Chapter 4: Properties of Regular Languages*

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

• Please read the corresponding chapter before attending this lecture.

• These notes are supplemented with figures, and material that arises during the lecture in response to questions.

• Please report any errors in these notes to cappello@cs.ucsb.edu. I’ll fix them immediately.

*Based on An Introduction to Formal Languages and Automata, 3rd Ed., Peter Linz, Jones and Bartlett Publishers, Inc.
4.1 Closure Properties of Regular Languages

Closure under Simple Set Operators

Thm. 4.1: If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 L_2$, $\overline{L_1}$, and L_1^*.

Proof:

1. Assume that L_1 and L_2 are regular.

2. Let regular expression r_1 and r_2 denote L_1 and L_2, respectively.

3. Then,
 - $r_1 + r_2$ denotes $L_1 \cup L_2$,
 - $r_1 r_2$ denotes $L_1 L_2$,
 - r_1^* denotes L_1^*.

2
4. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts L_1.

5. Then, $\overline{M} = (Q, \Sigma, \delta, q_0, Q - F)$ accepts $\overline{L_1}$.

6. Since regular languages are closed under complement and union, $\overline{L_1} \cup \overline{L_2} = L_1 \cap L_2$ is a regular language.
• Let $w = s_1 s_2 \cdots s_n$ be a word over Σ. Then, w^R denotes the word $s_n \cdots s_2 s_1$, the reverse of w. $\lambda^R = \lambda$.

• Let L be a language. Then L^R denotes $L^R = \{w^R : w \in L\}$, called the reverse of L.

Thm. 4.2: The family of regular languages is closed under reversal.

Proof:

1. Let L be regular, and $M = (Q, \Sigma, \delta, q_0, \{q_f\})$ be an NFA that accepts it\(^1\).

2. We construct $M^R = (Q, \Sigma, \delta^R, q_f, \{q_0\})$, where δ^R is δ with the orientation of the arcs reversed.

3. There is a path from q_0 to q_f in M if and only if there is a path from q_f to q_0 in M^R: $L(M^R) = L^R$.

\(^1\)We may assume without loss of generality that $|F| = 1$
Closure under Other Operators

Def. 4.1: Let Σ and Γ be alphabets. Then, a function

$$h : \Sigma \mapsto \Gamma^*$$

is called a **homomorphism**.

- For each symbol in Σ, a homomorphism substitutes a word in Γ^*.
- Let $w = s_1s_2 \cdots s_n$. Then,

 $$h(s_1s_2 \cdots s_n) = h(s_1)h(s_2) \cdots h(s_n).$$

- If L is a language on Σ, then its homomorphic image is

 $$h(L) = \{h(w) : w \in L\}.$$
Example:

- Let $\Sigma = \{0, 1\}$ and $\Gamma = \{a, b, \ldots, z\}$.
- Define h as follows:

 $$
 h(0) = \text{hello} \\
 h(1) = \text{goodbye}
 $$

- Then, $h(010) = \text{hellogoodbyehello}$.
- The homomorphic image of $L = \{00, 010\}$ is

 $$
 h(L) = \{\text{hellohello, hellogoodbyehello}\}.
 $$
Thm. 4.3: Let h be a homomorphism. If L is a regular language, then its homomorphic image $h(L)$ is regular. The family of regular languages therefore is closed under arbitrary homomorphisms.

Proof:

1. Assume that L is regular, and let M be a DFA that accepts L.

2. Construct a generalized transition graph (GTG), based on the transition graph (TG) for M as follows:
 For each symbol, s, that labels an arc in the TG for M, label that same arc in the GTG with $h(s)$.

3. There is a path labelled w from q_0 to some final state q_f in the TG for M if and only if there is a path labelled $h(w)$ from q_0 to q_f in the GTG.
Def. 4.2: Let L_1 and L_2 be languages on the same alphabet. Then, the right quotient of L_1 with L_2 is defined as

$$L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}.$$

Example: If

$$L_1 = \{a^nb^m : n \geq 1, m \geq 0\} \cup \{ba\}$$

and

$$L_2 = \{b^m : m \geq 1\},$$

then

$$L_1/L_2 = \{a^nb^m : n \geq 1, m \geq 0\}.$$

• Draw a TG for L_1.

• Identify each state, q_i in TG_1 such that there exists a $y \in L_2$ and there is a path from q_i to a final state in TG_1.

8
• There are 2 such states, q_1 and q_2.
 These are the final states in L_1/L_2.
Thm. 4.4: If L_1 and L_2 are regular languages, then L_1/L_2 is regular: The family of regular languages is closed under right quotient with a regular language.

Proof:

1. Assume that L_1 and L_2 are regular, and let DFA $M = (Q, \Sigma, \delta, q_0, F)$ accept L_1.

2. We construct DFA $\hat{M} = (Q, \Sigma, q_0, \hat{F})$ as follows.

 (a) For each $q_i \in Q$, determine if there is a $y \in L_2$ such that $\delta^*(q_i, y) \in F$.

 (b) This can be done by the following procedure:

 i. Construct $M_i = (Q, \Sigma, \delta, q_i, F)$.

 ii. If $L_2 \cap L(M) \neq \emptyset$ then $q_i \in \hat{F}$.

3. If $x \in L_1/L_2$ then $x \in L(\hat{M})$.

10
4. If $x \in L_1/L_2$, there exists a $y \in L_2$ such that $xy \in L_1$.

5. If $xy \in L_1$, then:
 - $\delta(q_0, x) = q$, for some $q \in Q$
 - $\delta(q, y) \in F$
 - By construction, $q \in \widehat{F}$, so \widehat{M} accepts x.

6. It similarly is easy to show that If $x \in L(\widehat{M})$ then $x \in L_1/L_2$.