger validation and sanitization
than both the target and the reference functions.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.5 [Software Engineering]:
Testing and Debugging

General Terms
Reliability, Verification

Keywords
Differential repair, automated repair, string analysis, input
validation and sanitization

1. INTRODUCTION
One of the main forms of interaction between a user and a

web application is through text fields. For many text fields
(such as username, email, zip code, etc.) a web application
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typically expects the user input to be in a certain format.
Since the user input can contain typing errors, or may be
purposefully written (by a malicious user) to violate the ex-
pected format, the web application has to validate the user
input using input validation operations such as regular ex-
pression matching, and sometimes modify the input to put
it in the expected format using sanitization operations such
as string replacement.

If input validation or sanitization is not used, inputs that
violate the expected format can easily cause an application
to crash since the user input becomes the input parameter of
the action that is executed based on the user request. More-
over, during action execution, user input can be passed as a
parameter to security sensitive operations such as sending a
query to the back-end database. In order to ensure the secu-
rity of the application, the user inputs that flow into sensitive
functions must be correctly validated and sanitized. Due to
global accessibility of web applications, malicious users all
around the world can exploit a vulnerable application, so
any existing vulnerability in a web application is likely to
be exploited by some malicious user somewhere. Given the
significance of this security threat, one would expect web ap-
plication developers to be extremely careful in writing input
validation and sanitization functions. Unfortunately, web
applications are notorious for security vulnerabilities such
as SQL injection and cross-site scripting (XSS) that are due
to improper input validation and sanitization.

In this paper, we focus on analyzing and repairing valida-
tion and sanitization functions in web applications. In or-
der to repair a function, one first needs specification of the
expected behavior. Manual specification of expected input
formats for different types of input fields, or manual speci-
fication of attack patterns that characterize different types
of vulnerabilities require extra effort from the developers
and are error prone. In this paper, we present a differential
analysis approach that eliminates the need to write manual
specifications.

Web application developers often introduce redundant in-
put validation and sanitization code in the client and server-
side code of a web application. The checks done on the
client-side improve the responsiveness of the application by
preventing unnecessary communication with the server and
reduce the server load at the same time. However, since
a malicious user can by-pass the client-side checks, it is
necessary to re-validate and re-sanitize at the server-side.
Moreover, many applications repeat the checks for differ-
ent types of fields in different parts of the application which
can be exploited to obtain multiple instances of the valida-
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function reference_function($x){
if (strlen($x) > 4)
exit();

else {
$x = preg_replace(’/</’, ’’, $x);
if ($x == ’’)
exit();

else
return $x;

}
}

function target_function($y){
$y = preg_replace(’/"/’, ’\"’, $y);
return $y;

}

Figure 1: A small, but illustrative example, showing
a target function to be repaired based on a reference
function.

tion and sanitization code with the same intended function-
ality. Finally, across different applications, one can easily
find multiple instances of validation and sanitization code
used to check standard formats (such as email) or to protect
against same class of vulnerabilities (such as SQL injection
and XSS). Using the semantic differential repair techniques
presented in this paper, we exploit these redundancies within
and application and across applications, and automatically
repair input validation and sanitization functions by com-
paring them against each other. Our results were evaluated
by the ISSTA artifact evaluation committee and were found
to meet the expectations.

Rest of the paper is organized as follows. After an overview
of our differential repair approach (Section 2) we present
our contributions which are: 1) the formal modeling of dif-
ferential repair problem for input validation and sanitization
functions (Section 3), 2) a novel differential repair algorithm
that automatically generates three patches which together
constitute a repair (Section 4), 3) specialized automata-
based pre and post-image computations for efficient string
analysis (Section 5), and 4) the implementation and experi-
mental evaluation of the proposed approach (Section 6). We
conclude the paper with a discussion of related work (Sec-
tion 7) followed by our concluding remarks (Section 8).

2. OVERVIEW
In this section we give an overview of our automated differ-

ential repair technique that strengthens the validation and
sanitization functionality of a given target function based on
a given reference function.

Consider the example functions shown in Figure 1. The
reference function starts with a validation check that blocks
any string that is longer than 4 characters. This is followed
by a sanitization operation which replaces the character ‘<’
with ε (i.e., deletes ‘<’). Finally, the result of the sanitization
operation goes through another validation check that blocks
the empty string. The target function in Figure 1 does not
do any validation. It only sanitizes the input string by re-
placing the character ‘"’ with the string “\"” (i.e., it escapes
the double quote characters).

The goal of our differential repair technique is to strengthen
the validation and sanitization operations in the target func-
tion as much as the reference function. More precisely, the
goal is to make sure that the repaired target function does
not return a string that is not returned by the reference
function or the original target function. We call the set of
strings returned by a validation and sanitization function its

function validation_patch($x){
if (preg_match(’/<*|[^<].{4,}|<[^<].{3,}|<<[^<].{2,}|

<<<[^<].+/’,$x))
exit();

else
return $x;

}

function length_patch($x){
if (preg_match(

’/"".{1,2}|".{1,2}"|.{1,2}""|"[^"]{3,3}|[^"]{3,3}"/’,$x))
exit();

else
return $x;

}

function sanitization_patch($x){
$x = preg_replace(’/</’, "", $x);
return $x;

}

function repaired_function($x){
return target_function(

sanitization_patch(
length_patch(

validation_patch($x)
)

)
);

}

Figure 2: The repaired function that is generated
by our differential repair algorithm for the target
function shown in Figure 1

post-image (which is the set of strings that reach the sink,
i.e., the return statement). Hence, our goal is to make sure
that the post-image of the repaired function does not con-
tain any string that is not in the post-image of the reference
function and the original target function.

The post-image for the reference function in Figure 1 is
the language of all strings that are shorter than 5 characters
and not empty and do not contain the character ‘<’, while
the post-image for the target function is the language of
all strings that do not contain the character ‘"’ unless it is
preceded by the character ‘\’. For example, the string “foo”
is an element in the reference function’s post-image while the
string “foo<” is not since it contains the ‘<’ character. Also,
the strings “foo” and “foo\"bar” are elements in the target
function’s post-image while the string “foo"bar” is not since
it contains the character ‘"’ without being preceded by the
character ‘\’.

Due to lack of idempotency in some string sanitization op-
erations, composing a reference and a target sanitizers to get
a stronger one does not work in general. For example, if the
two sanitizers share the following non-idempotent sanitiza-
tion operation preg_replace(’/"/’, ’\"’, $x) which es-
capes the double-quote character, the composition would re-
sult in double escaping (e.g., “ab"c” would become “ab\\"c”
instead of “ab\"c”) which is a known security problem [12].
By computing the differences between the reference and tar-
get sanitizers we avoid this problem.

Our differential repair algorithm works in three phases,
where each phase generates a patch-function with a specific
purpose: (1) a validation patch, (2) a length patch, and (3) a
sanitization patch. The final repair is obtained by applying
the composition of all three patch-functions together.

