Chapter 17: Context-Free Languages *

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

- Please read the corresponding chapter before attending this lecture.
- These notes are not intended to be complete. They are supplemented with figures, and material that arises during the lecture period in response to questions.

[^0]
Closure Properties

Theorem: CFLs are closed under union

If L_{1} and L_{2} are CFLs, then $L_{1} \cup L_{2}$ is a CFL.

Proof

1. Let L_{1} and L_{2} be generated by the CFG, $G_{1}=\left(V_{1}, T_{1}, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T_{2}, P_{2}, S_{2}\right)$, respectively.
2. Without loss of generality, subscript each nonterminal of G_{1} with a 1 , and each nonterminal of G_{2} with a 2 (so that $V_{1} \cap V_{2}=\emptyset$).
3. Define the CFG, G, that generates $L_{1} \cup L_{2}$ as follows:
$G=\left(V_{1} \cup V_{2} \cup\{S\}, T_{1} \cup T_{2}, P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}, S\right)$.
4. A derivation starts with either $S \Rightarrow S_{1}$ or $S \Rightarrow S_{2}$.
5. Subsequent steps use productions entirely from G_{1} or entirely from G_{2}.
6. Each word generated thus is either a word in L_{1} or a word in L_{2}.

Example

- Let L_{1} be PALINDROME, defined by:

$$
S \rightarrow a S a|b S b| a|b| \Lambda
$$

- Let L_{2} be $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ defined by:

$$
S \rightarrow a S b \mid \Lambda
$$

- Then the union language is defined by:

$$
\begin{aligned}
& S \rightarrow S_{1} \mid S_{2} \\
& S_{1} \rightarrow a S_{1} a\left|b S_{1} b\right| a|b| \Lambda \\
& S_{2} \rightarrow a S_{2} b \mid \Lambda
\end{aligned}
$$

Theorem: CFLs are closed under concatenation

 If L_{1} and L_{2} are CFLs, then $L_{1} L_{2}$ is a CFL.
Proof

1. Let L_{1} and L_{2} be generated by the CFG, $G_{1}=\left(V_{1}, T_{1}, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T_{2}, P_{2}, S_{2}\right)$, respectively.
2. Without loss of generality, subscript each nonterminal of G_{1} with a 1 , and each nonterminal of G_{2} with a 2 (so that $V_{1} \cap V_{2}=\emptyset$).
3. Define the CFG, G, that generates $L_{1} L_{2}$ as follows:

$$
G=\left(V_{1} \cup V_{2} \cup\{S\}, T_{1} \cup T_{2}, P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}, S\right)
$$

4. Each word generated thus is a word in L_{1} followed by a word in L_{2}.

Example

- Let L_{1} be PALINDROME, defined by:

$$
S \rightarrow a S a|b S b| a|b| \Lambda
$$

- Let L_{2} be $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ defined by:

$$
S \rightarrow a S b \mid \Lambda
$$

- Then the concatenation language is defined by:

$$
\begin{aligned}
& S \rightarrow S_{1} S_{2} \\
& S_{1} \rightarrow a S_{1} a\left|b S_{1} b\right| a|b| \Lambda \\
& S_{2} \rightarrow a S_{2} b \mid \Lambda
\end{aligned}
$$

Theorem: CFLs are closed under Kleene star If L_{1} is a CFL, then L_{1}^{*} is a CFL.

Proof

1. Let L_{1} be generated by the CFG, $G_{1}=\left(V_{1}, T_{1}, P_{1}, S_{1}\right)$.
2. Without loss of generality, subscript each nonterminal of G_{1} with a 1 .
3. Define the CFG, G, that generates L_{1}^{*} as follows:

$$
G=\left(V_{1} \cup\{S\}, T_{1}, P_{1} \cup\left\{S \rightarrow S_{1} S \mid \Lambda\right\}, S\right)
$$

4. Each word generated is either Λ or some sequence of words in L_{1}.
5. Every word in L_{1}^{*} (i.e., some sequence of 0 or more words in L_{1}) can be generated by G.

- Let L_{1} be $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ defined by:

$$
S \rightarrow a S b \mid \Lambda
$$

- Then L_{1}^{*} is generated by:

$$
\begin{aligned}
& S \rightarrow S_{1} S \mid \Lambda \\
& S_{1} \rightarrow a S_{1} b \mid \Lambda
\end{aligned}
$$

None of these example grammars is necessarily the most compact CFG for the language it generates.

Intersection and Complement

Theorem: CFLs are not closed under intersection If L_{1} and L_{2} are CFLs, then $L_{1} \cap L_{2}$ may not be a CFL.

Proof

1. $L_{1}=\left\{a^{n} b^{n} a^{m} \mid n, m \geq 0\right\}$ is generated by the following CFG: $S \rightarrow X A$ $X \rightarrow a X b \mid \Lambda$
$A \rightarrow A a \mid \Lambda$
2. $L_{2}=\left\{a^{n} b^{m} a^{m} \mid n, m \geq 0\right\}$ is generated by the following CFG: $S \rightarrow A X$

$$
\begin{aligned}
& X \rightarrow a X b \mid \Lambda \\
& A \rightarrow A a \mid \Lambda
\end{aligned}
$$

3. $L_{1} \cap L_{2}=\left\{a^{n} b^{n} a^{n} \mid n \geq 0\right\}$, which is known not to be a CFL (pumping lemma).

