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Abstract —Cell placement is an important phase of current VLSI circuit design styles as standard
cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms
such as Simulated Annealing (SA) have been successful in solving this problem, they are known to
be slow. In this paper, we propose a neural network algorithm that produces solutions as good as
SA in substantially less time. Qur algorithm is based on Mean Field Annealing (MFA) technique,
which has been successfully applied to various combinatorial optimization problems. We derive a
MFA formulation for the cell placement problem that can easily be applied to all VLSI design styles.
To demonstrate that the proposed algorithm is applicable to real world problems, we derive a detailed
formulation for the FPGA design style, and generate the layouts of several benchmark circuits. The
performance of the proposed cell placement algorithm is evaluated in comparison with commercial
automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique.
Performance evaluation is performed using ACM/SIGDA Design Automation benchmark circuits.
Experimental results indicate that the proposed MFA algorithm produces comparable results with

APR. However, MFA is almost 20 times faster than APR on the average.

Keywords—VLSI circuit design, Cell placement problem, Field programmable gate array, Mean field

annealing, Neural-network algorithms.



1 INTRODUCTION

Cell placement is an important problem arising in various circuit design styles as standard cell, gate
array and Field Programming Gate Array (FPGA). Given a circuit description, problem is to find a
layout of the circuit while minimizing some cost function. Usually two closely related criteria are used
to construct a cost function : minimization of the routing length and minimization of the chip area. In
some design styles (e.g., standard cell), minimization of the area is equivalent to minimization of the
routing length (Shahookar & Mazumder, 1991) whereas in some others area is fixed (e.g., FPGA). If
the area is fixed, minimization of the routing length is necessary for the routability of the circuit using
the available routing resources. Minimization of the routing length also minimizes the propagation
delays of the circuit, hence increases its speed (Shahookar & Mazumder, 1991).

Although cell placement problem has different characteristics related to the technology used in
different design styles, key features of the problem remain the same. This enables us to make a
general definition for the cell placement problem which will be valid for all design styles. We will
decompose the problem into two phases such that the first phase will be same for all design styles and
the second phase will depend on the design style. An instance of the first phase of the cell placement
problem consists of a hypergraph Q(C, N') representing the circuit to be placed, and a rectangular
grid of clusters with P rows and @ columns where the circuit will be placed. Hypergraph Q(C, N)
consists of a vertex set (' representing cells of the circuit, a hyperedge set N representing the nets of
the circuit, a cell weight function w..; : C — A, and a net weight function w,.; : N — A, where N
represents the set of natural numbers. Question is to partition the vertex set C' into Px (@ clusters
such that the routing cost is minimized and the weights of the clusters are nearly balanced. Weight of
a cluster is the sum of the weights of the cells in that cluster. In general, cell weight function is used
to encode the areas of cells, and net weight function is used to increase the importance of some nets
which may be crucial for the performance of the circuit. The rectangular grid of clusters is used for
estimating the final locations of the cells. We will discuss the computation of routing cost in detail in
Section 2.

Fig. 1(a) illustrates an example circuit with 16 cells and 19 nets (Shahookar & Mazumder, 1991).
The circuit has 3 input (I'1, 2, I3) and 2 output (O1, O2) pads. Pads may be interpreted as cells

which must be mapped to the boundaries of the cluster grid. The example circuit in Fig. 1(a) may be
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Figure 1: (a) A circuit with 16 cells, 19 nets and 5 pads, (b) a sample placement of the circuit to a
4x4 grid of 16 clusters. Bounding box and horizontal and vertical spans of the net {10, 15} are shown

in (b).

represented with a hypergraph Q(C, N) according to the above definition as

C {1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15,16, I1, 12, I3, 01, 02}
N = {{I1,1,2,3,4},{12,1,2,3,4,11,12},{I3,6,10,11,12, 13}, {1,8}, {3, 7}, {11, 13}, {5, 6}, {8, 9},
{9,15}, {13,16}, {O1,15}, {2,5}, {4,10}, {12,14}, {6,8}, {7,9}, {10,15},{14,16},{02,16}}

Unit cell and net weights are assumed in this example. Figure 1(b) shows the placement of this circuit
to a 4x4 grid of 16 clusters.

The second phase of the cell placement problem is the mapping of the cells in the clusters to their
final locations in the layout. In standard cell design style, cells are used for constructing rows, and in
gate array design style, cells are mapped to rows or grid locations according to the type of the gate
array used (Sechen, 1988). Some gate arrays consist of modules forming a rectangular grid. For this
type of gate arrays the second phase of the problem may be skipped by choosing the number of rows
and columns of the cluster grid to be equal to the number of rows and columns of the module grid,
respectively. Symmetrical FPGAs consist of logic blocks forming a rectangular grid (Rose et al., 1992,
1993). Hence, the second phase of the problem can be similarly skipped for symmetrical FPGAs.
This two phase modeling enables us to develop heuristics for the first phase of the problem which are
independent of the design style.

Since cell placement problem is NP-Hard (Lengauer, 1990) finding efficient placement heuristics is

an important research issue. In last decade, neurocomputing approaches based on Hopfield model have



been successfully applied to various combinatorial optimization problems such as traveling salesman
problem (Peterson & Sédeberg, 1989; Van den Bout & Miller, 1989; Takahashi, 1997), scheduling prob-
lem (Gislén et al., 1992), mapping problem (Bultan & Aykanat, 1992), knapsack problem (Ohlsson et
al., 1993; Ohlsson & Pi, 1997), communication routing problem (Hakkinen et al., 1997), graph parti-
tioning problem (Herault & Niez, 1989; Peterson & Sédeberg, 1989; Van den Bout & Miller, 1990),
graph layout problem (Cimikowski & Shope, 1996), circuit partitioning problem (Yih & Mazumder,
1990; Bultan & Aykanat, 1995). In this paper, we apply the Mean Field Annealing (MFA) technique
to the cell placement problem. MFA is a new approach for solving combinatorial optimization prob-
lems (Peterson & Soédeberg 1989; Van den Bout & Miller 1989, 1990; Gislen et al., 1992; Bultan &
Aykanat, 1992, 1995; Ohlsson et al., 1993; Hakkinen et al., 1997; Ohlsson & Pi, 1997). MFA combines
the collective computation property of Hopfield neural networks (Hopfield & Tank, 1985) with the
annealing notion of Simulated Annealing (SA) (Kirkpatrick et al., 1983). In MFA, discrete variables
called spins (or neurons) are used for encoding configurations of combinatorial optimization problems.
An energy function written in terms of spins is used for representing the cost function of the problem.
Then, using the expected values of these discrete variables, a nondeterministic gradient descent type
relaxation scheme is used to find a configuration of the spins which minimizes the energy function
associated with them.

In this paper, we propose a MFA—-based cell placement algorithm. In order to show the performance
of the proposed algorithm on concrete examples we derive our formulations for symmetrical-array
FPGA design style. However, the MFA formulation proposed for FPGAs is general enough so that it
can easily be applied to the first phase of the cell placement problem in other design styles with minor
modifications.

