
CX: A Scalable, Robust Network for Parallel

Computing

Peter Cappello and Dimitrios Mourloukos

Computer Science Dept.

University of California

Santa Barbara, CA 93106

{cappello | mourlouk}@cs.ucsb.edu
telephone: 805.893.4383; fax: 805.893.853

Abstract

CX, a network-based computational exchange, is presented. The sys-

tem’s design integrates variations of ideas from other researchers, such as

work stealing, non-blocking tasks, eager scheduling, and space-based co-

ordination. The object-oriented API is simple, compact, and cleanly sepa-

rates application logic from the logic that supports interprocess communi-

cation and fault tolerance. Computations, of course, run to completion in

the presence of computational hosts that join and leave the ongoing com-

putation. Such hosts, or producers, use task caching and prefetching to

overlap computation with interprocessor communication. To break a po-

tential task server bottleneck, a network of task servers is presented. Even

though task servers are envisioned as reliable, the self-organizing, scalable

network of n servers, described as a sibling-connected height-balanced fat

tree, tolerates a sequence of n − 1 server failures. Tasks are distributed

throughout the server network via a simple “diffusion” process.

CX is intended as a test bed for research on automated silent auctions,

reputation services, authentication services, and bonding services. CX

also provides a test bed for algorithm research into network-based parallel

computation.

1

1 Introduction

The ocean contains many tons of gold. But, the gold atoms are too diffuse

to extract usefully. Idle cycles on the Internet, like gold atoms in the ocean,

seem too diffuse to extract usefully. If we could harness effectively the vast

quantities of idle cycles, we could greatly accelerate our acquisition of scientific

knowledge, successfully undertake grand challenge computations, and reap the

rewards in physics, chemistry, bioinformatics, and medicine, among other fields

of knowledge.

Several trends, when combined, point to an opportunity:

• The number of networked computing devices is increasing: Computation
is getting faster and cheaper: The number of unused cycles per second is

growing rapidly

• Bandwidth is increasing and getting cheaper

• Communication latency is not decreasing

• Humans are getting neither faster nor cheaper.

These trends and other technological advances lead to opportunities whose

surface we have barely scratched. It now is technically feasible to undertake

“Internet computations” that are technically infeasible for a network of super-

computers in the same time frame. The maximum feasible problem size for

“Internet computations” is growing more rapidly than that for supercomputer

networks. The SETI@home project discloses an emerging global computational

organism, bringing “life” to Sun Microsystem’s phrase “The network is the

computer”. The underlying concept holds the promise of a huge computational

capacity, in which users pay only for the computational capacity actually used,

increasing the utilization of existing computers.

1.1 Project Goals

In the CX project, we are designing an open, extensible Computation eXchange

that can be instantiated privately, within a single organization (e.g., a univer-

sity, distributed set of researchers, or corporation), or publicly as part of a mar-

2

ket in computation, including charitable computations (e.g., AIDS or cancer

research, SETI). Application-specific computation services constitute one kind

of extension, in which computational consumers directly contact specialized

computational producers, which provide computational support for particular

applications.

The system must enable application programmers to design, implement, and

deploy large computations, using computers on the Internet. It must reduce

human administrative costs, such as costs associated with:

• downloading and executing a program on heterogeneous sets of machines
and operating systems

• distributing software component upgrades.

It should reduce application design costs by:

• giving the application programmer a simple but general programming ab-
straction

• freeing the application programmer from concerns of interprocessor com-
munication and fault tolerance.

System performance must scale both up and down, despite communication

latency, to a set of computation producers whose size varies widely even within

the execution of a single computation. It must serve several consumers con-

currently, associating different consumers with different priorities. It should

support computations of widely varying lifetimes, from a few minutes to several

months. Producers must be secure from the code they execute. Discriminating

among consumers is supported, both for security and privacy, and for prioritiz-

ing the allocation of resources, such as compute producers.

After initial installation of system software, no human intervention is re-

quired to upgrade those components. The computational model must enable

general task decomposition and composition. The API must be simple but

general. Communication and fault tolerance must be transparent to the user.

Producers’ interests must be aligned with their consumer’s interests: computa-

tions are completed according to how highly they are valued.

3

1.2 Some Fundamental Issues

It is a challenge to achieve the goals of this system with respect to performance,

inter-operability [1], correctness, ease of use, incentive to participate, security,

and privacy. Although this paper does not focus on security and privacy, the

Java security model [17] and the “Davis” release of Jini address network se-

curity [27] (covering authentication, confidentiality, and integrity) clearly are

intended to support such concerns. Our choice of the Java programming system

and Jini reflects these benefits implicitly.

In this paper, we present the Production Network service subsystem of CX,

focusing on its design with respect to application programming complexity, ad-

ministrative complexity, and performance. Application programming complex-

ity is managed by presenting the programmer with a simple, compact, general

API, briefly presented in the next section. Administrative complexity is man-

aged by using the Java programming system: Its virtual machine provides a

homogeneous platform on top of otherwise heterogeneous sets of machines and

operating systems. The Production Network is a service that interfaces with

every other CX client and service. We however focus in this paper on the Task

Server, the Producer, and Consumer.

Performance issues can be decomposed into several sub-issues.