Theorem: CFLs are not closed under complement If L_{1} is a CFL, then $\overline{L_{1}}$ may not be a CFL.

Proof

They are closed under union. If they are closed under complement, then they are closed under intersection, which is false.

More formally,

1. Assume the complement of every CFL is a CFL.
2. Let L_{1} and L_{2} be 2 CFLs.
3. Since CFLs are close under union, and we are assuming they are closed under complement,

$$
\overline{\overline{L_{1}} \cup \overline{L_{2}}}=L_{1} \cap L_{2}
$$

is a CFL.
4. However, we know there are CFLs whose intersection is not a CFL.
5. Therefore, our assumption that CFLs are closed under complement is false.

Example

This does not mean that the complement of a CFL is never a CFL.

- Let $L_{1}=\left\{a^{n} b^{n} a^{n} \mid n \geq 0\right\}$, which is not a CFL.
- $\overline{L_{1}}$ is a CFL.
- We show this by constructing it as the union of 5 CFLs.

$$
\begin{aligned}
& -M p q=\left(a^{+}\right)\left(a^{n} b^{n}\right)\left(a^{+}\right)=\left\{a^{p} b^{q} a^{r} \mid p>q\right\} \\
& -M q p=\left(a^{n} b^{n}\right)\left(b^{+}\right)\left(a^{+}\right)=\left\{a^{p} b^{q} a^{r} \mid p<q\right\} \\
& -M q r=\left(a^{+}\right)\left(b^{+}\right)\left(b^{n} a^{n}\right)=\left\{a^{p} b^{q} a^{r} \mid q>r\right\} \\
& -M q r=\left(a^{+}\right)\left(b^{n} a^{n}\right)\left(a^{+}\right)=\left\{a^{p} b^{q} a^{r} \mid q<r\right\} \\
& -M=\overline{a^{+} b^{+} a^{+}}=\text {all words not of the form } a^{p} b^{q} a^{r} .
\end{aligned}
$$

Let $L=M \cup M p q \cup M q p \cup M q r \cup M q r$.

- Since $M \subseteq L, \bar{L}$ contains only words of the form $a^{p} b^{q} a^{r}$.
- \bar{L} cannot contain words of the form $a^{p} b^{q} a^{r}$, where $p<q$.
- \bar{L} cannot contain words of the form $a^{p} b^{q} a^{r}$, where $p>q$.
- Therefore \bar{L} only contains words of the form $a^{p} b^{q} a^{r}$, where $p=q$.
- \bar{L} cannot contain words of the form $a^{p} b^{q} a^{r}$, where $q<r$.
- \bar{L} cannot contain words of the form $a^{p} b^{q} a^{r}$, where $q>r$.
- Therefore \bar{L} only contains words of the form $a^{p} b^{q} a^{r}$, where $q=r$.
- Since $p=q$ and $q=r, \bar{L}$ contains words of the form $a^{n} b^{n} a^{n}$, which is not context-free.

Theorem: The intersection of a CFL and an RL is a CFL. If L_{1} is a CFL and L_{2} is regular, then $L_{1} \cap L_{2}$ is a CFL.

Proof

1. We do this by constructing a PDA I to accept the intersection that is based on a PDA A for L_{1} and a FA F for L_{2}.
2. Convert A, if necessary, so that all input is read before accepting.
3. Construct a set Y of all A 's states y_{1}, y_{2}, \ldots, and a set X of all F 's states x_{1}, x_{2}, \ldots
4. Construct $\{(y, x) \mid \forall y \in Y, \forall x \in X\}$.
5. The start state of I is $\left(y_{0}, x_{0}\right)$, where y_{0} is the label of A 's start state, and x_{0} is F 's initial state.
6. Regarding the next state function, the x component changes only when the PDA is in a READ state:

- If in $\left(y_{i}, x_{j}\right)$ and y_{i} is not a READ state, its successor is $\left(y_{k}, x_{j}\right)$, where y_{k} is the appropriate successor of y_{i}.
- If in $\left(y_{i}, x_{j}\right)$ and y_{i} is a READ state, reading a, its successor is $\left(y_{k}, x_{l}\right)$, where
- y_{k} is the appropriate successor of y_{i} on an a
$-\delta\left(x_{j}, a\right)=x_{l}$.

7. I's ACCEPT states are those where the y component is ACCEPT and the x component is final.
If the y component is ACCEPT and the x component is not final, the state in I is REJECT (or omitted, implying a crash).

Example

- Let L_{1} be the CFL EQUAL of words with an equal number of a 's and b 's.

Draw its PDA.

- Let $L_{2}=(a+b)^{*} a$.

Draw its FA.

- Perform the construction of the intersection PDA.

[^0]: *Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley \& Sons, Inc.