The organization of the paper is as follows. Section 2 discusses the method used for approximating
the routing cost of the placement. FPGA design style is briefly summarized in Section 3. Section 4
begins with presentation of the general guidelines for applying MFA technique to combinatorial op-
timization problems. Then, the proposed formulation and implementation of the MFA algorithm for
the cell placement problem following these guidelines are presented. The encoding scheme used in
the proposed formulation is discussed in Section 4.1. The proposed energy function formulation and
derivation of the mean field theory equations are presented in Sections 4.2 and 4.3, respectively. The
parameter selection and cooling schedule are discussed in Section 4.4. Finally, experimental results

which evaluate the relative performance of the proposed algorithm are discussed in Section 5.



2 ROUTING COST

Computation of the routing cost is the crucial part of the cell placement problem. In the first phase of
the problem, cells are partitioned to Px@ clusters which form a rectangular grid. Fig. 1(b) shows the
partitioning of the circuit in Fig. 1(a) to a 4 x 4 grid. Initially, we assume that all clusters have the
same size, forming a uniform grid as in Fig. 1(b). After the cells are mapped to the clusters, areas of
the clusters may be different, resulting with a nonuniform grid. If the clusters are balanced, difference
between the uniform grid and the actual nonuniform grid is not significant.

In order to calculate the routing cost we must know the exact locations of the cells in the layout. We
assume that each cell is placed to the center of the cluster to which it is mapped. During the placement
it is not feasible to calculate the exact routing length for two reasons. First, a feasible placement is
not available during the execution of some algorithms, e.g., (Dunlop & Kernighan, 1985), second,
the computation of the exact routing cost necessitates the execution of the global and the detailed
routing phases which are as hard as the placement phase. Hence, most of the placement heuristics
use a method for approximating the routing cost. An efficient and commonly used approximation
is the semi-perimeter method (Shahookar & Mazumder, 1991; Sherwani, 1993). In this method, the
routing cost of a net is approximated by the semi-perimeter length of the smallest bounding rectangle
(bounding box) enclosing all the cells connected to that net. Fig. 1(b) shows the bounding box of
the net {10, 15} with two cells. This method gives a good approximation to the Steiner tree which is
the most efficient routing scheme (Shahookar & Mazumder, 1991). The shortest way to route a net
is to find the minimum length Steiner tree of the cells connected to that net. Steiner trees can also
be used as an approximation of the final routing length, but finding the minimum Steiner tree is an
NP-Hard problem and its computation may not be feasible. Hence, semi-perimeter method is a good
and efficient way of approximating the routing length.

Another way to view the semi-perimeter method is to define the vertical and the horizontal spans
for each net (Sechen, 1988). The vertical and the horizontal spans of a net are the lengths of the
vertical and the horizontal sides of its bounding rectangle, respectively. Fig. 1(b) shows the vertical
and the horizontal spans of the net {10, 15}. Total routing cost can be computed by adding the vertical
and the horizontal spans of all the nets. If vertical and horizontal routings have different costs, then
the total routing cost can be approximated by multiplying the vertical and the horizontal spans of the

nets by the appropriate unit costs.
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Figure 2: (a) A typical architecture of symmetrical FPGA (Xilinx XC3030 chip) (b) FPGA model
used in the proposed MFA formulation

3 FPGA DESIGN STYLE

Field Programmable Gate Arrays (FPGAs) have been widely used in industry in recent years. As they
provide cheap and flexible usage, fast manufacturing turnaround time and low prototype cost, many
designers prefer to use them in their applications. Several types of FPGAs have been introduced over
the last years, which differ from each other by their programming technologies, logic block architectures
and routing network architectures (Rose et al., 1992). They can be classified into four main categories:
symmetrical-array, row-based, hierarchical and sea-of-gates.

A typical symmetrical-array FPGA consists of a two-dimensional grid called logic cell array (LCA)
which is interconnected with vertical and horizontal channels as shown in Fig. 2(a). Each point in
this two-dimensional grid is called a configurable logic block (CLB). A CLB can implement a set of
logic functions. In FPGA design style, CLBs are used to provide the functionality of the circuit by
mapping the logic gates of the circuit to CLBs. Logic blocks at the boundaries of the LCA are called
input-output blocks (I0Bs). IOBs are used for external connections of the circuit. Routing network,
which consists of vertical and horizontal channels placed in between CLBs, makes connections among
CLBs and I0Bs. Switch blocks (SBs) that connect wire segments in horizontal and vertical channels
are also a part of the routing network. In commercial FPGAs routing resources are fixed and fairly
limited (Xilinx, 1994). For example, there are only five tracks in each routing channel for Xilinx

X(C3000 series of FPGAs as in Fig. 2(a). The placement problem is especially important in designs



using such devices, because fixed routing resources make it difficult to achieve 100% automatic routing.

Automated FPGA layout generation can be divided into four major phases, partitioning, technology
mapping, placement and routing (Rose et al., 1993). Partitioning is used for very large logic circuits
that require multiple FPGA chips. In technology mapping phase, a logic circuit is transformed to an
optimized, generic logic input format that consists of CLBs and IOBs. In the placement phase, the
circuit that is formed in the technology-mapping phase is assigned to specific CLBs and 1OBs in the
LCA. This phase of FPGA layout design is equivalent to the cell placement problem discussed earlier.
Most commercial automated design tools for FPGAs use SA algorithm in the placement phase. SA
technique provides high quality solutions but it is notably slow. In this paper, we propose a fast
placement algorithm for symmetrical-array FPGAs that produces layouts which are as good as the

ones produced by SA.

4 APPLYING MFA TO THE CELL PLACEMENT PROBLEM

MFA technique merges the collective computation and the annealing properties of Hopfield neural
networks (Hopfield & Tank, 1985) and SA (Kirkpatrick et al., 1983), respectively, to obtain a general
algorithm for solving combinatorial optimization problems. A combinatorial optimization problem
consists of a set of configurations and a cost function. For example, for the cell placement problem the
set of configurations corresponds to the set of all possible placements of the input circuit. Sometimes,
configurations are also referred as solutions. Cost function assigns a cost to each configuration of
the problem. For the cell placement problem, cost of each configuration (i.e., placement) is the
routing length of that placement. Optimum solution of a combinatorial optimization problem is the
configuration (i.e., solution) which has the minimum (maximum) cost if the problem is a minimization
(maximization) problem. Hence, for the cell placement problem the optimum solution is the placement
of the circuit which has the minimum routing length.