Heterogeneity of machines/OS: The goal is to overcome the administra-

tive complexity associated with multiple hardware platforms and operat-

ing systems, incurring an acceptable loss of execution performance. The

tradeoff is between the efficiency of native machine code vs. the univer-

sality of virtual machine code. For the applications targeted (not, e.g.,

real-time applications) the benefits of Java JITs reduce the benefits of

native machine code: Java wins by reducing application programming

complexity and administrative complexity, whose costs are not declining

as fast as execution times.

Communication latency: There is little reason to believe that technologi-

cal advances will significantly decrease communication latency. Hiding

latency, to the extent that it is possible, thus is central to our design.

4

Scalability: The architecture must scale to a higher degree than existing mul-

tiprocessor architectures, such as workstation clusters. Login privileges

must not be required for the consumer to use a machine; such an admin-

istrative requirement limits scalability.

Robustness: An architecture that scales to thousands of computational pro-

ducers must tolerate faults, particularly when participating machines, in

addition to failing, can disengage from an ongoing computation.

1.2.1 Ease of use

The computation consumer distributes code/data to a heterogeneous set of ma-

chines/OSs. This motivates using a virtual machine, in particular, the JVM.

Computational producers must download/install/upgrade system software (not

just application code). Use of a screensaver/daemon obviates the need for hu-

man administration beyond the one-time installation of producer software. The

screensaver/daemon is a wrapper for a client that downloads a “task server”

service proxy every time it starts, automatically distributing system software

upgrades.

1.3 Paper Organization

In the next section, we discuss related work, particularly noting those ideas of

others that we have incorporated into CX. In section 3, we introduce the API.

In section 4, we describe CX’s architecture. In section 5, we present results

from preliminary experiments. The Conclusion summarizes our contributions

and some directions for future work.

2 Related Work

Legion [18] and Condor [13] were early successes in network computing. They

predate Java, hence are not Java-centric, and indeed do not use a virtual ma-

chine to overcome the portability/interoperability problem associated with het-

erogeneous machines and OSs. The use of a virtual machine is a significant

difference between Java-centric and previous systems. Java-centric systems,

5

among other differences, do not require computational consumers to have lo-

gin privileges on host machines. Indeed, administration even of clusters is a

challenge [20]. Charlotte [5] was the first research project, to our knowledge,

that was Java-centric. Charlotte used eager scheduling, introduced by the Char-

lotte team, and implemented a full distributed shared memory. Cilk-NOW [7],

based on Cilk 2, provides for “well-structured” computations (a strict subset of

dag-structured computations, where dag means directed acyclic graph). It uses

work-stealing and checkpointing (to a shared filesystem, such as NFS) for adap-

tively parallel computations (i.e., computations hosted by machines that may

join/retreat from the computation dynamically [10]). Nibhanupudi et al. [25, 24]

present work on adaptive BSP, an efficient, programmer-friendly model of par-

allel computation suitable for the harvesting of idle cycles. Atlas [4], a version of

Cilk-NOW intended for the Internet setting, put three important concepts into

a Java-centric package: a computational model that supports well-structured

computations, work-stealing, and the Internet. It was an attempt to create a

Java-centric parallel processor with machines on the Internet. As a masters

project, it terminated abruptly, and, in our opinion, without reaching its full

potential. CX shares these three properties. However, we have discovered that

the dag-structured task model, eager scheduling (instead of Atlas’s checkpoint-

ing), work-stealing, and space-based coordination integrate so elegantly as to be

“made for each other” when an adaptively parallel computation is deployed on

a network. Globus [15] is a metacomputing or umbrella project. It consequently

is not Java-centric, and indeed must be language-neutral. CX is intended to fit

under Globus’s umbrella via a portal [30]. Javelin [22, 23, 11] is Java-centric,

implements work stealing and eager scheduling, and has a host/broker/client

architecture. Javelin’s implementation of eager scheduling is centralized on the

client process. Manta [29] elegantly shows that wide-area networks can effi-

ciently support large, coarse-grain parallel computation. Manta however does

not provide for adaptive parallelism (the situation where the actual processors

join and retreat during the computation). Systems that make use of idle pro-

cessors must be adaptive (i.e., permit processors to join and retreat from a

computation dynamically). Adaptivity, unfortunately, materially complicates

certain parallel computations.

6

Recently, several systems have emerged for distributed computations on the

Internet. Wendelborn et al. [32] describe an ongoing project to develop a geo-

graphical information system (PAGIS) for defining and implementing processing

networks on diverse computational and data resources. Hawick et al. [19] de-

scribe an environment for service-based meta-computing (DISCWorld). Fink et

al. [14] describe Amica, a meta-computing system to support the development

of coarse grained location-transparent applications for distributed systems on

the Internet, and includes a memory subsystem. Bakker et al. [3] take the view

of distributed objects as their unifying paradigm for building large-scale wide

area distributed systems. They appear to intend to do for objects what the

world wide web did for documents. Objects can differ in their scheme, if any,

for partitioning, replication, consistency, and fault tolerance, in a way that is

opaque to clients.

Huberman et al. [2] relate anonymity to incentives, in their application of

the “tragedy of the commons” to anonymous peer-to-peer networks.