Validation patch.
The purpose of this phase is to generate a patch that

makes sure that the repaired function rejects all the inputs
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that are rejected by the reference function. Figure 2 shows
the validation-patch produced in this phase of the repair
algorithm for our running example. The validation patch
blocks all input strings that are either empty, consist of one
or more ‘<’ characters or longer than 4 characters. For ex-
ample, the strings“”, “<”, “<<<”and“<html>”will be blocked
by the validation patch. On the other hand, the strings “fo”
and “<a>” will not be blocked.

The validation patch blocks the inputs that generate a
string that is in the post-image of the target function but not
in the post-image of the reference function. Note that our
algorithm is able detect that some input strings are blocked
by the reference function only after being sanitized such as
the string “<<<” (which is first converted to empty string by
deletion of ‘<’ and then blocked by the reference function).
So, for this case, to make sure that the string “<<<” is not in
the post-image of the repaired function, the validation patch
blocks it.

Length patch.
The purpose of this phase is to make sure that (1) the

maximum length of the strings that are in the the post-
image of the repaired function is not bigger than the max-
imum length of the strings that are in the post-image of
the reference function and (2) the minimum length of the
strings that are in the post-image of the repaired function
is not smaller than the minimum length of the strings that
are in the post-image of the reference function.

For the reference function in our example, the minimum
length is 1, since it blocks the empty string, and the maxi-
mum length is 4. On the other hand, for the target function,
after the validation patch is applied, the minimum length is
1 since it also blocks the empty string, but the maximum
length is not 4 but 8. The reason is that the sanitization
in the target function escapes the ‘"’ character so that an
input string of length 4 like “""""” (which passes the valida-
tion patch) is escaped to produce the string “\"\"\"\"” at
the sink, which is of length 8.

This example shows that due to the sanitization opera-
tion in the target function, we get a length difference in the
post-image languages even though the validation patch has
already blocked all strings longer than 4. To address this is-
sue we generate a length patch that blocks any input string
that results in a string longer than 4 characters at the target
sink even if the input string itself is shorter than 4 charac-
ters. For example, the length patch blocks the string “"a"”
although it has 3 characters only since it will result in the
string “\"a\"” of length 5 at the sink which is longer than 4
characters. On the other hand, the string “foo” will not be
blocked by the length patch since it will reach the sink as it
is, 3 characters long.

Figure 2 shows the length patch-function for our exam-
ple. Note that the function assumes that the validation
patch function is applied before it so it only blocks things
not blocked by the validation patch function. In section 4.3
we explain how to automatically generate the length patch-
function.

Sanitization patch.
The purpose of this final phase is to take care of the dif-

ferences that are due to sanitization operations. Our goal is
to make sure that the post-image of the repaired function is
a subset of the post-image of the reference function.

In our example, there is one sanitization operation in the
reference function in which the character ‘<’ is deleted. Even
after application of the validation and length patches, this
behavior would not be fully replicated at the repaired target
function. Although the validation patch will prevent some
strings such as “<<<” from reaching the sink at the repaired
function, there are still other strings, such as “a<b” for ex-
ample, that will still be in the post-image of the repaired
function but not in the post-image of the reference func-
tion, since the character ‘<’ gets deleted. The goal of the
sanitization patch is to remedy such situations, and make
sure that the sanitization operations in the target function
are as strong as the sanitization operations in the reference
function.

Unlike the previous two phases, the sanitization patch
does not block the input strings that are found in the dif-
ference between the post-images of the target and reference
functions. Instead we use an algorithm called min-cut al-
gorithm to generate a sanitization code that will delete (or
escape) certain characters in the input strings such that the
difference between the two post-images is removed. Using
this min-cut algorithm, our differential repair algorithm will
generate the sanitization patch-function shown in Figure 2.
This function does not block input strings that contain the
character ‘<’, but rather, deletes this character from these
input strings and returns the corresponding string without
that character. This repair simulates the same sanitization
behavior of the reference function in the new repaired func-
tion. In section 4.3 we explain the min-cut algorithm and
how to automatically generate the sanitization patch.

Given the final sanitization phase, one might think that
the first two phases are redundant. However, without the
first two phases, the repair generated by our approach can
become too conservative by rejecting all input strings or by
deleting all characters from the input string. Dividing the
repair generation to three separate phases enables us to gen-
erate a combined repair that is not overly conservative.

The final result of the differential repair algorithm for our
running example is shown in Figure 2. The repaired function,
is obtained by composing the three patch-functions, in the
order in which they were introduced here, with the original
target function.

3. MODELING SANITIZER FUNCTIONS
As we discussed above, the differential repair algorithm

takes two validation and sanitization functions as input. In
this section we will give a characterization of the functions
that our differential repair algorithm takes as input.

Input validation and sanitization operations in web ap-
plications can be characterized using three types of func-
tions: 1) pure validator, 2) pure sanitizer and 3) validating-
sanitizer functions. A pure validator is a total function:

Fv : Σ∗ → {⊥,>}

that takes a string s ∈ Σ∗ and returns either > indicating
that the string is valid and should be accepted or ⊥ indi-
cating the string is not valid and should be rejected. Note
that, a pure validator does not change the value of the input
string, it either accepts or rejects it as it is.

A pure sanitizer is a total function:

Fs : Σ∗ → Σ∗

that maps an input string s ∈ Σ∗ to an output string s′ ∈ Σ∗.
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Note that, a pure sanitizer does not reject any input string,
however, it may modify some of the input strings.

A validating-sanitizer is a function:

Fvs : Σ∗ → {⊥} ∪ Σ∗

that takes an input string s ∈ Σ∗ and either returns ⊥ indi-
cating that s is invalid or maps s to output string s′ ∈ Σ∗.
Note that, a validating-sanitizer may reject some inputs and
modify some others. For the rest of the paper we call a
validating-sanitizer function a sanitizer for short.

In this paper, we model all input validation and sanitiza-
tion operations in web applications as sanitizers. Note that,
one can simulate a pure validator using a sanitizer: If an in-
put is rejected by the validator, it is rejected by the sanitizer
and if it is accepted by the validator it is returned without
modification by the sanitizer. Obviously, any pure sanitizer
is also a sanitizer that never rejects an input. Hence, by just
focusing on sanitizers we are able to analyze all three types
of behavior.

We extract one sanitizer function per input field which
characterizes all the validation and sanitization operations
that are used for that particular field. Validation and saniti-
zation operations involve use of regular expressions and val-
idation operations such as string match, substring, and san-
itization operations such as string replace, trim, addslashes,
htmlspecialchars, etc. In section 6 we will discuss how to
extract sanitizer functions from a web application and when
to map two functions to each other.