In the MFA technique (Peterson & Sédeberg, 1989; Van den Bout & Miller, 1989, 1990), we use
discrete variables called spins (or neurons) to encode the configurations of the problem. A configuration
in the spin domain is a valuation of these discrete variables. We define an encoding which is a one-
to-one mapping from the configurations of the problem to the configurations of the spins. Then we
formulate the cost function of the problem in terms of spins. This function defines the energy of a
configuration in the spin domain. MFA algorithm is a search algorithm in the spin domain which looks

for the configuration with the minimum energy. To achieve this goal, expected values of the spins are



updated iteratively using a nondeterministic gradient descent algorithm. In the following sections, we

will describe the application of the MFA technique to the cell placement problem.
4.1 Encoding

The MFA algorithm is derived by analogy to Ising and Potts models which are used to estimate
the state of a system of particles, called spins, in thermal equilibrium (Peterson & Sédeberg, 1989;
Van den Bout & Miller, 1989, 1990). In Ising model, spins can be in one of the two-states represented
by 0 and 1, whereas in Potts model they can be in one of the K states. For the cell placement problem
we use the Potts model for encoding the configurations of the problem.

In the K-state Potts model of 5 spins, the states of spins are represented using S K-dimensional
vectors S; = [Si1, .+, Siks - - -, Sik |t 1 <1< 5, where “¢” denotes the vector transpose operation. The
spin vector S; is allowed to be equal to one of the principal unit vectors eq,...,eg,...,ex, and can
not take any other value. Principal unit vector e; is defined to be a vector which has all its entries
equal to 0 except its kth entry which is equal to 1. Spin S; is said to be in state k if it is equal to
er. Hence, a K-state Potts spin S; is composed of K two-state variables s;1,...,8;%,...,S;x, Where

sit €{0, 1}, with the following constraint
dsg=1, 1<i<§ (1)

To encode the configuration space of the cell placement problem using these K-state Potts spins,
we assign one spin to each cell of the circuit. Each state of a spin corresponds to a location in the
layout, i.e., if a spin is in state k& this means that the cell associated with that spin is placed to location
k.

Two types of cells are considered in FPGA placement, namely L-cells and IO-cells. That is, in the
circuit Q(C, N),C = Cr,UC1o, where C, and Cro denote the sets of L-cells and IO-cells, respectively.
Here, L-cells correspond to the logic cells of the circuit to be placed to CLBs in the LCA. IO-cells
correspond to the input/output pads of the circuit to be placed to the IOBs on the boundaries of the

LCA as shown in Fig. 2. Hence, we use two different encoding schemes for the L-cells and IO-cells.

4.1.1 Logic Cell Encoding

In order to encode the configuration space of the placement problem, one Potts spin is assigned to

each L-cell ¢ € Cp, of the circuit Q(C, N) to be placed. A (K=PQ))-dimensional Potts spin can be used



to encode the location of each L-cell, where each state of the Potts spin corresponds to a location in
the Px@Q) LCA. There will be a total of |C| (PQ)-dimensional Potts spins in the system for encoding
L-cells. Since, each Potts spin can be in one of the K states at a time, there is a one-to-one mapping
between the configuration space of the problem domain and the spin domain. As each Potts spin
consists of K two-state variables, a total of |C,| PQ) two-state variables are needed for this encoding.
However, a more efficient encoding is to represent the location of each L-cell 7 with two Potts spins
with dimensions P and ). Spins with dimension P are used to encode the rows, and spins with
dimension ¢) are used to encode the columns of the LCA, respectively. Note that this encoding also
constructs a one-to-one mapping between the configuration space of the problem domain and the spin
domain. However, it is more efficient since it uses a total of |C'|(P+Q) two-state variables instead of
|CL|PQ two-state variables of the previous encoding. Spins with dimensions P and @ are called row
and column spins and labeled as ST = [s];,...,s],,.. . stp]t and S¢ = [s5, .. oy Sign e .,S;?Q]t, 1€ Cr,
respectively. If a row (column) spin is in state p (¢) we say that the corresponding L-cell is assigned to
row p (column ¢). Hence, s7, =1 (s, =1) means that L-cell 7 is assigned to row p (column ¢) of LCA.
That is, if sj, =1 and sf, =1, this means that L-cell ¢ is assigned to the CLB at location pq. Here and

hereafter, row and column spins of L-cells will be referred as L-row and L-column spins, respectively.

4.1.2 Input/Output Cell Encoding

In the Xilinx series of FPGAs, there are four IOBs, two on each side, at the boundaries of each row
and column of the layout as shown in Fig. 2. Therefore, a (Px@)-dimensional FPGA has M =4(P4Q)
I0Bs. As in CLB encoding, one Potts spin is assigned to each IO-cell b€ Cro of the circuit Q(C, N)
to be placed. An M-dimensional Potts spin can be used to encode the position of each 10-cell, where

each state of the Potts spin corresponds to a unique IOB location in the layout. There will be a total

of

C10| M-dimensional Potts spins in the system for encoding 1O-cells. As each Potts spin consists of
M two-state variables a total of |C1o| M two-state variables are needed for this encoding. Spins with
dimension M are called IO spins and labeled as éo = [sé‘i, .. .,séin, . .,Sé?w]t, for b € Cro. If an 1O
spin is in state m we say that the corresponding IO-cell is assigned to IOB at location m in the layout.
In order to simplify the encoding, we extend the FPGA model by adding two new boundary columns
and two new boundary rows as shown in Fig. 2(b). The rows 0 and P41 and columns 0 and Q41 are

allocated to IOBs. An L-cell can be assigned to any internal row p, 1 <p< P, and any internal column

¢, 1<g<@. An IO-cell can only be assigned to boundary rows 0 and P+1 or boundary columns 0 and

10



@ +1. I0B locations are numbered in clockwise direction starting from the upper left corner of the
layout from 1 to 4P+4Q. We define two new functions row(m) and col(m) to show the IOB location
m in terms of its Tow and column locations. Using this numbering scheme, s =1 means that 10-cell
b is assigned to [IOB at location m, that is IO-cell b is assigned to one of the two IOBs at the location

pq of LCA where p = row(m) and ¢ = col(m). Note that either p € {0, P+ 1} or ¢ € {0,Q + 1}.
4.2 Energy Function Formulation

In the MFA algorithm, the aim is to find the spin values minimizing the energy function of the
system. In order to achieve this goal, the average (expected) values of the spin vectors S!, S¢ and Sgo
are iteratively updated using a nondeterministic gradient descent algorithm. Iterations continue until

the system stabilizes at some fixed point. We define

1 1
Vi= [0l vl vp] = (ST = [(sh) s (ST (sl
Vf:{vfh -7‘U;?q7 7va]t = <S?>:[<321>7 7<3§q>7--'7<‘szc@>]t
Vi = [t vl = (SE) = [ (i) (sian)]

where V7, V¢ and Véo denote the expected values of the spins S7, S¢ and é", respectively. Note that
Sips Sig» Séfn € {0,1},i.e., Sipy Siy and Séfn are discrete variables taking only two values 0 and 1, whereas

v;, and v;7 are continuous variables taking any real value between 0 and

T C 10 : T
Vips Uiy Vpon € [0,1], i.e., Vips U

1. As the system is a Potts glass we have the following constraints similar to (1)

P Q

M
> vh =1 dovh =1 D v =1 (2)
m=1

p=1 g=1

for all 2 € Cf, and b € Cro. These constraints guarantee that each Potts spin S}, S§ and éo is in one
of the P, @ and M states at a time, respectively, and each L-cell is assigned to only one row (column)
and each IO-cell is assigned to only one IOB for our encoding of the placement problem. Note that

Vip=(Sip), i-e., v}, is the expected value of si . Hence,
v, = P{sj, = 0} x 0+ P{s], = 1} x 1 = P{sj, = 1} = P{L-cell 7 is in row p}.