Securing the infrastructure is not the focus of this project; commercial ef-

forts are under way to secure Jini, for example. this.Recent commercial ventures

attest to the perception that unused cycles can be made available in a compu-

tationally meaningful way. Such ventures, while still in their infancy, include

EnFuzion (targeted at intranets), Applied Metacomputing (the commercializa-

tion of Legion), Distributed Science (aka the ProcessTree), Entropia, Parabon

Computation, Popular Power, and United Devices.

The setting for CX is the Internet (or an intranet). It comprises a set of inter-

related services and clients implemented in Java. From a performance point of

view, its goal is somewhat different from both the commercial ventures and the

early systems such as Legion and Condor. These systems are intended primarily

to increase system throughput or utilization of idle cycles. CX is intended to

push the limits of parallel computing in a network setting, despite long commu-

nication latencies. Its architecture incorporates ideas from a variety of sources,

integrating them in a unique way. Briefly, it uses thread programming model

ideas from Cilk [6]; scheduling ideas from Enterprise [21], Spawn [31], and Cilk;

classic decoupled communication ideas from Linda [10] (and JavaSpaces [16],

its Java incarnation); eager scheduling ideas for fault tolerance from Charlotte;

7

and the host/broker/client architectural ideas from Javelin. To match supply

with demand [9, 8] in time and space, the system incorporates the concept of

auctions [12] via a market maker.

This article outlines the rationale for these choices, as they pertain to the

design of CX’s ProductionNetwork subsystem.

3 API

Computational Model

The computational model reflects the dominating physical constraint on net-

worked computation among compute producers whose availability may be short-

lived: long communication latency relative to execution speed. Computation is

modeled with a dag of nonblocking tasks, analogous to Cilk threads. Such a dag

is illustrated in Fig. 1. Producer cycles are too precious and volatile to waste

in a blocked state.

Programming Model

In the programming model, the “task server” is the single abstraction through

which applications communicate with the system. To minimize communica-

tion, the application programmer chooses where [de]composition occurs: the

consumer, the producer, even the task server, or some combination thereof. For

communication efficiency, an application can batch the communication of tasks

and computed arguments.

The programmer view is that of a single task server, despite its implemen-

tation as a network of servers. The consumer stores a computational task into

“the” task server, and receives a callback (processResult(Object o)) when

the result becomes available. Producers repeatedly take tasks from “the” task

server and compute them. See Fig. 2. Such computation results in either the

creation of new subtasks and/or arguments that are sent to successor tasks.

The application programming methods for communicating with “the” task

server include:

storeTask (Task t): store a task on the task server

8

Fib(4)

Fib(3)

Fib(0)Fib(1)

Fib(0)Fib(1)

Fib(2)

Fib(1)Fib(2)

Sum

Sum

Sum

Sum

Figure 1: Task dag for computing the 4th Fibonacci number.

9

���������
	����	��

Consumer

Producern

Fib(5)

Fib(4) Fib(3)

Sum

������������������

���������

���������

� �������
���������

Producer1

Figure 2: Process communication abstraction. Illustrates the first few tasks of

the Fib(5) computation.

10

storeResult(Task t, int argNo, Object value): store an argument of a

successor task on the task server (pseudocode: t.inputs[argNo] = value)

The method processResult (Object result) is invoked when a result

is available. In the JavaSpace specification, clients cannot compute within the

space. This is to prevent a client from grabbing the space’s computational capac-

ity, which would reduce its responsiveness to other clients. In CX, a production

network (i.e., a particular set of task servers and their associated producers),

executes one computation at a time. Consequently, the application can execute

tasks on a task server (by setting the Task’s boolean executeOnServer member

to true). (This is in the spirit of the original tuple space design of the Linda

system.). Computed arguments are stored on the server, using storeResult.

Tasks are ready for execution only after receiving all their arguments, if any.

For communication efficiency, the above methods have a variant where a set of

tasks/arguments is stored.

4 Architecture

First, we note some performance constraints. The scheduling mechanisms must

be general, subject to the constraint that scheduling operations are of low time

complexity: O(1) in the number of tasks and producers. The system must be

scalable, high-performance, and tolerate any single component failure. Failure

of compute producers must be transparent to the progress of the computation.

Recovering from a failed server must require no human intervention and com-

plete in a few seconds. After a server failure, restoring the system’s ability to

tolerate another server failure requires no human intervention, and completes

in less than one minute.

The basic entities relevant to the focus of this paper are:

Consumer (C): a process seeking computing resources.

Producer(P): a process offering or hosting computing resources. It is wrapped

in a screen saver or unix daemon, depending on its operating system.

Task Server (S): a process that coordinates task distribution among a set of

11

producers. Servers decouple communication: consumers and producers do

not need to know each other or be active at the same time.

Producer Network (N): A robust network of task servers and their associ-

ated producers, which negotiates as a single entity with consumers. Net-

works solve the dynamic discovery problem between active consumers and

available producers.

Technological trends imply that network computation must decompose into

tasks of sufficient computational complexity to hide communication latency: CX

thus is not suitable for computations with short-latency feedback loops. Also,

we must avoid human operations (e.g., a system requiring a human to restart a

crashed server). They are too slow, too expensive, and unreliable.