Differential Repair Problem.
Given a target sanitizer function FT and a reference san-

itizer function FR, the goal of differential repair is to gener-
ate a new sanitizer function FP , called a patch, such that
when FT is patched by composing it with FP , the resulting
repaired function returns a string only if FR and FT can
both return that string. I.e., we want to make sure that a
string is not in the post-image of the repaired function if it
is not in the post-image of FT or FR. In order to formalize
this, let us first define the sanitizer composition as follows:
Given two sanitizer functions F1 and F2, their composition,
F1 ◦ F2 : Σ∗ → Σ∗ ∪ {⊥}, is a sanitizer function defined as:

F1 ◦ F2(x) =

{
⊥ if F2 = ⊥
F1(F2(x)) if F2(x) 6= ⊥

Now, let us also define the difference between the post-
images of two sanitizer functions F1 and F2 as follows:

Diff(F1, F2) = {x | ∃y ∈ Σ∗ : F1(y) = x∧(∀z ∈ Σ∗ : F2(z) 6= x)}

which is the set of strings that are in the post-image of F1

but not in the post-image of F2. Given this definition, the
differential repair problem is to automatically construct a
patch FP such that Diff(FT ◦ FP , FR) = ∅, which means
when we compose FT with FP we want to make sure that
the result, FT ◦ FP , is at least as strict as FR, i.e., its post-
image is a subset of the post-image of FR. We call this new
composed function the differential repair FDR, where FDR =
FT ◦ FP . Note that, due to the way we are constructing
the differential repair, by composing the target function FT

with the automatically generated patch FP , we guarantee
that the repaired function FDR is at least as strict as FT ,
i.e., its post-image is also a subset of the post-image of FT .

Algorithm 1 DifferentialRepair(FT , FR)

1: M1 := A(Pre+⊥(FR));

2: M2 := A(Pre+⊥(FT ));

3: if (L(M1 \M2) 6= ∅) then

4: MV := M1 \M2;

5: FV := GenerateBlockingSimulator(MV );
6: else
7: FV := IdentityFunction; MV := A(∅);
8: end if
9: M1 := A(Post+(FR,Σ∗));

10: M2 := A(Post+(FT ,L(MV )));
11: Md = M2 \M1;
12: if (L(Md) 6= ∅) then
13: if (lenmin(M2) < lenmin(M1) ∨ lenmax (M2) > lenmax (M1))

then
14: M3 := RestrictLength(M2,M1);

15: ML := A(Pre+(FT ,L(M2 \M3)));

16: FL := GenerateBlockingSimulator(ML);
17: M2 := M3;
18: else
19: FL := IdentityFunction;
20: end if
21: Md := M2 \M1;
22: if (L(Md) 6= ∅) then

23: Mmc := A(Pre+(FT ,L(Md)));
24: Σmc := Mincut(Mmc);

25: FS := GenerateSanitizer(Σmc,M1);
26: else
27: FS := IdentityFunction;
28: end if
29: else
30: FS := FL := IdentityFunction;
31: end if
32: FDR := FT ◦ FS ◦ FL ◦ FV ;

33: return FDR;

4. DIFFERENTIAL REPAIR
Given a target sanitizer FT and a reference sanitizer FR,

our differential repair algorithm consists of three phases that
produce three patches: (1) The validation patch genera-
tion phase produces FV , (2) the length patch generation
phase produces FL, and (3) the sanitization patch genera-
tion phase produces FS . The result of our differential repair
algorithm is a patch that is the composition of these three
individual patches: FS ◦ FL ◦ FV and the repair we gener-
ate is the composition of this patch with the target function,
i.e., FDR = FT ◦ FS ◦ FL ◦ FV .

Our differential repair algorithm is shown in Algorithm 1.
The algorithm takes a target sanitizer FT and a reference
sanitizer FR as input and generates sanitizer FDR as output
which corresponds to differential repair of FT with respect to
FR. Our differential repair algorithms is based on automata
based symbolic string analysis, and uses Deterministic Finite
Automata (DFA) to represent sets of strings. For example,
it computes post or pre-images of given sanitizers as DFA
(where the set of strings accepted by the DFA corresponds
to the post or pre-image of a sanitizer). In Algorithm 1, each
variable with a name starting with M represents a DFA. The
operations ∩,∪, \, are automata operations that generate
automata that accept the intersection, union, difference and
complement of the languages of the given automata, respec-
tively, and the = operation tests the language equivalence
between two automata. The function A(L) takes a regular
language L ⊆ Σ∗ and returns a DFA that recognizes L. We
also use L(M) to denote the language accepted by the DFA
M . The variables with a name starting with F represent
sanitizers. In the remaining part of this section we discuss
the three phases of the Algorithm 1.
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4.1 Phase I: Validation Patch Generation
Our goal is to generate a validation patch FV such that:

∀x ∈ Σ∗ : FR(x) = ⊥ ⇒ FT ◦ FV (x) = ⊥,

i.e., the validation patch FV guarantees that FT ◦ FV does
not accept inputs that FR rejects.

In order to compute the validation patch, we first need
to identify the set of strings that are rejected by FT and
FR. We call this the negative pre-image of a sanitizer. For
a given sanitizer function F , this set is defined as:

Pre⊥(F ) = {s | F (s) = ⊥}

In general, it is not possible to compute the pre or post-
image of a sanitizer precisely since string analysis is an un-
decidable problem. We use automata-based backward sym-
bolic string analysis techniques discussed in Section 5 to
compute an over approximation of the negative pre-image,
Pre+

⊥(F ), where Pre+
⊥(F ) ⊇ Pre⊥(F ). This means that,

we may conclude that certain strings are rejected by F when
they are not. On the other hand, since we are comput-
ing an over-approximation, any string that is rejected by
F is guaranteed to be in Pre+

⊥(F ). Since we are using
automata-based symbolic string analysis, the result of the
negative pre-image computation is an automaton that ac-
cepts the language Pre+

⊥(F ), and we denote this automaton
as A(Pre+

⊥(F )).
Computing the pre-image of a sanitizer can be compli-

cated due to the interaction of validation and sanitization
operations. For example, consider the code segment:

trim($x);
if ($x == "")

exit("String is empty");

where the input string is first sanitized by the trim oper-
ation and then it is validated by comparing the resulting
string to empty string. To compute the set of inputs blocked
by this piece of code (i.e., its negative pre-image) we need
to compute the pre-image of the set of strings that satisfy
the condition $x == "" after the trim operation. This is
a language which is the Kleene closure of the union of all
space characters that are removed by the trim operation.

We compute the negative pre-image of a sanitizer using
automata-based backward symbolic string analysis. The
analysis starts at a sink (where the sanitizer terminates) and
goes backwards. The set of strings that can reach to a par-
ticular program point is represented as an automaton that
accepts the corresponding set of strings. Our automata-
based string analysis implements the pre-image and post-
image computations for all common validation and saniti-
zation operations as discussed in Section 5. Given a set
of input strings as output of a string operation, pre-image
computation computes the set of input strings that would
result in that output set. Post-image computation does the
reverse. The negative pre-image of a sanitizer is computed
by a fixpoint computation that repeatedly applies the pre-
image computations and uses automata-based widening [5]
to achieve convergence as discusses in Section 5.

