CMPSC 40: Foundations of Computer Science Key Terms & Results

Peter Cappello Department of Computer Science University of California, Santa Barbara

THE FOUNDATIONS: LOGIC & PROOFS

TERMS

proposition: a declarative statement that is true or false, but not both

propositional variable: a variable that represents a proposition

 $\neg p$ (negation of p): the proposition with truth value opposite to the truth value of p

logical operators: operators used to combine propositions

compound proposition: a proposition constructed by combining propositions using logical operators

 $p \lor q$ (disjunction of p and q): the proposition "p or q," which is true if and only if at least 1 of p and q is true

 $p \wedge q$ (conjunction of p and q): the proposition "p and q," which is true if and only if both p and q are true

 $p \to q$ (p implies q): the proposition "if p then q," which is false if and only if p is true and q is false

 $p \leftrightarrow q$ (biconditional): the proposition "p if and only if q," which is true if and only if p and q have the same truth value

 $p \oplus q$ (exclusive or of p and q): the proposition "p XOR q," which is true when exactly 1 of p and q are true

converse of $p \rightarrow q$: $q \rightarrow p$

inverse of $p \rightarrow q$: $\neg p \rightarrow \neg q$

contrapositive of $p \rightarrow q$: $\neg q \rightarrow \neg p$

tautology: a compound proposition that always is true

contradiction: a compound proposition that always is false

predicate: the part of a sentence that attributes a property to the subject

propositional function: a statement containing 1 or more variables that becomes a proposition when each of its variables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the set of values a variable in a propositional function may take

 $\exists x P(x)$ (existential quantification of P(x)): the proposition that is true if and only if there exists an x in the domain such that P(x) is true

 $\forall x P(x)$ (universal quantification of P(x)): the proposition that is true if and only P(x) is true for every x in the domain

free variable: a variable not bound in a proposition function

bound variable: a variable that is quantified

scope of a quantifier: part of a statement where the quantifier binds its variable

argument: a sequence of statements

argument form: a sequence of compound propositions involving propositional variables

premise: a statement, in an argument or argument form, other than the final one

conclusion: the final statement in an argument or argument form

valid argument form: a sequence of propositions involving propositional variables where the truth of all the premises

implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in the demonstration that arguments are valid

fallacy: an invalid argument form

theorem: a mathematical assertion that can be shown to be true

conjecture: a mathematical assertion proposed to be true, but that has not been proven

proof: a demonstration that a theorem is true

axiom: a basic assumption of a theory, assumed to be true, that can be used as a basis for proving theorems

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence of a theorem

vacuous proof: a proof that $p \rightarrow q$ is true based on the fact that p is false

trivial proof: a proof that $p \rightarrow q$ is true based on the fact that q is true

direct proof: a proof that $p \to q$ is true that proceeds by showing that q must be true when p is true

proof by contraposition: a proof that $p \to q$ is true that proceeds by showing that p must be false when q is false

proof by contradiction: a proof that p is true based on the truth of $\neg p \rightarrow q$, where q is a contradiction

proof by cases: a proof decomposed into separate cases, where these cases cover all possibilities

without loss of generality: an assumption in a proof that makes it possible to prove a theorem by reducing the

number of cases needed in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a specified property exists by explicitly finding such an

element

nonconstructive existence proof: a proof that an element with a specified property exists that does not explicitly

find such an element

RESULTS

• The following logical equivalences from Table 6:

Double negation: $\neg(\neg p) \equiv p$

Commutative:

$$p \lor q \equiv q \lor p$$
$$p \land q \equiv q \land p$$

Associative:

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$(p \land q) \land r \equiv p \land (q \land r)$$

Distributive:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

DeMorgan's:

$$\neg (p \lor q) \equiv \neg p \land \neg q$$
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

• The following equivalences of implication:

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

• The following equivalences of biconditional:

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$
$$p \leftrightarrow q \equiv (p \to q) \land (\neg p \to \neg q)$$

$$p \leftrightarrow q \equiv \neg (p \oplus q)$$

• DeMorgan's laws for quantifiers

$$\neg \exists P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall P(x) \equiv \exists x \neg P(x)$$

• The following rules of inference for propositional logic:

Modus ponens: $[p \land (p \rightarrow q)] \rightarrow q$

Hypothetical syllogism: $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$

Resolution: $[(p \lor q) \land (\neg p \lor r)] \rightarrow (q \lor r)$

• The rules of inference for quantified statements:

Universal instantiation: If $\forall x P(x)$, then P(c) for any c in the domain.

