
Chapter 11: Decidability ∗

Peter Cappello
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106

cappello@cs.ucsb.edu

• The corresponding textbook chapter should be read before attending

this lecture.

• These notes are not intended to be complete. They are supplemented

with figures, and other material that arises during the lecture period

in response to questions.

∗Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.

1

Definitions

• A problem is effectively solvable if there is an algorithm for solv-

ing it (a procedure that completes after finitely many steps, the max-

imum of which is known in advance, but may depend on the size of

the input).

• A problem whose solution is “yes” or “no” is a decision problem.

• An effective solution to a decision problem is a decision procedure.

• A decision problem that has a decision procedure is decidable.

2

Theorem: Let A be an FA. The question “Is L(A) = ∅?” is decidable.

Proof:

1. L(A) 6= ∅ if and only if there is a path from A’s start state to

some final state.

2. The following algorithm returns true if and only if there is a path

from A’s start state to some final state.

3

boolean isEmpty(FA A) {
paint q0 blue;

set.put(q0);

while (! set.isEmpty()) {
p = set.remove();

For each a ∈ Σ,

if (p′ = δ(p, a) is not blue) {
paint p′ blue;

set.put(p′);
}

}
return (there is a blue final state) ? false : true;

}

4

Theorem: Let A be an FA with n states. If L(A) 6= ∅, A accepts a

word w, |w| < n.

Proof:

1. The shortest path from A’s start state to some final state, if any,

can be no longer than n− 1: It cannot involve a circuit.

2. The concatenation of arc labels consists of less than n letters.

Thus, “Is L(A) = ∅?” also can be answered by running A on no more

than

mn−1 + mn−2 + · · · + m0

words, where m = |Σ|.

5

Theorem: Let A and B be FA accepting LA and LB, respectively, and E

and F be regular expressions. The following questions are decidable:

1. Is LA = ∅?
2. Is LA = LB?

3. Is E equivalent to F (i.e., do they denote the same language)?

Proof:

1. This follows from our previous theorem.

2. LA = LB ⇐⇒ (LA ∩ LB) ∪ (LB ∩ LA) = ∅.
3. For each regular expression, construct an equivalent FA , using

Kleene’s theorem. Use part 2 above to see if these 2 FA accept

the same language.

6

Finiteness

Theorem: Let R be a regular expression. |L(R)| = ∞ ⇐⇒ R has a

Kleene star that applies to something other than Λ.

Proof:

1. If R has no Kleene star operator, it denotes a finite set.

2. Λ∗ = Λ.

3. If the Kleene star operator is applied to something not equivalent

to Λ, the resulting set is infinite.

7

Theorem: Let A be an FA with n states.

L(A) = ∞ ⇐⇒ ∃w ∈ L(A), n ≤ |w| < 2n.

Proof:

1. If ∃w ∈ L(A), n ≤ |w| < 2n, then L(A) = ∞.

This follows from the pumping lemma: If there is any word w,

|w| ≥ n, then w = xyz, such that xykz ∈ L(A), ∀k > 0.

2. If L(A) = ∞ then ∃w ∈ L(A), n ≤ |w| < 2n.

(a) By the pumping lemma, ∃w ∈ L(A), w = xyz, and |xy| ≤ n.

(b) Thus, |y| ≤ n.

(c) Assume without loss of generality that the part of the accepting

path associated with x and z do not contain any loops.

(d) xz ∈ L(A), and |xz| < n.

(e) Let k be the smallest exponent that makes |xykz| ≥ n.

Then, |xykz| < 2n.

8

Theorem: Given FA A, the question “Is L(A) = ∞?” is decidable.

Proof:

1. Check each word w, n ≤ |w| < 2n.

2. If any are accepted, L(A) = ∞;

otherwise, L(A) < ∞.

When you study DFS, you should conceive of faster ways to test for finite-

ness.

However, the proof above, requires only that:

• you know how many states the FA has;

• you know if w ∈ L(A), for any word w.

You do not need to be able to examine the FA.

9