Why use Java? Since computation time is becoming less expensive and hu-

man labor is becoming more expensive, it makes sense to use a virtual machine

(VM). Each computational “cell” in the global computer speaks the same lan-

guage. One might argue that increased complexity associated with generating

and distributing binaries for each machine type and OS is an up-front, one-time

cost, whereas the increased runtime of a virtual machine is for the entire com-

putation, every time it executes. JITs tend to negate this argument. For some

applications, machine- and OS-dependent binaries make sense. The cost deriva-

tives (human vs. computation) suggest that the percentage of such applications

is declining with time. Of the possible VMs, it also makes sense to leverage

the industrial strength Java VM and its just-in-time (JIT) compiler technology,

which continues to improve. The increase in programmer productivity from

Java technology justifies its use. Finally, many programmers like to program in

Java, a feature that should be elevated to the set of fundamental considerations,

given the economics of software development.

There are a few relevant design principles that we adhere to. The first

principle concerns scalability: Each system component consumes resources (e.g.,

bandwidth and memory) at a rate that must be independent of the number of

system components, consumers, jobs, and tasks. Any component that violates

this principle will become a bottleneck when the number of components gets

sufficiently large. Secondly, tasks are pre-fetched in order to hide communication

12

latency. This implies multi-threaded Producers and TaskServers. Finally, we

batch objects to be communicated, when possible.

There also is a requirement that is needed to achieve high performance.

To focus producers on job completion, producer networks must complete their

consumer’s job before becoming “free agents” again.

The design of the computational part of the system is briefly elaborated in

two steps: 1) the isolated cluster: a task server with its associated producers,

and 2) a producer network (of clusters). The producer network is used to make

the design scale and be fault tolerant.

4.1 The isolated cluster

An isolated cluster (See Fig. 3) supports the task graph model of computa-

tion, and tolerates producer failure, both node and link. A consumer starts a

computation by putting the “root” task of its computation into a task server.

When a producer registers with a server, it downloads the server’s proxy. The

main proxy method repeatedly gets a task, computes it, and, when successfully

completed, removes the task from the server. Since the task is not removed from

the server until completion notification is given, transactions are unnecessary:

A task is reassigned until some producer successfully completes it. (The priority

rules for assignment are given in the next paragraph.) When a producer com-

putes a task, it either creates subtasks and puts them into the server, and/or

computes arguments needed by successor subtasks (the “argument” computed

by the sink task is the final result). Putting intermediate results into the server

forms a checkpoint that occurs as a natural byproduct of the computation’s

decomposition into subtasks. Application logic thus is cleanly separated from

fault tolerance logic. Once the consumer deposits the root task into the server,

it can deactivate until it retrieves the final result. Task server fault tolerance

derives from their replication, provided in the network discussed below.

We now discuss task caching. It increases performance by hiding communi-

cation latency between producers and their server. Each producer’s server proxy

has a task cache. Besides caching tasks, proxies copy forward arguments and

tasks to the server, which maintains a ready task heap: The ordering of ready

13

Cluster

Task
Server

Producer

���������
	����	��! "��#�$�%

Producer Producer

Producer

Producer

Figure 3: A cluster: A Task server and its associated set of Producers.

14

tasks within the heap is based on 2 components: The dominant component is

how many times a task has been assigned. If task A has been assigned fewer

times than Task B, then Task A is higher in the heap than Task B. Within

that, tasks are ordered by dag level (see [6]). This minor ordering mechanism is

exposed to the application programmer: dag level is the default implementation

of the Task’s boolean isHigherPriority method. For example, it makes sense

to give a Fibonacci task that computes a bigger Fibonacci number a higher

priority than a Fibonacci task that computes a smaller number (because the

task that computes the smaller number ultimately spawns fewer tasks). In this

case, the application programmer can implement the Fibonacci decomposition

task’s isHigherPriority method accordingly. This is a simple application-level

scheduling [28] mechanism.

When the number of tasks in a proxy’s task cache falls below a watermark

(see [16]), it pre-fetches a copy of a task[s] from the server. For each task, the

server maintains the names of the producers whose proxies have a copy of the

task. A pre-fetch request returns the task with the lowest level (i.e., is earliest

in the task dag) among those that have been assigned the fewest times. After

the task is complete, the proxy notifies the server which removes the task from

its task heap and from all proxy caches containing it.

The task server also maintains an unready task collection (of tasks that

have not yet received all their input arguments). When a task in this collection

receives all its arguments, and hence becomes ready, it is inserted into the ready

task heap, and becomes available for pre-fetching. The producer’s task cache is

organized similarly, with a ready task heap and unready task collection.

Although the task graph can be a dag, the spawn graph is a tree. In Fig. 1,

the sub-graph of solid edges is the spawn tree. Hence, there is a unique path

from the root task to any subtask. This path is the basis of a unique task

identifier. Using this identifier, the server discards duplicate tasks. Duplicate

computed arguments also are discarded.

The server, in concert with its proxies, balances the task load among its

producers: A task may be concurrently assigned to many producers (particu-

larly at the end of a computation, when there are fewer tasks than producers).

This reduces completion time, in the presence of aggressive task pre-fetching:

15

Producers should not be idle while other possibly slower producers, have tasks

in their cache. Via pre-fetching, when producers deplete their task cache, they

steal tasks spawned by other producers. Each producer thus is kept supplied

with tasks, regardless of differences in producer computation rates. Our design

goal: producers experience no communication delay when they request tasks;

there always is a cached copy of a task waiting for them (Exception: the pro-

ducer just completed the last task).