We use this automata-based backward symbolic string
analysis in lines 1 and 2 of Algorithm 1 two construct two
automata M1 and M2, that accept an over-approximation of
the negative pre-images of FT and FR, respectively, where
L(M1) = Pre+

⊥(FR) and L(M2) = Pre+
⊥(FT ). The next

step (line 3) checks if the reference function FR rejects more

0

1Σ-{<}
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4Σ-{<}

5
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Σ

Σ
Σ

Σ

Σ

Figure 3: The validation patch automaton MV for
the example in Figure 1. The validation patch FV

blocks the strings accepted by this automaton.

input values than the target function FT by computing the
difference between negative pre-images of M1 and M2. If the
difference is empty then FV is assigned the identity function
(line 7) which is a sanitizer function that returns the input
as it is without blocking any value (i.e., it is a no-op). If the
difference is not empty, the target function must be patched
to reject the values rejected by the reference function. To
achieve this we automatically generate a patch that rejects
only the strings that are rejected by FR but not FT .

Note that the validation patch we generate is not sound
due to over-approximation of the negative pre-image of the
target function FT . The set of strings that are in Pre+

⊥(FR)
∩ (Pre+

⊥(FT )\Pre⊥(FT )) will not be blocked by the patch
we generate, whereas they should be blocked in order to
reach our precise goal. We can make the validation patch
sound by blocking all the strings in Pre+

⊥(FR) without com-
puting the set difference with Pre+

⊥(FT ), but, that would re-
sult in generation of a validation patch in many cases even
when it is not necessary. Our experiments indicate that the
imprecision in our pre-image computation is not a problem
in practice since for all the examples we manually checked
we observe that Pre+

⊥(FR) ∩ (Pre+
⊥(FT )\Pre⊥(FT )) = ∅.

Figure 3 shows the validation patch automaton MV that
is automatically generated for the example shown in Figure 1
where Σ represents the ASCII characters. To save space we
collapsed all transitions between any two states si and sj
into one transition tij . We annotate this transition with a
set of characters ΣC ⊆ Σ such that if a character c is in ΣC

then there is a transition on c between si and sj . The sink
state along with transitions into and out of it are omitted.

Since our analysis represents the set of strings at each
program point using DFA, we generate the patch repair
function FV based on the DFA that is computed by our
analysis. The validation patch code that is generated with
GenerateBlockingSimulator filters the inputs by simu-
lating the resulting automaton MV in Figure 3 to determine
if the input string is accepted by MV . If the input string
is accepted by the automaton MV , then FV will return ⊥
to block the input, otherwise it will return the input string
without modification.

4.2 Phase II: Length Patch Generation
The goal of length patch generation is to generate a patch

FL such that:

∀x ∈ Σ∗ :
((∃y, z ∈ Σ∗ : |FR(y)| ≤ |FT ◦ FV (x)| ≤ |FR(z)|)⇒
FL(x) = x) ∧
(¬(∃y, z ∈ Σ∗ : |FR(y)| ≤ |FT ◦ FV (x)| ≤ |FR(z)|)⇒
FL(x) = ⊥)

i.e., given the target function FT composed with the valida-
tion patch FV , FL rejects any input string that will cause
the output of FT ◦ FV to contain a string of length longer
or shorter than all the strings in the output of the reference
function FR.
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The validation patch makes sure that any input string
rejected by the reference sanitizer is also rejected by the re-
paired target sanitizer. However, this does not mean that
the set of strings that are returned by the repaired target
sanitizer and the reference sanitizer are the same after the
validation patch since they may be using different sanitiza-
tion operations. The length patch is the first step in estab-
lishing that the repaired target sanitizer does not return any
string that is not returned by the reference sanitizer. The
length patch makes sure that the length of any string re-
turned by the repaired target function is not larger or smaller
than all the strings returned by the reference sanitizer.

The lines 9-20 in Algorithm 1 construct the length patch.
The lines 9 and 10 compute the automata that accept the set
of strings that are returned by the reference sanitizer and the
target sanitizer that is composed with the validation patch.
Given L ⊆ Σ∗, the set of strings returned by the sanitizer F
when its input set is restricted to L is defined as:

Post(F,L) = {s | ∃s′ ∈ L : ∃s ∈ Σ∗ : F (s′) = s}

We call this the post-image of sanitizer F with respect to
L. Due to undecidability of string analysis we compute
an over-approximation of this set, namely, Post+(F,L) ⊇
Post(F,L). The lines 11 and 12 in Algorithm 1 check if
there are any strings that are returned by the target sanitizer
composed with the validation patch that are not returned by
the reference sanitizer by checking if Post+(FT ,L(MV ))\
Post+(FR,Σ

∗) = ∅. If the difference is empty, then we con-
sider FT ◦FV to be as strict as FR and the analysis concludes
by assigning IdentityFunction (i.e., no-op) to length and
sanitization patches FL and FS (line 30).

Note that, due to over-approximation in our analysis, it
is not guaranteed that FT ◦ FV is as strict as FR even if
the difference is empty. However, again manual inspection
of our experiments indicate that our approximate analysis
always finds the differences if they exist since the precision
of our post-image computation is quite good in practice.

If a difference is found, then we check if the difference
corresponds to a length difference in line 13. Let us first
define lenmax and lenmin for an automaton. Given an au-
tomaton M , lenmax (M) = ∞ if M accepts an infinite set,
and lenmax (M) is the length of the longest string accepted by
M otherwise. We can check if lenmax (M) =∞ by checking
if there are cycles in M on any path from the starting state
to an accepting state. If there is at least one cycle, then
lenmax (M) = ∞. If there are no cycles, then lenmax (M)
is finite, and we use a depth first search to compute the
length of the longest string accepted by M . On the other
hand, given an automaton M , lenmin(M) is the length of
the shortest string accepted by M . If the start state is an
accepting state then lenmin(M) = 0. Otherwise, lenmin(M)
is computed by finding the length of the shortest path from
the start state to an accepting state.

If a length difference is found, then we restrict the length
of the set of strings accepted by FT to remove the length
difference using the following operation in line 14:

RestrictLen(M2,M1) ≡M2 ∩
lenmax (M1)⋃

i=lenmin (M1)

Σi

After the length restriction, in line 15, we use the pre-image
computation to compute an over-approximation of the set
of input strings that cause the length discrepancy. Given a
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Figure 4: The length patch automaton ML for the
example in Figure 1. The length patch FL rejects
the strings accepted by this automaton.

set of strings L ⊆ Σ∗ returned by a sanitizer function F , we
call the set of input strings that are mapped by F to L the
pre-image of F with respect to L and we define it as:

Pre(F,L) = {s | ∃s′ ∈ L : F (s) = s′}

Again, due to over-approximation, we compute the set
Pre+(F,L) ⊇ Pre(F,L). This over-approximation may re-
sult in blocking input strings that do not contribute to the
length discrepancy.

