Chapter 10: Nonregular Languages *

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

- The corresponding textbook chapter should be read before attending this lecture.
- These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

[^0]
The Pumping Lemma

Definition: A language that cannot be defined by a regular expression is a nonregular language or an irregular language.

Theorem: For all regular languages, L, with infinitely many words, there exists a constant n (which depends on L) such that for all strings $w \in L$, where $|w| \geq n$, there exists a factoring of $w=x y z$, such that:

- $y \neq \Lambda$.
- $|x y| \leq n$.
- For all $k \geq 0, x y^{k} z \in L$.

Proof:

1. Since L is regular, there is an FA A that accepts L.
2. Let $\left|Q_{A}\right|=n$.
3. Since $|L|=\infty$, there exists a word $w=a_{0} a_{1} \cdots a_{m} \in L$, for $m \geq n$.
4. Let $p_{0}, p_{1}, \ldots, p_{m}$ be the sequence of states visited by w as it is accepted by A.
Since $m \geq n$, at least 1 of these states appears previously in the sequence: There exists $i<j$ such that $p_{i}=p_{j}$.
Draw a picture of this situation.
5. Factor w into 3 strings as follows:

- $x=a_{0} a_{1} \cdots a_{i}$.
- $y=a_{i+1} a_{i+2} \cdots a_{j}$.
- $z=a_{j+1} a_{j+2} \cdots a_{m}$.

6. Although either x or z may be $\Lambda,|y| \geq 1$; the smallest loop in A is a self-loop, which consumes 1 symbol.
7. For any $k \geq 0, x y^{k} z \in L$.

The Pumping Lemma as a 2-Person Game

1. You pick the language L to be proved nonregular.
2. Your adversary picks n, but does not reveal to you what n is. You must devise a move for all possible n 's.
3. You pick w, which may depend on n. $|w| \geq n$.
4. Your adversary picks a factoring of $w=x y z$. Your adversary does not reveal what the factors are, only that they satisfy the constraints of the theorem: $|y|>0$ and $|x y| \leq n$.
5. You "win" by picking k, which may be a function of n, x, y, and z, such that $x y^{k} z \notin L$.

$$
\left\{a^{n} b^{n} \mid n=0,1,2, \ldots\right\} \text { Is Nonregular }
$$

Proof

1. Assume that the adversary has chosen a particular n.
2. Pick $w=a^{n} b^{n}$.
3. Since $|x y| \leq n, y=a^{i}$, for some $i>0$.
4. Then, $x y^{2} z \notin L$, since it has at least 1 more a than b.
$\{w \mid w$ Has an equal number of a 's \& b's $\}$ Is Nonregular

Proof

1. We refer to the language under consideration as $E Q U A L S$.
$\left\{a^{n} b^{n} \mid n \geq 0\right\}=a^{*} b^{*} \cap E Q U A L$.
2. If EQUALS is regular, then $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is regular.
3. $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is nonregular.
4. EQUALS is nonregular.

Study the applications of the pumping lemma given in the textbook.

The Myhill-Nerode Theorem

Given a language L, define a binary relation, E, on strings in Σ^{*}, where $x E y$ when for all $z \in \Sigma^{*}, x z \in L \Longleftrightarrow y z \in L$.

1. E is an equivalence relation.
2. If L is regular, E partitions L into finitely many equivalence classes.
3. If E partitions L into finitely many equivalence classes, L is regular.

Proof

1. For part 1:

- E is reflexive: $x E x$, for all $x \in \Sigma^{*}$.
- E is symmetric: If $x E y$ then $y E x$.
- E is transitive: If $x E y$ and $y E z$ then $x E z$.
(a) Let $x E y$ and $y E z$, and $w \in \Sigma^{*}$.
(b) Since $x E y, x w \in L \Longleftrightarrow y w \in L$.
(c) Since $y E z, y w \in L \Longleftrightarrow z w \in L$.
(d) Therefore, $x w \in L \Longleftrightarrow z w \in L: x E z$.

2. Since L is regular, there is an FA A that accepts it. Associate with each string, w, the state, q of A that w ends in. If x and y are associated with the same state, they are in the same equivalence class.
Since A has a finite number of states, there is only a finite number of distinct equivalence classes.
(It may be fewer than $\left|Q_{A}\right|$.)
3. Let $C_{0}, C_{1}, \ldots, C_{n}$ be the finite equivalence classes. Let $\Lambda \in C_{0}$.

Claim: For all $C_{i}, C_{i} \subseteq L$ or $C_{i} \cap L=\emptyset$.
(a) Let $x, y \in C_{i}$ and $x \in L$.
(b) Then, $x \Lambda \in L \Longleftrightarrow y \Lambda \in L$.
(c) Thus, $y \in L$.
(d) By analogous reasoning, if $x \notin L$, then $y \notin L$.

We build an FA E that accepts L.
Q_{E} : The C_{i} are E 's states.
C_{0} is E 's start state.
If $C_{i} \subseteq L$, then $C_{i} \in F_{E}$.
For the δ function, consider the following.
(a) Let $a \in \Sigma$ and $z \in \Sigma^{*}$.

If $x, y \in C_{i}$, then $x(a z) \in L \Longleftrightarrow y(a z) \in L$.
(b) Then, $(x a) z \in L \Longleftrightarrow(y a) z \in L$. Thus, $x a, y a \in C_{j}$ for some j.
(c) Define $\delta\left(C_{i}, a\right)=C_{j}$.
4. Clearly, the language accepted by E is L.
5. Therefore, L is regular.

Applications of Myhill-Nerode
 $a^{n} b^{n}$ is nonregular

Proof

Each a^{i} is not equivalent to a^{j}, when $i \neq j$;
$a^{i} b^{i} \in L$ but $a^{j} b^{i} \notin L$.
There thus are infinitely many equivalence classes.
Please see other applications in the textbook.

Quotient Languages

Definition: $\operatorname{Pref}(Q$ in $R)=\{p \mid$ there exists $q \in Q$ such that $p q \in R\}$.
Example:
Let $Q=\{a a, a b a a a b b, b b a a a a a, b b b b b b b b b b\}$
$R=\{b, b b b b, b b b a a a, b b b a a a a a\}$.
$\operatorname{Pref}(Q$ in $R)=\{b, b b a, b b b a a a\}$.
Theorem: If R is regular and L is a language, then $\operatorname{Pref}(L$ in $R)$ is regular.

Proof

Since R is regular, there is an FA that accepts it.

Let A be such an FA.
Construct an FA P that accepts $\operatorname{Pref}(L$ in $R)$ as follows:

1. $Q_{P}=Q_{A}$.
2. The start state of P is q_{0}, the start state of A.
3. $q \in F_{P}$ if there exists a $w \in L$ such that starting w in q leads to an accepting state in A.
4. $\delta_{P}=\delta_{A}$
P accepts all words p such that $p w \in R$ for some $w \in L$.

[^0]: *Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley \& Sons, Inc.