Similarly,

v;, = P{L-cell 7 is in column ¢}; i = P{IO-cell bis in IOB m};

11



That is, v}, is the probability of finding L-cell ¢ in one of the ¢) CLB locations at row p. Similarly, vf, is
the probability of finding L-cell 7 in one of the P CLB locations at column ¢, and vg‘;n is the probability
of finding TO-cell b at IOB location m. Note that v{° also denotes the probability of finding 10-cell b
in one of the two IOB slots at location pq of the LCA, where p=row(m) and ¢=col(m). If v}, =1 and
v;, =1, then corresponding configuration is S7 =e, and S{ =e,, respectively, which means that the
L-cell 7 is placed to the CLB at location pg of the LCA. Similarly, if v});’n =1 then the corresponding
configuration is S};O =e,, which means that the IO-cell b is assigned to the IOB at location m. The
latter case also means that the I1O-cell b is assigned to one of the two IOBs at location pg of the LCA.

The encoding scheme defined above ensures that L-cells are assigned to the CLBs in the internal
rows and columns of the LCA. Similarly, it ensures that IO-cells are assigned to the IOBs in the
boundary rows and columns of the LCA. However, for the sake of both simplicity of presentation and
the efficiency of implementation we maintain P+2 and ¢)+2 dimensional vectors for row and column

spins, respectively, for each L-cell i € Cp;

t t
T |, T LT a7 a7 P c _ |, ,,C 2, C 2,C 2 C

Vi = |vigsVits -+ Uips++ s UiPy Uy P41 Vi = |90, 0i15 - +s Uigr -+ -5 Vi@ Ui,Q—l—l] (3)

Note that vy, v; piq, vjp and vf 5, are initialized to and remain as all 0’s since L-cells cannot be

assigned to the boundary rows and columns. Here, v], for 1<p<P and vj, for 1 <¢q <@ correspond

to the actual spin variables iteratively updated during the MFA algorithm. For similar reasons, we

maintain and update P+2 and () +2 dimensional row and column vectors for each 1O-cell be Cyp;

1 1
To__ o AT AT AT oy Cc __ 2, C 2 C P 2 C 2, C
Vi = [me Up1s e s Uppy+ - s Uppsy Ub,P-|—1] Vi, = [me Up1y e o5 Upgs -+ 5 Ups Ub,Q-H] (4)

where, vy, (vgq) corresponds to the probability of finding 7O-cell b in an I0B location at row p
(column ¢) of the LCA. Note that, there are 2P (2¢)) IOBs in the boundary rows (columns) 0 and
P+1 (Q+1). However, there are only 4 IOBs in each internal row p (column ¢) for 1 < p < P

(1 <¢ < Q). The row vector V} can easily be computed using actual /O-spin values as follows:

2P 4P+2Q '
T . 2420 AT . 220
Upo = Z Ubm Up, P41 — Z Ubm, (5)
m=1 m=2P+2Q+1
r _ .0 20 .10 .10
Uy, = Upp T Upkir T Vb T Vo4 for 1<p<P (6)

12



where, k = 2P+(2p—1) and { = M —(2p—1). The column vector V§ can be similarly computed as

M 2P+2Q
C _ 10 C _ 20
Upo — E Vb Up.Q+1 — E Ubm ) (7)
m=4P+2Q+1 m=2P+1
c _ .0 40 200 00
Vhy = Uppt Vg1 T Vb + Vb eq for 1<¢<@Q (8)

where, k = (2¢—1) and £ = (M —2Q )—(2¢—1). This representation scheme is chosen for I0O-cells since
10-cells assigned to the IOBs in the same row and column of the LCA incur the same vertical and
horizontal routing cost, respectively.

As mentioned earlier, energy function corresponds to formulation of the cost function of the cell
placement problem in terms of spins. Since the MFA algorithm iterates on the expected values of
the spins we formulate the expected value of the energy function. The gradient of the expected value
of the energy function is used in the MIFA algorithm to compute the direction of maximum energy
decrease, and the expected values of the spins are updated accordingly. We derive the expected value
of the energy function for the cell placement problem as follows. Using the expected values of the spin

variables defined earlier we can compute the following probabilities

P{no cell of net n is in row p} = H P{cell i is not in row p}
€N

= ]___[(1 - lvzrp)
tEN
P{one or more cells of net n is in row p} = 1— P{no cell of net n is in row p}

= 1- H(l - lvzrp)

1EN

where, ¢ € n denotes the subset of cells connected to the net n. These values may be computed for

r

np as the probability of the event that no cell of net n is in

columns of the LCA similarly. We define 7

row p and 7, as the probability of the event that no cell of net n is in column g¢, i.e.,
Thp = H(l — 'v,fp); Thg = H(l — qu); (9)
€N 1EN
Note that, if € n is an L-cell then v;, and v}, correspond to the actual L-row and L-column spin

variables, for 1 < p < P and 1 < ¢ < @, respectively, and to dummy 0 variables for p = 0, P+1 and

g = 0,Q +1, respectively, in our representation scheme. If otherwise ¢ € n is an IO-cell, then these
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values correspond to the respective entries of the row and column vectors maintained for IO-spins
as discussed earlier. The vertical and horizontal routing costs of a net n are defined as w, X w, X
(vertical span of net n) and wy, x w,, x (horizontal span of net n), respectively. Here, w, and wj are
the unit vertical and horizontal routing costs between two successive cell (cluster) locations on the
same column and row, respectively. In FPGA design style, we use w, = wp = 1. Formulation of the

vertical routing cost of net n as an energy term F,, using these definitions is

P P41
E,, = wyw, Z Z (£ — k)P{vertical span of net n is between row k and ¢ }
k=0 4{=k+1
P P41
= w,wy, Z Z ¢ — k)P{net n is in row k}P{net n is in row £}
k=0 {=k+1
xP{net n is not in first £ — 1 rows}P{net n is not in last P — (£ + 2) rows}
P P41
= wywy, E E ¢ — k)P{net n is in row k}P{net n is in row £}
k=0 4{=k+1
k-1 P+1
X ]___[ P{net n is not in row s} ]___[ P{net n is not in row ¢}
s=0 t=4+1
P P41 k-1 P+1
S Sl DA S TR T s o | (10
k=0 {=k+1 s=0 t=0+1

where, net n is in row £ if and only if one or more cells of net n is in row k, otherwise net n is not in

row k. Similarly, energy formulation for the horizontal routing cost of net n is

Q+1 k—1 Q+1
E;m_whwnz Z C—Fk) 1 =7 )1 =7, Hﬂ' H Ty, (11)
k=0 /{=k+1 t={+1

Total vertical and horizontal routing cost terms of the energy function (i.e., £, and E}) can be derived

using the formulation given in (10) and (11) as

B= Y B Ev=Y Eu (12)

neN neN

If we use the routing cost as the only factor in the cost function, the optimum solution is mapping
all cells of the circuit to one location in the layout. This placement will reduce the routing cost to
zero but obviously it is not feasible. Hence, we need a term in the cost function which will penalize

the placements that put more than one cell to the same location. We call this term the overlap cost.
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We formulate the energy term corresponding to the overlap cost for CLBs and IOBs as