In line 16 we generate the length patch FL that blocks the
strings that are accepted by the automaton ML in Figure 4
and returns the strings rejected by ML without any change.
Figure 4 shows the length patch automaton ML that our
algorithm computes for the example shown in Figure 1.

4.3 Phase III: Sanitization Patch Generation
The third and final phase in the repair algorithm is the

sanitization patch generation, which results in a patch func-
tion FS such that:

∀x ∈ Σ∗ : (∀y ∈ Σ∗ : FR(y) 6= x)⇒
(∀z ∈ Σ∗ : FT ◦ FS ◦ FL ◦ FV (z) 6= x)

which means that, after adding the sanitization patch FS to
the previously generated patches, we want the differential
repair FDR = FT ◦ FS ◦ FL ◦ FV to be as strict as FR in
terms of the set of strings it returns.

The lines 21-28 in Algorithm 1 generate the sanitization
patch. First, in the lines 21, 22, we check if there is a differ-
ence between what FT returns (after validation and sanitiza-
tion patches are applied) and what FR returns assuming any
input. If no difference is found, then we consider FT ◦FL◦FV

to be as strict as FR and the analysis concludes by assign-
ing IdentityFunction to FS (line 27). This indicates that
there is no sanitization patch. Note that, as we discussed
before, due to over-approximation our repair algorithm can
miss differences, however we have not observed this in our
experiments.

If a difference is found, then, in the line 23, we compute
an over-approximation of the set of input strings that result
in such a difference. The set L(Mmc) represents an over-
approximation of the set of all input strings that are the
cause of the difference between the set of strings returned
by FR and FT ◦FL◦FV . We call Mmc the mincut automaton
and in the line 24 we use this mincut automaton to generate
a mincut alphabet (as explained below), such that if the
symbols in the mincut alphabet are removed from the input
strings, then the difference between the post-images of FR

and FT ◦FL◦FV disappear. Then, in the line 25, we generate
the sanitization patch FS to either delete or escape the set of
symbols in the mincut alphabet. Finally, in the lines 32 and
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33, we construct and return the differential repair function
FDR as the composition of the target function FT with the
three patch functions generated during the three phases of
the repair algorithm.

The mincut algorithm [31] takes the DFA Mmc as input,
and produces a set of characters Σmc such that sanitization
repair function FS modifies a given input string in such a
way that the modified string is not accepted by the Mmc. In
the basic case, FS modifies the input strings by just deleting
a set of characters using the replace function (later, we ex-
tend this basic case to handle escaping characters instead of
deleting them). In order to prevent extensive modification
to the input, the set of characters to be deleted should be as
small as possible. The question, then, is, how do we identify
the set of characters to be deleted?

First, we will formalize this problem in automata-theoretic
terms [31]. We say S ⊆ Σ is an alphabet-cut of M , if L(M)∩
LS̄ = ∅, where LS̄ = (Σ \ S)∗ is the set of all strings that
do not contain any character in S. The min-alphabet-cut
problem is finding the alphabet-cut Smin, such that for any
other alphabet-cut S, |Smin| ≤ |S|.

The min-alphabet-cut problem can also be stated in graph-
theoretic terms. Given a DFA M , an edge-cut of M is a set
of transitions E ⊆ δ such that if the set of transitions in E
are removed from the transition relation δ then none of the
states in F are reachable from the initial state q0. Let SE

denote the set of symbols of the transitions in E. If E is an
edge-cut of M then SE is an alphabet-cut of M . Hence, find-
ing the min-alphabet-cut is equivalent to finding an edge-cut
with minimum set of distinct symbols.

Note that, if M accepts the empty string then there will
not be any edge (or alphabet) cut since the initial state
would be an accepting state. For the rest of our discussion
we will assume that L(M) 6= ∅ (we can easily handle the
cases where it accepts the empty string by first testing if the
input string is empty and then inserting a single character
to the input if it is).

It has been shown that the min-alphabet-cut problem is
NP-hard [31], so, rather than trying to find the optimum
solution, we can consider using efficient heuristics that give
a reasonably small cut that is not necessarily the optimum
solution. One heuristic solution is to minimize the number
of edges in a cut rather than the number of distinct alphabet
symbols. Given a DFA M , a min-edge-cut of M is an edge-
cut Emin such that for any other edge-cut E, |Emin| ≤ |E|.
Note that the min-edge-cut minimizes the number of edges
in the edge-cut whereas the min-alphabet-cut minimizes the
set of symbols on the edges in the edge-cut. Interestingly,
even though the min-alphabet-cut problem is intractable,
there is an efficient algorithm for computing the min-edge-
cut. We use the Ford-Fulkerson’s max-flow min-cut algo-
rithm [10] to find a min-edge-cut Emin where the complex-
ity of the algorithm is O(|δ|2). Note that |Smin| ≤ |Emin|,
i.e., the min-edge-cut provides and upper bound for the min-
alphabet-cut. So if the min-edge-cut is small then the set of
distinct symbols on the edges of the min-edge-cut will give
us a good approximation of the Smin.

Figure 5 shows the mincut automaton Mmc for our run-
ning example in Figure 1 along with the mincut edges which
correspond to the mincut alphabet Σmc = {< }.

Once we compute an alphabet-cut Σmc, we generate the
sanitization patch FS with a replace statement that deletes
the symbols in Σmc from the input, making sure that the re-
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Figure 5: The mincut automaton Mmc for the exam-
ple in Figure 1. The dotted line shows the mincut
edges with the corresponding mincut alphabet {<}.

sulting string does not match Mmc. Although the function
FS is a sound repair that will guarantee that POST+(FT ◦
FS ◦FL ◦FV ,Σ∗) ⊆ POST+(FR,Σ

∗), we apply two heuris-
tics to generate more accurate repair functions.

The first heuristic is the escape heuristic. We look at
the automaton M1 generated in line 9 of the Algorithm 1
(which represents all the string values returned by FR), and
check if all the characters in the mincut alphabet Σmc are
always preceded by the same single character e. If that is
the case, we we call the character e the escape character.
Formally speaking, given DFA M1 = 〈Q1, q0,Σ, δ1, FR〉, we
check that ∀q ∈ Q1, ∀c ∈ Σmc : δ1(q, c) 6= sink ⇒ (∀q′ ∈
Q1 : δ1(q′, c′) = q ⇒ c′ = e). If this is the case, then the
sanitization patch FS we generate uses the replace oper-
ation to escape all the characters in the mincut alphabet
Σmc (instead of deleting them) by prepending them with
the escape character e.

The second heuristic we use is the trim heuristic. Here,
if we get a mincut Σmc which contains space characters, we
first check if M1 accepts any string that contains a space
character (which can be determined by checking if transi-
tions on space characters always go to the sink). If not,
then we generate a patch that deletes the space charac-
ters as in our basic mincut based patch generation algo-
rithm. If M1 does accept a string that contains a space
character, then we check if it is the case that the strings
accepted by M1 do not start or end with space characters.
Formally speaking, given DFA M1 = 〈Q1, q0,Σ, δ1, FR〉, we
check that for all space character s δ1(q0, s) = sink and
∀q ∈ Q1 : δ1(q, c) ∈ FR ⇒ c 6= s). If so, then we generate
patch FS which uses the trim function to delete the space
characters from the beginning and end of each input string.

