CHAPTER 17: CONTEXT-FREE LANGUAGES *

Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu

- Please read the corresponding chapter before attending this lecture.
- These notes are not intended to be complete. They are supplemented with figures, and material that arises during the lecture period in response to questions.

^{*}Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.

CLOSURE PROPERTIES

THEOREM: CFLS ARE CLOSED UNDER UNION

If L_1 and L_2 are CFLs, then $L_1 \cup L_2$ is a CFL.

Proof

- 1. Let L_1 and L_2 be generated by the CFG, $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$, respectively.
- 2. Without loss of generality, subscript each nonterminal of G_1 with a 1, and each nonterminal of G_2 with a 2 (so that $V_1 \cap V_2 = \emptyset$).
- 3. Define the CFG, G, that generates $L_1 \cup L_2$ as follows: $G = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \to S_1 \mid S_2\}, S).$

- 4. A derivation starts with either $S \Rightarrow S_1$ or $S \Rightarrow S_2$.
- 5. Subsequent steps use productions entirely from G_1 or entirely from G_2 .
- 6. Each word generated thus is either a word in L_1 or a word in L_2 .

• Let L_1 be PALINDROME, defined by:

 $S \to aSa \mid bSb \mid a \mid b \mid \Lambda$

• Let L_2 be $\{a^n b^n | n \ge 0\}$ defined by:

 $S \to aSb \mid \Lambda$

• Then the union language is defined by:

$$S \to S_1 \mid S_2$$
$$S_1 \to aS_1a \mid bS_1b \mid a \mid b \mid \Lambda$$
$$S_2 \to aS_2b \mid \Lambda$$

THEOREM: CFLS ARE CLOSED UNDER CONCATENATION

If L_1 and L_2 are CFLs, then L_1L_2 is a CFL.

Proof

- 1. Let L_1 and L_2 be generated by the CFG, $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$, respectively.
- 2. Without loss of generality, subscript each nonterminal of G_1 with a 1, and each nonterminal of G_2 with a 2 (so that $V_1 \cap V_2 = \emptyset$).
- 3. Define the CFG, G, that generates L_1L_2 as follows: $G = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \to S_1S_2\}, S).$
- 4. Each word generated thus is a word in L_1 followed by a word in L_2 .

• Let L_1 be PALINDROME, defined by:

 $S \to aSa \mid bSb \mid a \mid b \mid \Lambda$

• Let L_2 be $\{a^n b^n | n \ge 0\}$ defined by:

 $S \to aSb \mid \Lambda$

• Then the concatenation language is defined by:

$$S \to S_1 S_2$$
$$S_1 \to a S_1 a \mid b S_1 b \mid a \mid b \mid \Lambda$$
$$S_2 \to a S_2 b \mid \Lambda$$

THEOREM: CFLS ARE CLOSED UNDER KLEENE STAR

If L_1 is a CFL, then L_1^* is a CFL.

Proof

- 1. Let L_1 be generated by the CFG, $G_1 = (V_1, T_1, P_1, S_1)$.
- 2. Without loss of generality, subscript each nonterminal of G_1 with a 1.
- 3. Define the CFG, G, that generates L_1^* as follows: $G = (V_1 \cup \{S\}, T_1, P_1 \cup \{S \to S_1S \mid \Lambda\}, S).$
- 4. Each word generated is either Λ or some sequence of words in L_1 .
- 5. Every word in L_1^* (i.e., some sequence of 0 or more words in L_1) can be generated by G.

• Let L_1 be $\{a^n b^n | n \ge 0\}$ defined by:

```
S \to aSb \mid \Lambda
```

• Then L_1^* is generated by:

$$S \to S_1 S \mid \Lambda$$
$$S_1 \to a S_1 b \mid \Lambda$$

None of these example grammars is necessarily the most *compact* CFG for the language it generates.

INTERSECTION AND COMPLEMENT

THEOREM: CFLS ARE NOT CLOSED UNDER INTERSECTION If L_1 and L_2 are CFLs, then $L_1 \cap L_2$ may not be a CFL.