Universal generalization: If P(c) for arbitrary c, then $\forall x P(x)$

Existential instantiation: If $\exists x P(x)$, then P(c) for some c in the domain. We however do not know which element in the domain c is.

Existential generalization: If P(c) for some c, then $\exists x P(x)$

SET & FUNCTIONS

TERMS

set: a collection of distinct objects

paradox: a logical inconsistency

element, member of a set: an object in a set

Ø (empty set, null set): the set with no members

universal set: the set containing all objects under consideration

Venn diagram: a graphical representation of a set or sets

S = T (set equality): $\forall x (x \in S \leftrightarrow x \in T)$

 $S \subseteq T$ (S is a subset of T): $\forall x (x \in S \rightarrow x \in T)$

 $S \subset T$ (S is a proper subset of T): $S \subseteq T \land S \neq T$

finite set: a set with n elements, where n is a natural number

infinite set: a set that is not finite

|S| (the cardinality of S): the number of elements in S

P(S) (the power set of S): $\{s \mid s \subseteq S\}$

 $A \cup B$ (A union B): $x \in A \cup B \leftrightarrow (x \in A \lor x \in B)$

 $A \cap B$ (A intersection B): $x \in A \cap B \leftrightarrow (x \in A \land x \in B)$

A-B (A minus B): $x \in A-B \leftrightarrow (x \in A \land x \notin B)$

 \overline{A} (the complement of A): U - A, where U is the universal set.

 $A \oplus B$ (symmetric difference of A and B): $x \in A \oplus B \leftrightarrow (x \in A \oplus x \in B)$

membership table: a table displaying the membership of elements in sets

function from A to B: an assignment such that, $\forall a \in A$, a is assigned to exactly 1 element $b \in B$.

domain of f: the set A, where f is a function from A to B

codomain of f: the set B, where f is a function from A to B

b is the image of a under f: b = f(a)

a is the pre-image of b under f: f(a) = b

range of f: $\{b \mid \exists a \in A, f(a) = b\}$

onto function, surjection: f's range is its codomain: $\forall b \in B \ \exists a \in A, f(a) = b$

1-to-1 function, injection: $a \neq b \rightarrow f(a) \neq f(b)$

1-to-1 correspondence, bijection: a function that is a surjection and an injection.

inverse of f: when f is a bijection, its inverse, denoted f^{-1} , is the function $f^{-1}(b) = a$, where f(a) = b

 $f\circ g$ (composition of f and g): the function that assigns f(g(x)) to x

|x| (floor function): the largest integer not exceeding x

[x] (ceiling function): the smallest integer greater than or equal to x

RESULTS

• The following set identities from Table 1:

Complementation: $\overline{\overline{A}} = A$

Commutative:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Associative:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

DeMorgan's:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

THE FUNDAMENTALS: ALGORITHMS & GROWTH OF FUNCTIONS

TERMS

```
algorithm: a finite sequence of precise instructions for performing a computation or solving a problem. f(x) is O(g(x)): the fact that |f(x)| \leq C|g(x)|, for all x > k, for some positive constants C and k. f(x) is O(g(x)): the fact that |f(x)| \geq C|g(x)|, for all x > k, for some positive constants C and k. f(x) is O(g(x)): the fact that f(x) is O(g(x)) and f(x) is O(g(x)). a \mid b (a divides b): there is an integer c such that b = ac. a mod b: the remainder when the integer a is divided by integer b. a \equiv b \pmod{m} (a is congruent to b modulo m): m \mid (a - b).
```

RESULTS

division algorithm: Let $a \in Z$ and $d \in Z^+$. Then there are unique $q, r \in Z$ with $0 \le r < d$ such that a = dq + r.