5. SYMBOLIC STRING ANALYSIS
In order to implement our differential repair algorithm

we use forward and backward symbolic string analysis tech-
niques to compute the post-image Post+(F,L), pre-image
Pre+(F,L) and negative pre-image Pre+

⊥(F ) of sanitizer
functions. Before we apply the differential repair algorithm,
we first extract the sanitizer functions from source code (as
discussed in Section 6) and represent them in a language-
agnostic intermediate representation. Our intermediate rep-
resentation supports the string validation and sanitization
operations that are used in validation and sanitization func-
tions. Each extracted sanitization function can contain mul-
tiple exit statements which correspond to rejection of the in-
put string, and a return statement that returns the output
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of the sanitizer. To conduct forward and backward symbolic
string analyses on this intermediate representation, we im-
plement the pre- and post-image computations for each val-
idation and sanitization operation in our intermediate rep-
resentation. As a symbolic representation we use Determin-
istic Finite Automata (DFA) where each string expression
in the program is associated with a DFA, and the language
accepted by the DFA represents the possible values that the
string expression can take at any given execution. We use
the symbolic DFA representation provided by the MONA
DFA library [6], in which transition relation of the DFA
is represented as Multi-terminal Binary Decision Diagrams
(MBDDs). We implement forward and backward symbolic
analyses that correspond to flow-sensitive and path-sensitive
symbolic reachability analyses, where we iteratively compute
an over approximation of the least fixpoint that corresponds
to the reachable values of the string expressions by using
the pre- or post-image computations for the string valida-
tion and sanitization operations at each iteration [1, 32, 30].
Since DFAs can represent infinite sets of strings, the fixpoint
computations are not guaranteed to converge. To allevi-
ate this problem, we use the automata widening technique
proposed by Bartzis and Bultan [5] to compute an over-
approximation of the least fixpoint. Briefly, the widening
operator merges those states belonging to the same equiva-
lence class identified by certain conditions.

We implemented the automata-based pre and post-image
computations for common string operations such as concate-
nation and language-based replacement that have been de-
scribed in earlier work [32, 30], and we also implemented
novel specialized algorithms for computing pre and post-
image of specialized string sanitization operations such as
trim and addslashes.

Specialized Replace Algorithms.
To increase the precision and performance of the differen-

tial repair, we developed a number of automata-based algo-
rithms for computing the pre and post-images of frequently
used string operations such as trim, htmlspecialchars,
addslashes, mysql_real_escape_string, tolower, and
toupper. These algorithms are more precise and more ef-
ficient than using the general replace algorithm to model
these specialized operations [32]. The general replace algo-
rithm consumes significantly more time and space since it
relies on automata determinization which requires the use
of subset construction algorithm which has an exponential
complexity. On the other hand, the specialized algorithm
we developed for the Escape operation, for example, runs
in linear time and its result is precise without any over-
approximation. In the experimental results we demonstrate
the improvement that we gain from these specialized algo-
rithms. Below we describe the post-image of four of the spe-
cialized replace operations that we implemented. We omit
the description of pre-images and other operations due to
space limitation.

PostEscape(DFA M1, char e, charset E): this automata
operation escapes characters in E along with the escape
character e itself in all strings in L(M1) using the escape
character e. It returns a DFA M such that L(M) = {
w1ec1w2ec2 . . . wkeckwk+1 | k > 0, w1c1w2c2 . . . wkckwk+1

∈ L(M1), ∀i : ci ∈ E ∪ {e} and wi ∈ Σ∗ − (E ∪ {e})∗}. An
example of an escape function is PHP’s addslashes. Notice
that Escape escapes all chars c ∈ {e} ∪E without checking

if they have already been escaped before. This may result
in double escaping i.e. w1eew2 will become w1eeeew2.

PostTrimLeft(DFA M1, char s): this automata oper-
ation removes all the s characters from the beginning of
strings in L(M1) up to the first character that is not equal
to s. It returns a DFA M such that L(M) = {c1w | w1c1w ∈
L(M1), w1 ∈ {s}∗ and w ∈ Σ∗ and c1 ∈ Σ− {s}}.

PostTrimRight(DFA M1, char s): this automata oper-
ation removes all the s characters from the end of strings
in L(M1) up to the first character that is not equal to s.
It returns a DFA M such that L(M) = {wc1 | wc1w1 ∈
L(M1), w1 ∈ {s}∗ and w ∈ Σ∗ and c1 ∈ Σ− {s}}.

PostReplaceChar(DFA M1, char c, String S): this au-
tomaton operation replaces a single char c with a string s in
all strings in L(M1). It returns a DFA M such that L(M) =
{w1Sw2S . . . wkSwk+1 | k > 0, w1cw2c . . . wkcwk+1 ∈ L(M1),
wi ∈ (Σ−{c})∗}. This operation can be used to model string
operations such as PHP’s htmlspecialchars efficiently.

We would like to discuss the automata algorithms that
we developed to compute the pre- and post-images of the
Escape operation that we mentioned above as an example.

PostEscape(M1, e, E) implementation: Given M1 =
〈Q1, q10,Σ, δ1, F1〉 the result DFA M = 〈Q, q0,Σ, δ, F 〉 is
constructed as follows: For each state qi that has at least
one out transition (qi

c−→ qj) on a character c ∈ {e} ∪ E
(1) we mark each transition (qi

c−→ qj) out from qi to a
state qj , (2) we add a new state qk and a new transition

(qi
e−→ qk) on escape character e, (3) we move each marked

transition (qi
c−→ qj) to become a transition (qk

c−→ qj). The
resulting automaton does not have nondeterminism which
means that we avoid the use of subset construction algorithm
for determinization.

PreEscape(M1, e, E) implementation: Given M1 =
〈Q1, q0,Σ, δ1, F1〉 we first preprocessM1 to partition all tran-

sitions (q
e−→ q′) into two sets of transitions: Escaping transi-

tions Tg and escaped transitions Te such that: ∀q, q′ ∈ Q1 :

(q
e−→ q′) ∈ Te ⇒ ∃q′′ ∈ Q1: (q′′

e−→ q) ∈ Tg. Notice that

in M1, a transition (q
e−→ q′) can not be escaping and at the

same time being escaped, i.e., Te∩Tg = ∅. Otherwise we will
have a string w1eecw2 ∈ L(M1) where w1, w2 ∈ Σ∗ which
contradicts the definition of
PostEscape(M1, e, E). We can formalize this condition as
follows: There is no path q0, . . . , qi−1, qi, qi+1, qi+2, . . . , qf
in M1 where qf ∈ F, δ(qi−1, e) = qi, δ(qi, e) = qi+1 and
δ(qi+1, c) = qi+2 where c ∈ {e} ∪ E. During the analy-
sis, we enforce this condition by applying PreEscape on
M1∩ Escape(A(Σ∗), e, E). Using the same reasoning we

conclude that (1)∀(q e−→ q′) ∈ Tg : q′ /∈ F , (2) ∀c /∈ {e} ∪
E, ∀(q e−→ q′) ∈ Tg : δ(q′, c) = sink, (3) ∀q ∈ Q1(∀c ∈
{e} ∪ E : δ(q, c) 6= sink ⇔ ∀c′ /∈ {e} ∪ E : δ(q, c′) = sink),

and (4)δ(q0, e) 6= sink ⇒ (q0
e−→ q′) ∈ Tg.

