CHAPTER 10: NONREGULAR LANGUAGES *

Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu

- The corresponding textbook chapter should be read before attending this lecture.
- These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

^{*}Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.

THE PUMPING LEMMA

DEFINITION: A language that cannot be defined by a regular expression is a **nonregular language** or an **irregular language**.

- **THEOREM:** For all regular languages, L, with infinitely many words, there exists a constant n (which depends on L) such that for all strings $w \in L$, where $|w| \ge n$, there exists a factoring of w = xyz, such that:
 - $y \neq \Lambda$.
 - $|xy| \le n$.
 - For all $k \ge 0, xy^k z \in L$.

PROOF:

- 1. Since L is regular, there is an FA A that accepts L.
- 2. Let $|Q_A| = n$.
- 3. Since $|L| = \infty$, there exists a word $w = a_0 a_1 \cdots a_m \in L$, for $m \ge n$.

- 4. Let p_0, p_1, \ldots, p_m be the sequence of states visited by w as it is accepted by A. Since $m \ge n$, at least 1 of these states appears previously in the sequence: There exists i < j such that $p_i = p_j$. Draw a picture of this situation.
- 5. Factor w into 3 strings as follows:
 - $x = a_0 a_1 \cdots a_i$.
 - $y = a_{i+1}a_{i+2}\cdots a_j$.
 - $z = a_{j+1}a_{j+2}\cdots a_m$.
- 6. Although either x or z may be Λ , $|y| \ge 1$; the smallest loop in A is a self-loop, which consumes 1 symbol.
- 7. For any $k \ge 0, xy^k z \in L$.

The Pumping Lemma as a 2-Person Game

- 1. You pick the language L to be proved nonregular.
- 2. Your adversary picks n, but does not reveal to you what n is. You must devise a move for all possible n's.
- 3. You pick w, which may depend on n. $|w| \ge n$.
- 4. Your adversary picks a factoring of w = xyz. Your adversary does not reveal what the factors are, only that they satisfy the constraints of the theorem: |y| > 0 and $|xy| \le n$.
- 5. You "win" by picking k, which may be a function of n, x, y, and z, such that $xy^kz \notin L$.

 $\{a^nb^n \mid n = 0, 1, 2, \ldots\}$ Is Nonregular

Proof

- 1. Assume that the adversary has chosen a particular n.
- 2. Pick $w = a^n b^n$.
- 3. Since $|xy| \le n$, $y = a^i$, for some i > 0.
- 4. Then, $xy^2z \notin L$, since it has at least 1 more *a* than *b*.

 $\{w \mid w \text{ has an equal number of } a$'s & b's $\}$ Is Nonregular Proof

- 1. We refer to the language under consideration as EQUALS. $\{a^nb^n\mid n\geq 0\}=a^*b^*\cap EQUAL.$
- 2. If EQUALS is regular, then $\{a^n b^n \mid n \ge 0\}$ is regular.
- 3. $\{a^n b^n \mid n \ge 0\}$ is nonregular.
- 4. EQUALS is nonregular.

Study the applications of the pumping lemma given in the textbook.

The Myhill-Nerode Theorem

Given a language L, define a binary relation, E, on strings in Σ^* , where xEy when for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$.

- 1. E is an equivalence relation.
- 2. If L is regular, E partitions L into finitely many equivalence classes.
- 3. If E partitions L into finitely many equivalence classes, L is regular.

Proof

- 1. For part 1:
 - E is reflexive: xEx, for all $x \in \Sigma^*$.
 - E is symmetric: If xEy then yEx.

- E is transitive: If xEy and yEz then xEz.
 - (a) Let xEy and yEz, and $w \in \Sigma^*$.
 - (b) Since $xEy, xw \in L \iff yw \in L$.
 - (c) Since $yEz, yw \in L \iff zw \in L$.
 - (d) Therefore, $xw \in L \iff zw \in L$: xEz.
- 2. Since L is regular, there is an FA A that accepts it.

Associate with each string, w, the state, q of A that w ends in.

If x and y are associated with the same state, they are in the same equivalence class.

Since A has a finite number of states, there is only a finite number of distinct equivalence classes.

(It may be *fewer* than $|Q_A|$.)

3. Let C_0, C_1, \ldots, C_n be the finite equivalence classes. Let $\Lambda \in C_0$.

Claim: For all $C_i, C_i \subseteq L$ or $C_i \cap L = \emptyset$.

- (a) Let $x, y \in C_i$ and $x \in L$.
- (b) Then, $x\Lambda \in L \iff y\Lambda \in L$.
- (c) Thus, $y \in L$.
- (d) By analogous reasoning, if $x \notin L$, then $y \notin L$.

We build an FA E that accepts L.

- Q_E : The C_i are E's states.
- C_0 is E's start state.

If $C_i \subseteq L$, then $C_i \in F_E$.

For the δ function, consider the following.

(a) Let $a \in \Sigma$ and $z \in \Sigma^*$. If $x, y \in C_i$, then $x(az) \in L \iff y(az) \in L$.

- (b) Then, $(xa)z \in L \iff (ya)z \in L$. Thus, $xa, ya \in C_j$ for some j.
- (c) Define $\delta(C_i, a) = C_j$.
- 4. Clearly, the language accepted by E is L.
- 5. Therefore, L is regular.

Applications of Myhill-Nerode

$a^n b^n$ is nonregular

Proof

Each a^i is not equivalent to a^j , when $i \neq j$; $a^i b^i \in L$ but $a^j b^i \notin L$. There thus are infinitely many equivalence classes.

Please see other applications in the textbook.

QUOTIENT LANGUAGES

DEFINITION: Pref $(Q \text{ in } R) = \{p \mid \text{ there exists } q \in Q \text{ such that } pq \in R\}.$

Example:

THEOREM: If R is regular and L is a language, then Pref(L in R) is regular.

Proof

Since R is regular, there is an FA that accepts it.

Let A be such an FA.

Construct an FA P that accepts Pref(L in R) as follows:

- 1. $Q_P = Q_A$.
- 2. The start state of P is q_0 , the start state of A.
- 3. $q \in F_P$ if there exists a $w \in L$ such that starting w in q leads to an accepting state in A.

4.
$$\delta_P = \delta_A$$

P accepts all words p such that $pw \in R$ for some $w \in L$.