INDUCTION & RECURSION

TERMS

the principle of mathematical induction: That the following statement is true:

$$(P(1) \land \forall k [P(k) \rightarrow P(k+1)]) \rightarrow \forall n P(n).$$

basis step: The proof of P(1) in a proof by mathematical induction of $\forall n P(n)$.

inductive step: The proof of $\forall k[P(k) \rightarrow P(k+1)]$ in a proof by mathematical induction of $\forall nP(n)$.

strong induction: That the following statement is true:

$$(P(1) \land \forall k[(P(1) \land \cdots \land P(k)) \rightarrow P(k+1)]) \rightarrow \forall nP(n).$$

well-ordering property: Every nonempty set of nonnegative integers has a least element.

recursive definition of a function: a definition of a function that specifies an initial set of values and a rule for obtaining values of this function at integers from its values at smaller integers.

recursive definition of a set: a definition of a set that specifies an initial set of elements in the set and a rule for obtaining other elements from those in the set.

structural induction: a technique for proving results about recursively defined sets.

recursive algorithm: an algorithm that proceeds by reducing a problem to the same problem with smaller input.

COUNTING

TERMS

permutation: an ordered arrangement of the elements of a set

r-permutation: an ordered arrangement of r elements of a set

P(n,r): the number of r-permutations of a set with n elements.

C(n,r): the number of r-combinations of a set with n elements

 $\left(egin{array}{c} n \\ r \end{array}
ight)$ (binomial coefficient): C(n,r).

combinatorial proof of an identity: a proof that uses counting arguments to prove that both sides of an identity count the same set of objects in different ways

Pascal's triangle: a representation of the binomial coefficients where the *i*th row of the triangle contains $\begin{pmatrix} i \\ j \end{pmatrix}$, for $j = 0, 1, 2, \dots, i$.

RESULTS

product rule: a basic counting technique: the number of ways to do a procedure that consists of 2 subtasks is the number of ways to do the 1st subtask *times* the number of ways to do the 2nd subtask after the 1st subtask has been done

sum rule: a basic counting technique: the number of ways to do a task in 1 of 2 ways is the sum of the number of ways to do these tasks if they cannot be done simultaneously

pigeonhole principle: When more than k objects are placed in k boxes, there must be a box with more than 1 object.

generalized pigeonhole principle: When N objects are placed in k boxes, there must be a box with at least $\lceil N/k \rceil$ objects.

9

$$P(n,r) = \frac{n!}{(n-r)!}$$

$$C(n,r) = \left(\begin{array}{c} n \\ r \end{array} \right) = rac{n!}{r!(n-r)!}$$

Pascal's Identity:
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Binomial Theorem:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

There are n^r r-permutations of a set with n elements when repetition is allowed.

There are C(n+r-1,r) r-combinations of a set with n elements when repetition is allowed.

There are $\frac{n!}{n_1!n_2!\cdots n_k!}$ permutations of n objects where there are n_i indistinguishable objects of type i, for $i=1,2,\ldots,k$.

RECURRENCE RELATIONS

TERMS

recurrence relation: a formula expressing terms of a sequence, except for some initial terms, as a function of 1 or more previous terms of the sequence

initial conditions of a recurrence relation: the values of the terms of a sequence satisfying the recurrence relation before this relation takes effect

divide-and-conquer algorithm: an algorithm that solves a problem recursively by splitting it into a fixed number of smaller problems of the same type

RESULTS

$$|A \cup B| = |A| + |B| - |A \cap B|$$

RELATIONS

TERMS

binary relation from A to B: A subset of $A \times B$.

relation on A: a binary relation from A to itself.

 $S \circ R$: $\{(s,t) \mid \exists x, (sRx \wedge xSt)\}.$

 R^{-1} : $\{(t,s) \mid sRt\}$.