Using these results, we compute Tg and Te using a depth
first traversal starting from the start state q0. We then com-
pute the set of escaped states Qe which is the set of states
that has all input transitions in Tg. Due to the precondi-
tions we stated earlier, all transitions on e must be either
coming into an escaped state or going out from it. Also all
transitions on escaped characters c ∈ {E} must be going
out from an escaped state. Finally, given Qe, we construct
the new DFA by removing all states qk ∈ Qe such that: (1)

all transitions (qi
e−→ qk) are removed, and (2) each transi-
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tion (qk
c−→ qj) is added, as an out transition, to all states

qi where a transition (qi
e−→ qk) was removed. Based on the

conditions we discussed above on M1, this last step can be
done without determinization and subset construction.

6. IMPLEMENTATION & EXPERIMENTS
We have implemented our differential repair algorithm in

a tool called SemRep using our symbolic string analysis li-
brary LibStranger1. In order to evaluate our repair al-
gorithm we experimented on five open-source PHP appli-
cations 1) PHPNews v1.3.0 (news publishing software), 2)
UseBB v1.0.16 (forum software), 3) Snipe Gallery v3.1.5
(image management system), 4) MyBloggie v2.1.6 (weblog
system), 5) Schoolmate v1.5.4 (school administration soft-
ware) along with a number of JavaScript sanitizer-function
benchmarks from various websites [1]. We ran all the exper-
iments on an Intel I5 machine with 2.5GHz X 4 processors
and 32 GB of memory running Ubuntu 12.04.

Extracting Sanitizer Functions. Before we run our
differential repair algorithm, we need to extract sanitizer
functions from the client and/or server side and map them
to each other to generate target, reference sanitizer pairs.
We built a crawler using HTMLUnit [11] to find input fields
and corresponding sinks in a PHP web application. When
the crawler hits a web page with an HTML form, it fills it
out automatically using a set of pre specified profiles and
submits it. Then, for each HTML input field, JavaScript
validation and sanitization code is dynamically extracted as
described in [1], along with the HTML constraints on the
field, resulting with one sanitizer function per each input
field. On the server-side, we also collect the execution traces
to figure out the inputs and the sinks (where the inputs flow
into) during crawling. We use that information later on to
map server-side sanitizer functions to client-side sanitizer
functions. Finally, we use the front end of Pixy [13] to stat-
ically extract the corresponding sanitizer functions from the
server-side. We augmented Pixy code to add path sensitivity
and support for PHP5. Client-client sanitizers are mapped
to each other based on the type of data they operate on
(i.e., email address, phone number, . . . etc). Server-server
mapping is done within the same application and across dif-
ferent applications based on field names that are extracted
from the PHP $_POST and $_GET arrays.

Results. Table 1 shows the total number of target-reference
sanitizer pairs we analyzed and the number of patches gen-
erated at each phase of the algorithm for four categories:
Client-server (C-S) where the server (target) is patched against
the client (reference), server-client (S-C) where the client
(target) is patched against the server (reference), server-
server (S-S) and client-client (C-C). Note that for the server-
server and client-client cases we analyze each pair twice by
considering each sanitizer function as target once and as ref-
erence once. The most commonly generated patches are val-
idation patches which indicates that inconsistencies in val-
idation policies are common. There are also a significant
number of sanitization patches generated, except that the
client-server pairs generated no sanitization patches. We
checked the client-server pairs manually and confirmed that
this is an accurate result (i.e., there are no cases where the
sanitization at the client-side is stronger than the sanitiza-
tion at the server-side). Among 49 server-server validation

1
The tool and the library along with the source code are available at

http://cs.ucsb.edu/~vlab/tools.html

patches, 48 of them are generated for the pairs that are from
different applications. We found 14 server-server sanitiza-
tion patches within the same application, which indicates
inconsistent sanitization policy within the application. For
server-server and client-client, there are no length patches
since the validation patches in these cases do not involve
length restrictions.

Table 2 shows the details of sanitization patches and re-
sults of the mincut algorithm. As we can see our mincut
heuristics were able to identify 41 trim operations and 10
escape operations. This identification is very helpful since
applying sanitization patches that escape certain charac-
ters is not idempotent which is critically important to be
avoided for server-client pairs. In the client-client saniti-
zation patches there was an interesting case in which the
mincut was Σ. The reason was that the languages of the
post-image DFAs were disjoint which means that the two
functions return completely different sets of strings (in this
case the discrepancy was due to the presence/absence of the
dash symbol in phone number fields).

Table 1: Number of Patches Generated
#pairs #valid. #length #sanit.

C-S 122 61 11 0
S-C 122 53 2 30
S-S 206 49 0 33
C-C 19 34 0 5

Table 2: Sanitization Patch Results
mincut
avg size

mincut
max size

#trim #escape #delete

S-C 4 10 15 10 20
S-S 3 5 23 0 20
C-C 7 15 3 0 2

Table 3 shows the memory and time performance of our
repair algorithm. Rows I, II, and III corresponds to val-
idation, length, and sanitization patch generation phases,
respectively. Memory performance is represented as num-
ber of BDD nodes that is needed to represent a DFA where
the size of each BDD node is 16 bytes. In general our al-
gorithm is efficient both in terms of time and memory. The
average total time for the algorithm is 1.35 seconds and the
maximum time is 186.22 seconds. During our experiments
we had to abort the algorithm in 36 among 469 pairs (%7.6)
due to MONA’s limit on BDD size. The main reason for ex-
ceeding the BDD size limit is length constraints with large
numbers. For example, in one of the cases in the experi-
ments, validation patch restricts the length of the language
of the input strings to 255. Then, sanitization function html-
specialchars in the target increases the maximum length of
the post-image to 1275. Since we use finite automata to rep-
resent sets of strings, the automaton has to count the length
of the strings with its states. For this reason, we can see
from Table 3 that the second phase of the algorithm which
deals with the length constraints has the highest time and
memory consumption.

