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• The corresponding textbook chapter should be read before attending

this lecture.

• These notes are not intended to be complete. They are supplemented

with figures, and other material that arises during the lecture period

in response to questions.

∗Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.
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The Pumping Lemma

Definition: A language that cannot be defined by a regular expression

is a nonregular language or an irregular language.
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Theorem: For all regular languages, L, with infinitely many words,

there exists a constant n (which depends on L) such that for all

strings w ∈ L, where |w| ≥ n, there exists a factoring of w = xyz,

such that:

• y 6= Λ.

• |xy| ≤ n.

• For all k ≥ 0, xykz ∈ L.

Proof:

1. Since L is regular, there is an FA A that accepts L.

2. Let |QA| = n.

3. Since |L| = ∞, there exists a word w = a0a1 · · · am ∈ L, for

m ≥ n.
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4. Let p0, p1, . . . , pm be the sequence of states visited by w as it is

accepted by A.

Since m ≥ n, at least 1 of these states appears previously in the

sequence: There exists i < j such that pi = pj.

Draw a picture of this situation.

5. Factor w into 3 strings as follows:

• x = a0a1 · · · ai.

• y = ai+1ai+2 · · · aj.

• z = aj+1aj+2 · · · am.

6. Although either x or z may be Λ, |y| ≥ 1; the smallest loop in A

is a self-loop, which consumes 1 symbol.

7. For any k ≥ 0, xykz ∈ L.
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The Pumping Lemma as a 2-Person Game

1. You pick the language L to be proved nonregular.

2. Your adversary picks n, but does not reveal to you what n is. You

must devise a move for all possible n’s.

3. You pick w, which may depend on n. |w| ≥ n.

4. Your adversary picks a factoring of w = xyz. Your adversary does

not reveal what the factors are, only that they satisfy the constraints

of the theorem: |y| > 0 and |xy| ≤ n.

5. You “win” by picking k, which may be a function of n, x, y, and z,

such that xykz /∈ L.
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{anbn | n = 0, 1, 2, . . .} Is Nonregular

Proof

1. Assume that the adversary has chosen a particular n.

2. Pick w = anbn.

3. Since |xy| ≤ n, y = ai, for some i > 0.

4. Then, xy2z /∈ L, since it has at least 1 more a than b.
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{w | w has an equal number of a’s & b’s } Is Nonregular

Proof

1. We refer to the language under consideration as EQUALS.

{anbn | n ≥ 0} = a∗b∗ ∩ EQUAL.

2. If EQUALS is regular, then {anbn | n ≥ 0} is regular.

3. {anbn | n ≥ 0} is nonregular.

4. EQUALS is nonregular.

Study the applications of the pumping lemma given in the textbook.
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The Myhill-Nerode Theorem

Given a language L, define a binary relation, E, on strings in Σ∗, where

xEy when for all z ∈ Σ∗, xz ∈ L ⇐⇒ yz ∈ L.

1. E is an equivalence relation.

2. If L is regular, E partitions L into finitely many equivalence classes.

3. If E partitions L into finitely many equivalence classes, L is regular.

Proof

1. For part 1:

• E is reflexive: xEx, for all x ∈ Σ∗.

• E is symmetric: If xEy then yEx.
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• E is transitive: If xEy and yEz then xEz.

(a) Let xEy and yEz, and w ∈ Σ∗.
(b) Since xEy, xw ∈ L ⇐⇒ yw ∈ L.

(c) Since yEz, yw ∈ L ⇐⇒ zw ∈ L.

(d) Therefore, xw ∈ L ⇐⇒ zw ∈ L: xEz.

2. Since L is regular, there is an FA A that accepts it.

Associate with each string, w, the state, q of A that w ends in.

If x and y are associated with the same state, they are in the same

equivalence class.

Since A has a finite number of states, there is only a finite number of

distinct equivalence classes.

(It may be fewer than |QA|.)
3. Let C0, C1, . . . , Cn be the finite equivalence classes. Let Λ ∈ C0.
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Claim: For all Ci, Ci ⊆ L or Ci ∩ L = ∅.
(a) Let x, y ∈ Ci and x ∈ L.

(b) Then, xΛ ∈ L ⇐⇒ yΛ ∈ L.

(c) Thus, y ∈ L.

(d) By analogous reasoning, if x /∈ L, then y /∈ L.

We build an FA E that accepts L.

QE: The Ci are E’s states.

C0 is E’s start state.

If Ci ⊆ L, then Ci ∈ FE.

For the δ function, consider the following.

(a) Let a ∈ Σ and z ∈ Σ∗.
If x, y ∈ Ci, then x(az) ∈ L ⇐⇒ y(az) ∈ L.
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(b) Then, (xa)z ∈ L ⇐⇒ (ya)z ∈ L. Thus, xa, ya ∈ Cj for some

j.

(c) Define δ(Ci, a) = Cj.

4. Clearly, the language accepted by E is L.

5. Therefore, L is regular.
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Applications of Myhill-Nerode

anbn is nonregular

Proof

Each ai is not equivalent to aj, when i 6= j;

aibi ∈ L but ajbi /∈ L.

There thus are infinitely many equivalence classes.

Please see other applications in the textbook.
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Quotient Languages

Definition: Pref(Q in R) = {p | there exists q ∈ Q such that pq ∈ R}.
Example:

Let Q = {aa, abaaabb, bbaaaaa, bbbbbbbbbb}
R = {b, bbbb, bbbaaa, bbbaaaaa}.
Pref(Q in R) = {b, bba, bbbaaa}.

Theorem: If R is regular and L is a language, then Pref(L in R) is

regular.

Proof

Since R is regular, there is an FA that accepts it.
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Let A be such an FA.

Construct an FA P that accepts Pref(L in R) as follows:

1. QP = QA.

2. The start state of P is q0, the start state of A.

3. q ∈ FP if there exists a w ∈ L such that starting w in q leads to

an accepting state in A.

4. δP = δA

P accepts all words p such that pw ∈ R for some w ∈ L.
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