 R^n : the n^{th} power of R.

reflexive: a relation R on A is *reflexive* if $\forall a \in A, aRa$.

symmetric: a relation R on A is symmetric if $\forall a, b \in A, aRb \rightarrow bRa$.

antisymmetric: a relation R on A is antisymmetric if $\forall a, b \in A, (aRb \land bRa) \rightarrow a = b$.

transitive: a relation R on A is *transitive* if $\forall a, b, c \in A, (aRb \land bRc) \rightarrow aRc.$

directed graph or digraph: a set of elements called *nodes* or *vertices* and ordered pairs of these elements, called *edges* or *arcs*.

path in a digraph: a sequence of arcs $(a, x_1), (x_1, x_2), \dots, (x_n, b)$ such that the terminal node of each arc is the initial node of the succeeding arc in the sequence.

circuit (or cycle) in a digraph: a path in the digraph that begins and ends at the same node.

equivalence relation: a reflexive, symmetric, and transitive relation.

equivalent: if R is an equivalence relation, a is equivalent to b if aRb.

 $[a]_{R}$ (equivalence class of a with respect to R): $\{b \mid aRb\}$.

partition of a set S: a collection of a pairwise disjoint nonempty subsets that have S as their union.

partial ordering: a relation that is reflexive, antisymmetric, and transitive.

poset (S, R): a set S and a partial ordering R on S.

comparable: the elements a and b in the poset (A, \preceq) are *comparable* if $a \preceq b$ or $b \preceq a$.

incomparable: elements in a poset that are not comparable.

total (or linear) ordering: a partial ordering for which every pair of elements are comparable.

RESULTS

- 1. Let R be an equivalence relation. Then, the following 3 statements are equivalent:
 - \bullet aRb.
 - $[a]_R \cap [b]_R \neq \emptyset$.
 - $[a]_R = [b]_R$.
- 2. The equivalence classes of an equivalence relation on a set A form a partition of A. Conversely, an equivalence relation can be constructed from any partition so that the equivalence classes are the subsets in the partition.

GRAPHS

TERMS

undirected edge: An edge associated with a set $\{u, v\}$, where u and v are vertices.

directed edge: An edge associated with an ordered pair (u, v), where u and v are vertices.

loop: An edge connecting a vertex with itself.

undirected graph: A set of vertices and a set of undirected edges each of which is associated with a set of 1 or 2 of these vertices.

simple graph: An undirected graph with no multiple edges and no loops.

multigraph: An undirected graph that may contain multiple edges but no loops.

directed graph: A set of vertices and a set of directed edges each of which is associated with an ordered pair of vertices.

adjacent: Two vertices are adjacent if there is an edge between them.

incident: An edge is incident to a vertex if the vertex is an endpoint of that edge.

- deg(v) (the degree of the vertex v in an undirected graph): The number of edges incident to v with loops counted twice.
- $deg^-(v)$ (the in-degree of the vertex v in a graph with directed edges): The number of edges with v as their terminal vertex.
- $deg^+(v)$ (the out-degree of the vertex v in a graph with directed edges): The number of edges with v as their initial vertex.
- K_n (Complete graph on n vertices): The undirected graph with n vertices where each pair of vertices is connected by an edge.
- **bipartite graph:** A graph with a vertex set that can be partitioned into subsets V_1 and V_2 such that each edge connects a vertex in V_1 and a vertex in V_2 .
- $K_{m,n}$ (Complete bipartite graph: The graph with a vertex set partitioned into a subset of m vertices and a subset of n vertices such that 2 vertices are connected by an edge if and only if one vertex is in the first subset and the other is in the second subset.

 C_n (cycle of size n), $n \ge 3$: The graph with n vertices v_1, v_2, \ldots, v_n and edges $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}$.

adjacency matrix: A matrix representing a graph using the adjacency of vertices.

incidence matrix: A matrix representing a graph using the incidence of edges of vertices.

circuit: A path of length $n \ge 1$ that begins and ends at the same vertex.

connected graph: An undirected graph with the property that there is a path between every pair of vertices.

strongly connected directed graph: An directed graph with the property that there is a directed path from every vertex to every vertex.

Euler circuit: A circuit that contains every edge of the graph exactly once.

Hamilton circuit: A circuit in a simple graph that visits each vertex exactly once.

RESULTS

1. There is an Euler circuit in a connected multigraph if and only if every vertex has even degree.