Figure 6 shows a comparison in terms of time and mem-
ory (represented using the number of BDD nodes) between
the performance of the generic replace algorithm and the
specialized replace algorithms we presented in this paper.
In our setup we computed the post-image of the two PHP
functions addslashes (which does 3 replace operations) and
htmlspecialchars (which does 5 replace operations) on the

language
l⋃

i=0

Σl. This setup is identical to a sanitizer func-
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Table 3: Time and Memory Performance of Analysis
repair
phase

DFA size
(#bddnodes)

peak DFA size
(#bddnodes)

time
(seconds)

avg max avg max avg max
I 997 32,650 484 33,041 0.14 4.37
II 129,606 347,619 245,367 4,911,410 9.39 168.00
III 2,602 11,951 4,822 588,127 0.17 14.00

 

0.1

1

10

100

1000

10000

100000

0 10 20 30 40 50 60

Ti
m

e 
(m

s)
 

Length 

addslashes

htmlspecialchars

optimized addslashes

optimized htmlspecialchars

 

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

N
um

be
r o

f B
DD

 n
od

es
 (t

ho
us

an
ds

) 

Length 

addslashes

htmlspecialchars

optimized addslashes

optimized htmlspecialchars

Figure 6: Time and Memory performance for
generic replace and optimized/specialized replace al-
gorithms.

tion that restricts the length of its input i to a certain value
l through branch condition len(i) <= l, and then sanitizes
the input that passes the branch condition using one of the
two functions. The x axis shows the length while the y
axis shows the time and memory and uses a log scale. We
notice that the generic replace grows exponentially as we
increase the length while the specialized ones do not. For
the generic replace, the analysis reaches MONA limit on
BDD size at length 31 for addslashes and at length 8 for
htmlspecialchars. On the other hand, for the specialized
replace operations it took less than 1 second to run with
length 100 with negligible memory overhead.

7. RELATED WORK
Automatic program repair [3, 29, 28, 24, 25, 20, 22] be-

came an active topic recently. Weimer et. al. [29, 28] repair
programs using genetic programming by randomly mutating
the abstract syntax tree (AST). Son et. al. [24, 25] patch
access control problems in PHP by finding the differences
between a possibly buggy AST and a correct one and then
inserting statements from the latter into the former to re-
move the difference. Unlike syntax based approaches, our
differential repair algorithm uses a semantic approach which
enables us to generate precise repairs in multiple languages.
In [20, 22] test suites are used to find bugs then symbolic
execution is used to find constraints on variables that result
in such bugs. Using the solution to the negation of these
constraints, a patch is synthesized such that the program

passes all test suites. Our approach does not require a test
suite and it can handle unbounded loops using fixpoint com-
putation. Livshits et. al. [17] automatically place a set of
sanitizers in a sanitizer free program based on a user defined
policy. In our case we take into account the original saniti-
zation code. We generate the repair in a way that allows us
to place it at the beginning of the code that is under repair
without requiring a placement policy. Placing the repair be-
fore the original code, instead of changing the code, allows
us to avoid interference with the original sanitization code
that may have side-effects.

Differential analysis techniques [2, 21, 16, 14, 15] typically
stop after finding differences without trying to repair them.
In [21] differential symbolic execution is used to find differ-
ences between original and refactored code by summarizing
procedures into symbolic constraints and then comparing
different summaries using an SMT solver. SYMDIFF [14]
computes the semantic difference between two functions us-
ing the Z3 SMT solver [18]. There are specialized differen-
tial analysis techniques that focus on web applications. In
NoTamper [7], client-side code is analyzed to generate test
cases that are used to test the server-side of the application.
In a recent follow up paper [8], the same authors propose
WAPTEC, which uses symbolic execution of the client and
server code to guide the test case generation process and ex-
pand coverage. In addition to finding semantic differences,
our work also generates a fix for such difference.

Static analysis of strings has been an active research area,
with the goal of eliminating bugs caused by inadequate use of
string validation and sanitization operations. In [19], multi-
track DFAs, known as transducers, are used to model re-
placement operations in conjunction with a grammar-based
string analysis approach. The resulting tool was used in
detecting vulnerabilities in PHP programs. Wassermann et
al. [26, 27] propose grammar-based static string analyses
to detect SQL injections and XSS, following Minamide’s ap-
proach. A more recent approach in static string analysis has
been the use of finite state automata as a symbolic represen-
tation [4, 32]. In this approach, complex string manipulation
operations, such as string replacement, can be modeled us-
ing automata representation. In order to guarantee conver-
gence in automata-based string analysis, several widening
operators have been used [9, 5, 32]. Constraint-based (or
symbolic-execution-based) techniques represent a third ap-
proach for string analysis. Such techniques have been used
for the verification of string operations in JavaScript [23] and
the detection of security flaws in sanitization libraries [12].

8. CONCLUSIONS
We presented a novel differential repair algorithm that

automatically repairs the semantic difference between two
input validation and sanitization functions. The algorithm
takes a target and a reference function as input and fixes the
target function with respect to the reference function auto-
matically without the need for a specification or manual in-
tervention. The repaired function provides stronger valida-
tion and sanitization than both the target and the reference
functions. The repair is constructed by composing the target
function with three automatically generated patch functions
which we call the validation patch, the length patch and the
sanitization patch. Our experiments on several web applica-
tions show that our differential repair technique is successful
in repairing differences between sanitizer functions.
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[22] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip,
and L. Hendren. Automated repair of html generation
errors in php applications using string constraint
solving. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages
277–287, Piscataway, NJ, USA, 2012. IEEE Press.

[23] P. Saxena, D. Akhawe, S. Hanna, F. Mao,
S. McCamant, and D. Song. A symbolic execution
framework for javascript. Security and Privacy, IEEE
Symposium on, 0:513–528, 2010.

[24] S. Son, K. S. McKinley, and V. Shmatikov. Rolecast:
Finding missing security checks when you do not know
what checks are. In Proceedings of the 2011 ACM
International Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’11, pages 1069–1084, New York, NY, USA,
2011. ACM.

[25] S. Son, K. S. McKinley, and V. Shmatikov. Fix me up:
Repairing access-control bugs in web applications. In
NDSS, 2013.

[26] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities. In
PLDI, pages 32–41, 2007.

[27] G. Wassermann and Z. Su. Static detection of
cross-site scripting vulnerabilities. In Proceedings of
the 30th International Conference on Software
Engineering, ICSE ’08, pages 171–180, New York, NY,
USA, 2008. ACM.

[28] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen.
Automatic program repair with evolutionary

235



computation. Commun. ACM, 53(5):109–116, May
2010.

[29] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages
364–374, Washington, DC, USA, 2009. IEEE
Computer Society.

[30] F. Yu, M. Alkhalaf, and T. Bultan. Generating
vulnerability signatures for string manipulating

programs using automata-based forward and
backward symbolic analyses. In ASE, 2009.

[31] F. Yu, M. Alkhalaf, and T. Bultan. Patching
vulnerabilities with sanitization synthesis. In
International Conference on Software Engineering
(ICSE), pages 131–134, 2011.

[32] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra.
Symbolic string verification: An automata-based
approach. In SPIN, pages 306–324, 2008.

236