Proof

L₁ = {aⁿbⁿa^m | n, m ≥ 0} is generated by the following CFG:
S → XA
X → aXb | Λ
A → Aa | Λ
L₂ = {aⁿb^ma^m | n, m ≥ 0} is generated by the following CFG:
S → AX

 $\begin{array}{l} X \rightarrow aXb \mid \Lambda \\ A \rightarrow Aa \mid \Lambda \end{array}$

3. $L_1 \cap L_2 = \{a^n b^n a^n \mid n \ge 0\}$, which is known not to be a CFL (pumping lemma).

THEOREM: CFLS ARE NOT CLOSED UNDER COMPLEMENT

If L_1 is a CFL, then $\overline{L_1}$ may not be a CFL.

Proof

They are closed under union. If they are closed under complement, then they are closed under intersection, which is false.

More formally,

- 1. Assume the complement of every CFL is a CFL.
- 2. Let L_1 and L_2 be 2 CFLs.
- 3. Since CFLs are close under union, and we are assuming they are closed under complement,

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

is a CFL.

- 4. However, we know there are CFLs whose intersection is not a CFL.
- 5. Therefore, our assumption that CFLs are closed under complement is false.

This does not mean that the complement of a CFL is never a CFL.

- Let $L_1 = \{a^n b^n a^n | n \ge 0\}$, which is not a CFL.
- $\overline{L_1}$ is a CFL.
- We show this by constructing it as the union of 5 CFLs.

$$\begin{split} &-Mpq = (a^+)(a^n b^n)(a^+) = \{a^p b^q a^r \mid p > q\} \\ &-Mqp = (a^n b^n)(b^+)(a^+) = \{a^p b^q a^r \mid p < q\} \\ &-Mqr = (a^+)(b^+)(b^n a^n) = \{a^p b^q a^r \mid q > r\} \\ &-Mqr = (a^+)(b^n a^n)(a^+) = \{a^p b^q a^r \mid q < r\} \\ &-M = \overline{a^+ b^+ a^+} = \text{all words not of the form } a^p b^q a^r. \end{split}$$

Let
$$L = M \cup Mpq \cup Mqp \cup Mqr \cup Mqr$$
.

• Since $M \subseteq L$, \overline{L} contains only words of the form $a^p b^q a^r$.

- \overline{L} cannot contain words of the form $a^p b^q a^r$, where p < q.
- \overline{L} cannot contain words of the form $a^p b^q a^r$, where p > q.
- Therefore \overline{L} only contains words of the form $a^p b^q a^r$, where p = q.
- \overline{L} cannot contain words of the form $a^p b^q a^r$, where q < r.
- \overline{L} cannot contain words of the form $a^p b^q a^r$, where q > r.
- Therefore \overline{L} only contains words of the form $a^p b^q a^r$, where q = r.
- Since p = q and q = r, \overline{L} contains words of the form $a^n b^n a^n$, which is not context-free.

THEOREM: THE INTERSECTION OF A CFL AND AN RL IS A CFL.

If L_1 is a CFL and L_2 is regular, then $L_1 \cap L_2$ is a CFL.

Proof

- 1. We do this by constructing a PDA I to accept the intersection that is based on a PDA A for L_1 and a FA F for L_2 .
- 2. Convert A, if necessary, so that all input is read before accepting.
- 3. Construct a set Y of all A's states y_1, y_2, \ldots , and a set X of all F's states x_1, x_2, \ldots
- 4. Construct $\{(y, x) \mid \forall y \in Y, \forall x \in X\}$.
- 5. The start state of I is (y_0, x_0) , where y_0 is the label of A's start state, and x_0 is F's initial state.

- 6. Regarding the next state function, the x component changes only when the PDA is in a READ state:
 - If in (y_i, x_j) and y_i is not a READ state, its successor is (y_k, x_j) , where y_k is the appropriate successor of y_i .
 - If in (y_i, x_j) and y_i is a READ state, reading a, its successor is (y_k, x_l) , where
 - $-y_k$ is the appropriate successor of y_i on an a
 - $-\delta(x_j,a) = x_l.$
- 7. I's ACCEPT states are those where the y component is ACCEPT and the x component is final.

If the y component is ACCEPT and the x component is not final, the state in I is REJECT (or omitted, implying a crash).

• Let L_1 be the CFL EQUAL of words with an equal number of a's and b's.

Draw its PDA.

- Let $L_2 = (a+b)^*a$. Draw its FA.
- Perform the construction of the intersection PDA.