4.2 The production network of clusters

The server can service only a bounded number of producers before becoming a

bottleneck. Server networks break this bottleneck. Each server (and proxy) re-

tains the functionality of the isolated cluster. Additionally, servers balance the

task load (“concentration”) among themselves via a diffusion process: Like pro-

ducers, diffusion of tasks throughout the server network is based on a system of

low/high water marks for efficient inter-server communication. Only ready tasks

move via this diffusion process. Similarly, a task that has been downloaded from

some task server to one of its producers, no longer moves to other task servers.

However, other producers associated with the same task server can download

it. This policy facilitates task removal, upon completion. Task diffusion among

task servers is a “background” pre-fetch process: Producers are oblivious to

it. One design goal: producers endure no communication delays from their task

server beyond the basic request/receive latency: Each server has tasks for its

producers, provided the server network has more ready tasks than servers.

We now impose a special topology, that tolerates a sequence of server failures.

Servers should have the same mean time between failure as mission-critical

commercial web servers. However, even these are not available 100% of the time.

We want computation to progress without re-computation in the presence of a

sequence of single server failures. To tolerate a server failure, its state (tasks and

shared variables) must be recoverable. This information could be recovered from

a transaction log (i.e., logging transactions against the object store, for example,

using a persistent implementation of JavaSpaces). It also could be recovered

if it is replicated on other servers (see [25, 24] for a discussion of automatic

16

state replication and recovery in a virtual ring). The first case suffers from a

long recovery time, often requiring the human intervention. Since humans are

getting neither faster nor cheaper, we omit human-mediated computer/network

administration. The second option can be fully automatic and faster at the cost

of increased design complexity.

We enhance the design via replication of task state, by organizing the server

network as a sibling-connected fat tree (see Fig. 4) We can define such a tree

operationally:

• start with a height-balanced tree;

• add another “root”;

• add edges between siblings;

• add edges so that each node is adjacent to its parent’s siblings.

Each server has a mirror group: its siblings in the fat tree. (Since the tree does

not need to be complete, it may be that there exists a parent that has only one

child. That child uses its parent as its mirror. This is a boundary condition.)

Every state change to a server is mirrored: A server’s task state is updated if

and only if its sibling’s task states are identically updated. When the task state

update transaction fails:

• The server (or server proxy) that detects the failure notifies the primary
root server (the secondary root, if the primary root is the failed server).

• Each proxy of the failed server, upon receiving RemoteExceptions, con-
tacts a randomly selected member of the mirror group of the failed server.

• The root directs the most recently added leaf server to migrate (with its
associated Producers) to the failed server’s position in the network. Its

former and new mirror groups are updated to reflect this change.

Automatically reconfiguring the network after a server failure requires O(B)

time, where B is the maximum degree of any server, and which is O(1) in

the size of the network. When a server joins a network, it becomes the new

17

Figure 4: A sibling-connected fat tree.

18

rightmost leaf in the network. Insertion thus requires O(B) time, independent

of the network size.

This design scales in the sense that each server is connected to bounded

number of servers, independent of the total number of servers: Port consumption

is bounded. The diameter of the network of n servers (the maximum distance

between any task and any producer) is O(log n). Most importantly, the network

repairs itself: the above properties hold after the failure of a server. Hence, the

network can recover from a sequence of such failures.

The consumer submits the “root” task of a computation to the primary root

task server. The computation begins when a producer associated with this task

server executes this root task, which undoubtedly spawns other tasks. Diffusion

then begins.

4.3 Code distribution via the ClassLoader

Omitted from the discussion thus far is our strategy for distributing code. If we

make no special provision, task class files are downloaded from the Consumer’s

codebase. This clearly is a bottleneck, given the degree of parallelism we seek

from CX. To scale, the code distribution scheme must have only a bounded

number of producers downloading code from any one location, independent of

the total number of producers. This implies that the number of download points

must increase linearly with the number of producers. There is a natural way to

provide for this: Each task server becomes a download location for task class

files. The CX class loader downloads task class files to the primary root task

server via the consumer’s class loader. From there the classes are loaded down

through the task server tree. Each producer loads the class files from its task

server. This scheme achieves our primary objective: code distribution scales to

an arbitrarily large number of producers without a bottleneck emerging.

5 Preliminary experiments

All experiments were run on our Departmental Linux cluster. Each machine

has 2 Intel EtherExpress Pro 100 Mb/s Ethernet cards, and is running Red Hat

19

Linux 6.0 and JDK 1.2.2 RC3. These machines are all connected to a 100 port

Lucent P550 Cajun Gigabit Switch.

Let us first define the sequence of Fibonacci numbers [26] as:

F (0) = 1;

F (1) = 1;

F (n) = F (n− 1) + F (n− 2), n > 1.

We tested a CX TaskServer cluster on a doubly recursive computation of

the nth Fibonacci number, F (n), augmented with a synthetic workload. Nei-

ther the value of F (n) is of interest here nor is the algorithm used efficient, since

there is a formula for F (n) that can be computed in O(1) time, given the RAM

computational model. Rather, this computation is of interest precisely because

it is computationally simple, yet requires a lot of synchronization: By contribut-

ing essentially no computational complexity of its own, it clearly discloses CX

system overhead associated with task synchronization.