1
— E Z w;w;P{L-cells 7 and j are in the same CLB location}
1€C, j€CT,, 571

clb
Eo

P Q
1
3 E E wiw; E E P{L-cell i in CLB location pg}P{L-cell j in CLB location pq}
1€C jeCT,,j#1 p=1g¢=1

1 FPe
9 E Z wiwjzzvfp”?q“§p”5q (13)

1€Cy, j€CT,, 571 p=1g=1

M
: 1
E;Ob = 3 E g W, Wh g P{IO-cells a and b are in the same IOB location m}
a€Cro beCT0,b#a m=1

1 Mo
52 D waws ) vinvin, (14)
m=1

a€Cro beCr0o,b#a

Note that, this overlap cost term becomes equal to the sum of the inner products of the weights of
the cells at each cell (cluster) location when the system converges. In general placement, this term is
minimized when weights of all the clusters are equal. If there is an imbalance among the cluster weights,
this term increases with the square of the amount of imbalance, penalizing imbalanced clusterings. In
FPGA placement, all cell weights are equal to 1 and only one L-cell and one IO-cell can be placed to
Cr,

one CLB and one TOB location, respectively. Furthermore, we have <(PxQ), |Cro| <M. Hence,
the overlap cost is minimized when either a single or no L-cell (10-cell) is located to each CLB (IOB)
location. If there is an overlap in a location, the overlap cost term increases with the square of the

amount of overlap, penalizing the overlapped locations. Total energy term can be defined in terms of

routing cost terms and the overlap cost term as
E=FE,+Ey+3xE, where E,=E"4 o (15)

Parameter 3 is used to balance the two conflicting objectives of the energy function: minimizing the
routing cost and the overlap cost. Note that allocating all cells to the same location minimizes the
routing cost while maximizing the overlap cost. Minimization of the above energy function corresponds
to distributing the cells of the circuit to the locations in such a way that the semi-perimeter and overlap
costs are minimized.

The derivation of the gradient of the energy function using the formulation discussed above results
in substantially complex expressions. Hence, we simplify the total energy function given in (15) in

order to get more suitable expressions for the gradient. Simplification of the F, and F} terms given
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in (12) is as follows. A close examination of (10) and (11) reveals the symmetry between £, and Ej},
terms. In fact, expressions for F,, and F}, can be obtained from each other by interchanging “r”
with “¢”, “P” with “Q” and “w,” with “w,”. Hence, algebraic simplifications will only be discussed

for the F,, term. Similar steps can be followed for the Fp,, term. We introduce the following notation

for the sake of simplification of the routing cost terms.

k P+1 k Q+1
nk = H Tpes  Lpk = H T s k= H Toss nk = H Tpse (16)
s=0 s=k s=0 s=k

Here, I, and L], denote the probabilities that net n has no cells in the first k+1 rows (rows
0,1,2,...,k) and the last P—k+2 rows (rows k,k+1,..., P, P4+1), respectively. Similarly, F'¢, and

LS, denote the probabilities that net n has no cells in the first £+1 and the last ) —k42 columns,

respectively. Using this notation, F,, in (10) can be rewritten as

P+1 P41
Evn = wywy Z (1- ﬂ:bk)F’r:,k—l Z (£ —Fk)(1 - W:M)L:L,K-H (17)
k=1 I=k+1
Since,
k-1 k-1 k
(1_7[-'216)1_[71"25 = Hﬂ-:w - H’IT:L.S = F’r:,k—l _FT:]C (18)
s=0 s=0 s=0
P P P
(1—mp) H To = H Tot — H Tot = L:L,Hl — Ly (19)
t=4+1 t=4+1 t=4

(17) becomes

P

Eyn = wyw, E(FT

k=1

The innermost summation in (20) telescopes to

P41

I=k+1

since L, py2=1. Substituting (21) into (20) we obtain

P41
—F) Y (U= k)L g0 — L)
I=k+1
P41
S U=k —Lh)= > (1-17,)
I=k+1
P41

Evn = WyWp Z(

Fypo1 = I7p) Z (1-L7)

I=k+1
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After computing the telescoping outer sum in (22) and thru some algebraic manipulations, expression

for F,, simplifies to

P

Evn = wywy 2(1 = Fo)(1 = Lz,k—i—l) (23)
k=0

Similarly, the expression for Ep, in (11) simplifies to
Q

Epp = wpwy Y (1= F) (1= L5 441) (24)
k=0

Note that (23) and (24) compute the vertical and horizontal routing cost of net n, respectively, in an

incremental manner. Hence, total energy function in (15) can be rewritten as

= ’wvz’wnz 1— 1— nk—}—l +whzwnzl_ _L%,k—l—l)

+ Z E Wiw; Z Z VipViqVjpViq + E E Wallb E VimVbm  (25)
ZECL J€CL,j#% p=1g=1 aECJO beCio,b#a

4.3 Derivation of the Mean Field Theory Equations

The expected values V7, V¢ and Vgo of each L-row, L-column and 7O spins S7, S{ and Séo are

iteratively updated using the Boltzmann distribution as

e?inl T’ e®5al T’ , ebhon /T
27 b 6 = — 00 0 = 26
(a) Uzp Zk ) 6¢ /T’ ( ) U]q 222:1 . ]ck/Tca (C) Ubm 2211 . LZ/T“)’ ( )

forp=1,2,...,P,¢q=1,2,...,Q and m = 1,2,..., M. Here, ¢j,, ¢f, and é(;n denote the elements

of the mean field vectors corresponding to the variables »!, v{ and me7 respectively. In (26), T", T°

i s
and T% denote the temperature parameters used for annealing the L-row, L-column, and IO spins,
respectively. Recall that the number of states of the L-row, L-column and IO spins are different
(P, @ and M, respectively) in the proposed encoding. As the convergence time and the temperature
parameter of the system depend on the number of states of the spins, we interpret the L-row, L-column

and /O spins as different systems. Note that (26.a), (26.b) and (26.c) enforce each L-row, L-column

and 70 spins S7, S} and Sg" to be in one of the P,  and M states, respectively, when they converge. In
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the proposed MFA formulation, L-row, L-column, and 7O spins are updated in an alternative manner,
i.e., each L-row spin update is followed by an L-column spin update which is followed by an IO-spin
update.