Indeed, we augment this trivial computation with a parameterized synthetic

workload. Using the parameter, we vary the computational load in order to

establish the multiprocessor speedup efficiency as a function of the size of the

computational load.

Let N(n) denote the number of tasks spawned by computing F (n). Clearly,

N(n) = N(n− 1) +N(n− 2) + 2,

with initial conditions N(0) = N(1) = 1. By inspecting the dags associated with

the doubly recursive Fibonacci computation, we see that N(n) = 3F (n) − 2.
Thus,

N(n) = 3

1√
5

(

1 +
√
5

2

)n+1

−
(

1−
√
5

2

)n+1

− 2.

This is the total number of tasks for computing F (n) recursively. The critical

path length for F (n) is 2n− 1.
TSEQ denotes the time for to compute F (n) with a doubly recursive se-

quential Java program. T1 denotes the time to compute F (n) with a doubly

20

recursive Java program for CX that has exactly one producer: each recursive

method invocation translates into two sub-task plus a composition task to sum

their results . Table 1 presents a table of times for workload, TSEQ, T1, and

their ratio, which is referred to as the efficiency of the CX application. The

times given suggest the intuitive conclusion: As the workload increases, the effi-

ciency of CX increases. The efficiencies given represent “best” case, since both

the producer and its task server were running on the same machine.

TP denotes the time for the computation using P Producers. T∞ denotes

the time to complete the computation’s critical path of tasks. Thus, as has been

reported in the Cilk project:

TP ≥ max{T∞, T1/P}

To ensure that TP is dominated by the total work and not the critical path, we

thus must have T1/P > T∞:

P <

3

(

1√
5

(

1+
√

5

2

)n+1

−
(

1−
√

5

2

)n+1
)

− 2

2n− 1 .

For P = 60, this inequality holds for n ≥ 14. Our experiments compute F (n),

for n = [13, 18]. For larger values of n, the total workload would more clearly

dominate the time to complete F (n)’s critical path.

Traditionally, speedup is measured on a dedicated multiprocessor, where all

processors are homogeneous in hardware and software configuration. Thus,

speedup is well defined as T1/Tp, where T1 is the time a program takes on one

processor and Tp is the time the same program takes on p processors. The

fraction of speedup obtained is the ratio of ideal parallel time over the actual

parallel time:
T1/p

Tp

We now generalize this formula to a vector p = [p1 p2 · · · pd]
T of d different

processor types, where there are p1 processors of type 1, p2 processors of type

2, etc. The basic idea is simply that work = work rate× time. Let:

• w denote the amount of work

• ri denote the work rate for 1 processor of type i

21

• T i
p(w) denote the time for p processors of type i to complete work w.

. Clearly,

ri = w/T i
1.

Ideally, work rates are additive: The work rate for p1 machines of type 1 plus

p2 machines of type 2 plus ... plus pd machines of type d is just pT r, where

r = [r1 r2 · · · rd]
T . Let τp(w) denote the ideal parallel time to complete work

w with a vector p = [p1 p2 · · · pd]
T of processors. We have

τp(w) =
w

pT r
=

(

p1

T 1
1 (w)

+
p2

T 2
1 (w)

+ · · ·+ pd

T d
1 (w)

)−1

.

When there is only 1 processor type, the formula above for using p of them

reduces to the familiar T1/p. Let Tp(w) denote the actual time to complete

work w with a vector p of processors. The general formula for the fraction of

speedup obtained thus is

τp/Tp(w).

While this definition does not incorporate machine and network load factors, it

does reflect the heterogeneous nature of the set of machines.

The virtue of having a formula for N(n), the number of tasks to compute

F (n), now comes into play. Clearly, the experiments that take the longest are

those that involve only 1 processor: computing T i
1 for various machines types,

i. Let W (n) denote the computational work associated with computing F (n)

(with an augmented work load). Let T i
1(W (n)) denote the time to complete

W (n) on 1 processor of type i. We model the computation time of W (n) on 1

machine of type i as the sum of:

• a portion of time that is independent of n to start and stop the program,
denoted αi

• an amount of time that depends on n: βiN(n).

That is,

T i
1(W (n)) = αi + βiN(n).

We take actual measurements of T i
1(W (n)), for 2 values of n chosen such that

they result in a system of two independent linear equations. We then solve for

22

α and β. For example, say T i
1(W (5)) = 27 seconds and T i

1(W (7)) = 66 seconds.

Then,

27 = αi + 22βi (1)

66 = αi + 61βi. (2)

Solving, we obtain that αi = 5 seconds and βi = 1 second on machine type

i. We now estimate T i
1(W (n)) = 5 + 1N(n), for any natural number n. Thus,

2 small experiments suffice for producing a good estimate of a very large se-

quential execution time. We used this technique to compute the base cases

used in the following speedup calculations. This technique obviates the need

for extremely large sequential executions that otherwise would be needed to

calculate speedups. Large multiprocessor runs require large problem instances.