In the proposed formulation, L-row, L-column and /O mean field vectors &7, ®¢ and <I>'§;° are to be

computed in L-row, L-column and /O iterations, respectively. Each element ¢, ¢5, and éfn of the

L-row, L-column and 70 mean field vectors ® = [¢];,..., ¢}, ..., dlpl", @ =[5, ..., %, ..., Pl

and <I>b = [¢i9 [P , D% 0 %" experienced by L-row, L-column and IO Potts spins denote the

bm7"

decrease in the energy function by assigning S; to e,, S; to e, and Séo to e,,, respectively. Hence,

— 5,y — 5, and —qﬁéﬁn may be interpreted as the decrease in the overall solution quality by placing

L-cell ¢ to row p, L-cell 7 to column ¢, and IO-cell b to the IOB location m, respectively. Then, in

(26.a), (26.b) and (26.c), v}, v%, and vi° are updated such that the probabilities of placing L-cell i to

row p, L-cell 7 to column ¢ and IO-cell b to the IOB location m increase with increasing mean field

values ¢ , and respectively. Using the simplified expression for the proposed energy function

2p7 bm’

n (25) we derive

o= E(V, VOV |yr_g - E(V', V", VZ'°)|VT_e
= —w, E wnZ;;—ﬁT'wi Z w;v ]pzvlq vj, where (27)
n€N; J'ECLJ#
Z;L; = Z (1— nk 1 -I-Z Z,k-H)a (28)
k=1
¢, = E(VT,VC,VZ’O)|V;:0—E(VT,VC,VZ'°)|VCZe
= —wp Z wan'LfI — Bw; Z wvquv]pvzp, where (29)
?’LENJ ZECLJ#]
q -
7z = L= Fl +ZF£;§( ~ Ljpyr), and (30)
k=1
b = BV, VEVO)|y_g = E(V, VeV lyio,,
= —w, Z 'wanL; — wy E wanLfl — By Z wave (31)
neNy n€eNy a€Crp,a#b

Here, N; denotes the set of nets connected to cell 7, and p=row(m), ¢ =col(m). Note that we use

different balance parameters 5", 3° and 3% in (27), (29) and (31) since L-row, L-column and 7O spins
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are treated as different systems. Here, F%, L%, F’7 and L’ are defined as

k P+1 ] k ) Q+1

i _ ir i ir Jjc je Jje _ je

nk — H Thss nk — H Tns Fnk - H Tns Lnk - H Ths where (32)
s=0 s=k s=0 s=k

= I (L=, mi= JI (1-45) (33)
jen,ji i€ni#i

In (28), Z}Z}D computes the increase in the vertical span of net n by assigning its L-cell ¢ to row p
(i.e., setting V7 to e,) in an incremental manner. Similarly, in (30), Z}% computes the increase in the
horizontal span of a net n by assigning its L-cell j to column ¢ (i.e., setting Vi to e,) in an incremental
manner. In (31), ZZ; and Zflg correspond to the increase in the vertical and horizontal spans of net n,
respectively, by assigning its 7O-cell b to one of the two IOBs at location pg (i.e., setting Véo to en)
where p=row(m) and g=col(m). The expressions for Zf]]; and Zf;; can be obtained by replacing “i”
and “j” with “b” in (27) and (29), respectively. Note that row (column) assignment of a cell does not
affect the horizontal (vertical) spans of nets connected to that cell. The last summation terms in (27),
(29) and (31) represent the increase in the overlap cost term by assigning L-cell 7 to row p, L-cell j to
column ¢ and IO-cell b to IOB location m, respectively.

Figure 3 illustrates the pseudo-code for the MIFA algorithm proposed for the placement problem.
At step 1, temperature parameters 77, T° and T are initialized to sufficiently high temperatures for
the annealing of L-row, L-column and IO spins, respectively. At step 2, an initial high temperature
spin average is assigned to each Potts spin. In general, each spin variable is initialized to 1/K plus a
small disturbance term which varies between —0.1/K and 40.1/K. Here, K =P, K= and K =M
for L-row, L-column and /O spin variables, respectively. Note that vy, vf, and véfm spin variables
updated according to (26) will approach to 1/P, 1/Q and 1/M with T" — oo, T® — oo and T — oo,
respectively. Then, outermost while-loop (step 3) iterates while 77, T° and T are all in the cooling
range. At each iteration of the innermost repeat-loop (step 3.1.2), the mean field vector effecting on
a randomly selected L-row spin is computed (step 3.1.2.1), then the respective L-row spin average
vector is updated (step 3.1.2.2). Similar operations are performed for randomly selected L-column
and IO spins as shown in steps 3.1.2.3-3.1.2.6. These spin update operations are repeated for random
sequences of L-row, L-column and 7O spins as shown in the repeat-loop (step 3.1.2). The system is

observed at the end of each repeat-loop in order to detect the convergence to an equilibrium state

at the current temperature. If the average energy decrease due to the spin updates performed in
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1. Compute the initial temperatures Tj, T¢, Ti° and set 77 = Tf, T¢ = T¢, T = Tg°.
2. Initialize the spin averages V7, VJC» and Vé" where 1 € C, j € Cro and b € Cro.
3. While temperatures 77, 7° and T%° are in the cooling range do

3.1 While £ is decreasing do

3.1.1 Generate 3 random L-row, L-column and 70O sequences corresponding to
the random permutations of unconverged L-row, L-column and 7O spins, respectively.

3.1.2 Repeat

3.1.2.1 Compute L-row mean field vector @} for the next L-row spin 2
in the L-row sequence using (27).

3.1.2.2 Update the L-row spin average vector VI using (26.a).

3.1.2.3 Compute L-column mean field vector @7 for the next L-column spin j
in the L-column sequence using (29).

3.1.2.4 Update the L-column spin average vector V7 using (26.b).

3.1.2.5 Compute IO mean field vector ®4° for the next IO-spin b
in the TO sequence using (31).

3.1.2.6 Update the IO spin average vector Vi° using (26.c).
3.1.2 Until all sequences become empty.

32 TP =axT",T¢=axT°and T = a x T,

Figure 3: MFA algorithm proposed for the placement problem.

the repeat-loop is below a threshold value, this means that the system is stabilized for the current
temperature. Then, T, T° and 7% are decreased according to the cooling schedule (step 3.2) and the
overall iterative process (step 3.1) is re-initiated.

As mentioned earlier, the proposed MFA algorithm is an iterative process. The complexity of MFA
iterations is mainly due to the mean field computations. As seen in (27), (29) and (31) calculations
of mean field values are computationally very intensive. We use an efficient implementation scheme
which reduces the complexity of individual L-row, L-column and IO iterations to ©(dy., P+ PQ),
O(dyyy @+ PQ) and O(dyy,(P+Q)+ M), respectively. Here, d,,, denotes the average cell degree, i.c.,
average number of nets connected to a cell. This scheme is based on the techniques developed in
(Bultan & Aykanat, 1995) for circuit partitioning problem, and can be derived from the formulations
in (Bultan & Aykanat, 1995). Therefore, we will not give its details here. Note that a sequence of
L-row, L-column and IO spin updates can be considered as a single MFA iteration. Hence, a single
MFA iteration takes O(dguy(P+Q)+PQ+ M) = O(dyyy(P+ Q)+ PQ) time in our implementation
scheme since M =4(P+Q) < PQ for sufficiently large P and @ values.
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4.4 Parameter Selection and Cooling Schedule

The parameters 37, 3°, 3° used in mean filed computations and the initial temperatures 75, T§, T3°
used in spin updates are estimated using initial random spin averages. Recall that parameter 3 in
the energy function formulation (25) is introduced to determine a balance between the two conflicting
optimization objectives of the placement problem. Also recall that we use different balance parameters
A7, 3°, 3% in the L-row, L-column and IO mean filed computations since L-row, L-column and IO
spins are treated as different systems. For example, in the L-row mean field computations (27), 5"
determines a balance between the terms

. Q

qbzgv) = w, Z wnZZD and qbZSO) = w; Z w;vy, Z V3, V5,
nEN; JE€CL,j#4 q=1

where ¢}, = qbzgv) —I—ﬁTqS;EO). Note that —¢;§U) and _¢;£o) represent the increases in the vertical routing
cost term and overlap cost term, respectively, by assigning L-cell ¢ to row p. Then, we compute the
averages

. P P .
(i) = (32 D) cupy; (i) = (2 e cnlpy;

1€Cp p=1 ieCy, p=1

of these two terms using the initial random spin averages and compute " as

where constant ¥ is chosen as 0.8. The parameters 3¢ and 3*° are computed similarly. The same
v=0.8 is used in these computations.

Selection of initial temperatures is crucial for obtaining good quality solutions. In previous applica-
tions of MFA (Peterson & Sédeberg, 1989; Van den Bout & Miller, 1990), it is experimentally observed
that spin averages tend to converge at a critical temperature. It is suitable to chose initial temper-
atures slightly greater than these critical temperatures. Although there are some methods proposed
for the estimation of critical temperature (Peterson & Sédeberg, 1989; Van den Bout & Miller, 1990),
we prefer an experimental way of computing the initial temperatures. After the balance parameters

B, 3°, 3%° are fixed, average L-row, L-column and 7O mean fields

A EiECL Z;)j:l ¢:p i c\ EjECL EqQZI ¢;q i 10 o Ebecjo Z%:l ¢;)L:n .
(Pip) = (95q) = (Db ) =
P |CL|P ’ 74 |CL|Q k m C[O|Af[ ’

(34)
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are computed using initial random spin averages, respectively. Then, T§, T§, T¢® are computed as
To = o(¢7,)/ P Ts = o(5,)/Q; To° = () /M; (35)

where ¢ is a constant. Qur experiments indicate that it is suitable to chose the parameter o as 100.
Note that initial temperatures are inversely proportional to the dimensions of the respective Potts spins
which is also observed for the critical temperature formulations presented in other implementations
(Peterson & Sédeberg, 1989; Van den Bout & Miller, 1990). The same cooling schedule is adopted for
L-row, L-column and 10O iterations. At each temperature level, L-row, L-column and IO iterations
proceed in an alternate manner for randomly selected unconverged L-row, L-column and IO spin
updates. Here, a temperature level corresponds to a particular set of 77, T° and T values. Spin
variables are tested for convergence after each spin update. If kth variable (for any k, 1 < k < K) of
a spin is detected to be greater than 0.95, that spin is assumed to converge to state k. At the end of
each random sequence of L-row, L-column and IO spin updates, the total decrease AF in the energy
due to these spin updates is computed. Note that a random sequence of L-row, L-column and 10 spin
updates corresponds to a single iteration of the repeat-loop (step 3.1.2) in Fig. 3. For each iteration
of the repeat-loop (step 3.1.2) the average energy decrease per spin update is AE /¥ where ¥ is the
total number of spin updates performed during the random sequence of L-row, L-column and 7O spin
updates. If (AE/V¥) < e where € is a small constant chosen as € = 0.1, we conclude that the energy is
stabilized for the current temperature level, and we decrease the temperature values according to the
cooling schedule.

The cooling process is realized in two phases, slow cooling followed by fast cooling, similar to the
cooling schedules used for SA. In the slow cooling phase, temperatures are decreased using a = 0.95
until 7" < T,/1.5. Then, in the fast cooling phase, a is set to 0.85. The cooling process continues until
either 90% of the spins are converged or T reduces below 0.01. At the end of this process, the variable
with maximum value in each unconverged spin is set to 1 and all other variables are set to 0. Then,
the result is decoded as described in Section 4.1 and the resulting placement is obtained.

The resulting placement may be infeasible, i.e., more than one L-cell or IO-cell may be allocated
to the same CLB or IOB location, respectively. In such cases, spins causing infeasible allocations are
re-initialized to the random initial values together with the set of unconverged spins at the end of

the cooling process. Then, MFA algorithm is executed only for these spins starting from the initial

22



Circuit C432

1500

o—= o=10000
== =100
o o=1

1300

1100

900

E : Total Cost (Routing+Overlap)

700

sP-408

SP=553

500 . -
o 100 200
Number of Random Sequences

Figure 4: Evaluation of the total energy with MFA iterations for the placement of c432.

high temperatures according to the same cooling schedule. Note that converged spins are held in their
decoded values during this re-heating process. This re-heating process is continued until a feasible
placement is found.

Figure 4 illustrates the evolution of the energy corresponding to the total placement cost with
MFA iterations for the placement of circuit c432 onto a 10x10 FPGA. This figure is constructed by
computing the total energy term (25) at the end of each random sequence of L-row, L-column and 70
spin updates. Three curves in Fig 4 correspond to the evolution of the total placement cost for three
different initial temperatures computed using ¢ =10000, c =100 and =1 in (35). In Fig 4, the major
decrease in the energy terms for all three cases occur around the same temperature which corresponds
to the critical temperature mentioned earlier. In this figure, ¢ = 10000 and ¢ =100 correspond to initial
temperatures which are significantly and slightly greater than the critical temperature, respectively.
As seen in this figure, both initial temperatures yield almost the same solution quality. Note that initial
temperatures corresponding to ¢ = 10000 and ¢ =100 yield placement solutions with semi-perimeter
costs of 408 and 407, respectively. On the other hand, ¢ = 1 corresponds to an initial temperature
smaller than the critical temperature. This case results in a significantly worse solution quality with
a semi-perimeter cost of 553. In general starting from initial temperatures which are slightly greater

than the critical temperature is sufficient for obtaining good solutions.
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Table 1: Properties of the MCNC benchmark circuits used in the experiments.