Computing times for the base cases for such runs (e.g., 1000 processor experi-

ments) can, in principle, require many days of processor time. Thus, using this

technique, we avoid the most computationally extended experiments, which are

consequently quite precarious (e.g., a momentary power loss requires restarting

from the beginning).

Table 2 presents the number of processors of each type that were used in our

experiments. Table 3 gives the actual times for 2 synthetic workloads on the

processor types used in the experiments. We have 3 task types: Decomposition

(D), boundary (B), and composition (C).

The ratio of ideal speedup over actual speedup is less than or equal to 1.

Figure 5 shows the ratio of ideal speedup over actual speedup. The figure shows

execution times for Fibonacci computations varying from F(13) to F(18). For

F(14), the ratio of ideal speedup over actual speedup is 0.87. For F(18), the

ratio of ideal speedup over actual speedup is 0.99. CX achieves essentially 0.99

of ideal speedup using 60 processors on a complex dag-structured computation

with small tasks (average task time is 1.8 seconds for Workload 1 and 3.7 seconds

for Workload 2). This is encouraging: The tasks do not need to be too coarse

for respectable speedups. For these preliminary performance experiments, the

task servers did not mirror their state changes.

Figure 6 shows what percentage of idle time was spent during the transient

parts of the computation: The initial transient is when the computation begins,

23

Workload TSEQ T1 Efficiency

4522 497.420 518.816 0.96

3740 415.140 436.897 0.95

2504 280.448 297.474 0.94

1576 179.664 199.423 0.90

914 106.024 120.807 0.88

468 56.160 65.767 0.85

198 24.750 29.553 0.84

58 8.120 11.386 0.71

Table 1: A table of efficiency (TSEQ/T1) as a function of the workload for

computing F (8). Times are given in seconds.

Producers Dual 512 34

Dual 1024 22

Quad 4

TaskServers Quad 2

Table 2: The number and processors types for Producers and TaskServers.

Dual 512 D B C

Workload 1 41 1720 41

Workload 2 41 3650 41

Quad D B C

Workload 1 32 1377 32

Workload 2 32 2925 32

Table 3: Task times, for the 2 processor types. Each had 2 workloads. The 3

task types are decomposition (D), boundary (B), and composition (C). Times

are in milliseconds.

24

&"')(*(*+-,)'/.102(�3"4*576-.)+-(*8

0

0.2

0.4

0.6

0.8

1

1.2

F(13) Fib(14) Fib(15) Fib(16) Fib(17) Fib(18)

S
p

ee
d

u
p 9;:�<>=@? :BADC�E

9;:�<>=@? :BADCGF

Figure 5: Fraction of ideal speedup for computing F (n), n = 13, 14, 15, 16, 17, 18

under 2 workloads, using 60 processors.

25

and most processors are starving for tasks; the termination transient is when

the computation is winding down, and most processors again are starving for

tasks. These inevitable transients account for 25% of idle cycles, when the

system is achieving 0.99 of optimal speedup. In particular, the idleness due to

the initial transient in that case is 0.1% of idle cycles. This suggests that tasks

are distributed to the 60 processors rapidly.

We also performed experiments (on 16 processors) to measure the effect of

pre-fetching. For small computations (few tasks and/or short tasks) and fast

communication, performance gain via pre-fetching is minimal. As the number of

tasks increase and/or the task time increases and/or the communication times

increase, pre-fetching helps more and more. Since our cluster has fast commu-

nication, we did not obtain data for the case of communications with relatively

long latencies. Specifically, for F (11), speedup with pre-fetching was 0.51 of

optimal; whereas without pre-fetching, speedup was 0.54. However, for F (15),

speedup with pre-fetching was 0.93 of optimal; whereas without pre-fetching,

speedup was 0.80. We believe that as the number of tasks increases and/or

the task sizes increase and/or communication latencies increase, the benefits of

pre-fetching increase commensurately.

6 Conclusion

CX is a network-based computational exchange. It can be used in a variety

of environments, from a small laboratory within a single department of a uni-

versity, to a corporate producer network, to millions of independent producers

spontaneously organized into a giant producer network.

We have chosen Java for CX because Java increases application programmer

productivity (e.g., is object-oriented, yet serializes objects for communication),

reduces application portability and interoperability problems, enables mobile

code, will support a high level security API (RMI), and does all this with an

acceptable and decreasing penalty vis a vis native machine execution.

We believe that our contributions to networked-based, object-oriented par-

allel computing include:

26

HI.-J>+K8�LNM*3OL"PQLNM*R>J*S�.-TU'-,VLNM�LNR>.)6-8

0

10

20

30

40

50

60

70

F(13) Fib(14) Fib(15) Fib(16) Fib(17) Fib(18)

W XY Z
XZ [
\^][
_Z `

a :b? Cdc�efAb<ge�h-ADc�eji
k A�l ?mh)ABc�efi

Figure 6: Percentage of idle cycles that are due to start and stop transients, for

F (n), n = 13, 14, 15, 16, 17, 18 under 2 workloads.

27

• The novel combination of variations on ideas by other researchers, in-
cluding work stealing of non-blocking tasks, eager task scheduling, and

space-based coordination.

• A simple, compact API that enables the expression of object-oriented,
task-level parallelism. It cleanly separates application logic from the logic

that supports interprocess communication and fault tolerance.