| BENCHMARK CIRCUITS |
Circuit || # CLB | # 10B | # NET | PxQ | Target FPGA |

c499 66 73 107 | 10x10 | XC3030PC84
c1908 116 58 191 | 12x12 | XC3042CQ100
c1355 70 73 115 | 10x10 | XC3030PC84
c880 84 86 187 | 16x20 | XC3090PQ160
c432 50 43 111 | 10x10 | XC3030PC84
51238 158 30 251 | 16x20 | XC3090PQ160
3540 283 72 489 | 16x20 | XC3090PQ160

5 EXPERIMENTAL RESULTS

This section presents experimental performance evaluation of the proposed MFA algorithm in com-
parison with Xilinz Automated Placement and Routing (APR 3.30) program which uses simulated
annealing algorithm in placement. Our MFA algorithm was implemented in C language and run on
Sun-4 ELC workstations. We used seven MCNC benchmark circuits to test the performance and
efficiency of both programs. We used Xilinx 3000 series chips as the target FPGAs. The circuits were
mapped into 3000 series logic blocks by Xilinx XACT tools and these mapping results were used as
inputs to the placement programs.

Table 1 illustrates the properties of the benchmark circuits. The first two columns illustrate the
number of CLBs and IOBs in the circuits to be placed. The third column shows the number of multi-
pin nets. The last two column illustrates the P x @ dimensions of the FPGAs and the names of the
target Xilinx chips used for placement.

The placement and routing results are displayed in Tables 2 and 3. Both MFA and APR programs
were run 10 times for each problem instance. Table 2 displays the average placement costs and the
average execution times of 10 runs for each placement instance. The placement results of both MFA
and APR placement programs are used as inputs to the routing program of Xilinx APR tool. The
average, the minimum and the maximum values for the maximum path delays obtained in 10 runs are
displayed in Table 3. Table 3 also displays the average execution times of Xilinx APR tool for routing
the placements produced by MFA and APR programs. Maximum path delay values were computed
running Xilinx XDelay program for each routing result.

The APR routing program produced 100% routability for each placement result obtained by both
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Table 2: Performance of the MFA and APR programs for the placement of MCNC circuits.

| PLACEMENT RESULTS |

Semi-Perimeter APR Execution
Circuit Cost Cost Time(sec)

MFA | APR MFA | APR | MFA | APR
c499 51.2 87.6 25625 22578 56 792

c1908 76.6 162.7 | 54346 | 49805 138 | 1845
c1355 52.2 92.5 | 23740 | 20816 32 639
c880 67.2 138.4 | 36126 | 27412 188 | 4828
c432 44.3 89.3 | 16461 | 15193 87 506
51238 110.2 237.5 | 140128 | 117900 367 | 7843
3540 160.3 401.8 | 196168 | 142522 435 | 16834

Table 3: Routing results obtained by Xilinx APR tool for placements produced by MFA and APR
programs.

| ROUTING RESULTS |

Maximum Path Delay (ns) Execution

Circuit MFA APR Time (sec)
Avg. | Min. | Max. | Avg. | Min. | Max. | MFA | APR
499 949 | 93.0| 99.6 | 985 | 94.8 | 100.4 136 85

c1908 159.6 | 145.6 | 168.5 | 166.2 | 157.8 | 17 2.1 796 853
cl1355 945 | 929 983 | 915 | 84.0 93.8 98 78
c880 151.2 | 141.1 | 164.6 | 139.1 | 137.2 | 14 2.6 187 266
c432 173.5 | 162.1 | 192.5 | 178.3 | 174.4 | 185. 8 202 314
51238 198.3 | 184.5 | 214.5 | 165.3 | 154.7 | 174.7 428 986
¢3540 243.5 | 239.6 | 264.4 | 238.5 | 221.9 | 269.5 | 4380 | 5726

placement programs for all circuits except the largest circuit ¢3540. The router fails to route all the
nets in the placement of this circuit. We have not experienced any infeasibility due to the assignment
of L-cells to the same CLB locations in our MFA runs. However, we have experienced infeasibility
due to the assignment of IO-cells to the same IO B locations in some of our runs. However, a single
re-heating pass was sufficient for obtaining feasible solutions in all these placement instances.

The semi-perimeter cost values displayed in Table 2 correspond to the average normalized semi-
perimeter costs computed for the placement results of both programs as is described in Section 2.
Here, normalization refers to assuming a unit square layout. That is, vertical and horizontal spans of
the nets are normalized by multiplying them with 1/Q) and 1/ P, respectively, during the computation
of total semi-parameter cost values for Table 2. The APR cost values correspond to the average costs

computed for the placement results of both programs according to APR’s placement cost definition.
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Table 4: Normalized average performance measures for the placement results obtained by MFA and

APR.

| NORMALIZED RESULTS |

Maximum Path Execution

Circuits Delay (ns) Time (sec)
MFA | APR MFA [ APR

c499 1.00 1.03 | 1.00 | 14.1
c1908 1.00 1.04 | 1.00| 134
c1355 1.00 0.96 | 1.00 | 19.9
880 1.00 091 | 1.00| 256
c432 1.00 1.03 | 1.00 5.8
51238 1.00 0.83 | 1.00| 21.3
¢3540 1.00 0.98 | 1.00| 38.7
| Avg ] 1.00] 097] 1.00 [ 19.8]

The semi-perimeter costs of the placement results obtained by the MFA program are 105% better
than those of the APR program. However, APR-costs of the placement results obtained by the APR
program are 16% better than those of the MFA program.

Table 4 illustrates the normalized relative performance results of the two placement programs. In
this table, the averages of the maximum path delay values obtained by the Xilinx XDelay program
after routing the placement results of APR placement program are normalized with respect to those
of the MFA program. This table also illustrates the execution times of the APR placement program
normalized with respect to those of the MFA program. As seen in this table, the MFA placements
yield slightly better routing results in 3 circuits out of seven circuits. APR placements yield 3% better
routing results on the overall average. However, as seen in Table 2 and Table 4, MFA placement
program is significantly faster than the APR placement program in all instances. MFA placement
program is 19.8 times faster than the APR placement program on the overall average. Fig 5 illustrates

sample routing results of the circuit ¢432 for placements obtained by APR and MFA.
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Figure 5: Routing results of the circuit ¢432 for the placements obtained by (a) APR (b) MFA.
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6 CONCLUSIONS

In this paper, we proposed a fast nondeterministic cell placement algorithm for VLSI design automation
based on Mean Iield Annealing (MFA). The performance of the proposed placement algorithm is
evaluated in comparison with the commercial automated circuit design software Xilinx Automatic
Place and Route (APR) tool for the placement of seven MCNC benchmark circuits. The results show
that neurocomputing approaches as the MFA technique can be applied to real world problems and
can compete with the commercially available tools successfully. Experimental results indicate that our

algorithm achieves comparable placements with APR. However, our algorithm is significantly faster

than APR.
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