• The sibling-connected, fat tree of servers, a recursive, short-diameter, scal-
able network of task servers that self-repairs in the face of a sequence of

faults: The network gracefully degrades from n servers to one server, pro-

vided that the failures occur sequentially.

• A simple diffusion process for distributing tasks among the network of task
servers. Since the diameter of the network is O(log n), the number of edges

between any task and any producer is no more than 2 log n: Using only

local information, task “concentrations” rapidly diffuse into the network.

• The use of task caching/replication and two levels of pre-fetching (includ-
ing inter-server task diffusion) to hide the large communication latency

that is intrinsic to networks.

• A simple, general expression for ideal speedup, τp(w), when performing
work w on a vector p = [p1 p2 · · · pd]

T of processors:

τp(w) =
w

pT r
=

(

p1

T 1
1 (w)

+
p2

T 2
1 (w)

+ · · ·+ pd

T d
1 (w)

)−1

.

• A load generator, using the F (n) computation, that strenuously exercises

the dag model of computation: It spawns many tasks that require syn-

chronization of predecessor tasks. This load generator is versatile because

it augments the F (n) computation with a parameterized synthetic load.

• A technique for accurately estimating long sequential execution times,
based on 2 short executions, that obviates the need for the most time-

consuming experiments, potentially saving days of experimental work.

28

• A test bed for a variety of research topics, such as automated trading,
reputation services, authentication services, and bonding services. CX

also provides a test bed for algorithm research into network-based parallel

computation.

The API can serve as a target for a higher level notation for the object-

oriented expression of parallel algorithms. As future work, we may work on

an extension to Java, an object-oriented analog to Cilk’s extensions to C. The

extensions (which, when elided, leave a valid Java program) could be prepro-

cessed into another Java program—one that exploits the algorithm’s task-level

parallelism when run on CX’s network computing system. We would like to

more deeply analyze and experiment with diffusion, modelling task servers and

producers as adaptive controllers.

We also would like to experiment with various trading strategies, and pro-

gram applications for CX that have value to the scientific community.

References

[1] S. Adabala, N. H. Kapadia, and J. A. B. Fortes. Performance and Inter-

operability Issues in Incorporating Cluster Management Systems within a

Wide-Area Network Computing Environment. In Supercomputing : High

Performance Networking and Computing, November 2000. Dallas, TX.

[2] E. Adar and B. A. Huberman. Free Riding on Gnutella. First Monday,

5(10), Oct. 2000. http://www.firstmonday.dk/issues/issue5 10/adar.

[3] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik, I. van der Wijk,

M. van Steen, and A. Tanenbaum. The Globe Distribution Network. In

Proc. 2000 USENIX Annual Conf. (FREENIX Track), pages 141–152, San

Diego, June 2000.

[4] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer. ATLAS: An In-

frastructure for Global Computing. In Proceedings of the Seventh ACM

SIGOPS European Workshop on System Support for Worldwide Applica-

tions, 1996.

29

[5] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacom-

puting on the Web. In Proceedings of the 9th Conference on Parallel and

Distributed Computing Systems, 1996.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Ran-

dall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime System.

In 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP ’95), pages 207–216, Santa Barbara, CA, July 1995.

[7] R. D. Blumofe and P. A. Lisiecki. Adaptive and Reliable Parallel Com-

puting on Networks of Workstations. In Proc. USENIX Ann. Technical

Symposium, Jan. 1997. Anaheim.

[8] R. Buyya, D. Abramson, and J. Giddy. An Economy Driven Resource

Management Architecture for Global Computational Power Grids. In Int.

Conf. on Parallel and Distributed Processing Techniques and Applications

(PDPTA 2000), pages 26–29, June 2000. Las Vegas, USA.

[9] P. Cappello, B. Christiansen, M. O. Neary, and K. E. Schauser. Market-

Based Massively Parallel Internet Computing. In Third Working Conf. on

Massively Parallel Programming Models, pages 118–129, Nov. 1997. Lon-

don.

[10] N. Carriero, D. Gelernter, D. Kaminsky, and J. Westbrook. Adaptive Paral-

lelism with Piranha. Technical Report YALEU/DCS/TR-954, Department

of Computer Science, Yale University, New Haven, Connecticut, 1993.

[11] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E.

Schauser, and D. Wu. Javelin: Internet-Based Parallel Computing Us-

ing Java. Concurrency: Practice and Experience, 9(11):1139–1160, Nov.

1997.

[12] E. Drexler and M. Miller. Incentive Engineering for Computational Re-

source Management. In B. Huberman, editor, The Ecology of Computation.

Elsevier Science Publishers B. V., North-Holland, 1988.

30

[13] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A

Worldwide Flock of Condors: Load Sharing among Workstation Clusters.

Future Generation Computer Systems, 12:53–65, 1996.

[14] T. Fink and S. Kindermann. First Steps in Metacomputing with Amica.

In Proceedings of the 8th Euromicro Workshop on Parallel and Distributed

Processing, 1998.

[15] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure

Toolkit. International Journal of Supercomputer Applications, 1997.

[16] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns,

and Practice. Addision-Wesley, 1999.

[17] L. Gong. Inside Java 2 Platform Security. Addison-Wesley, 1999.

[18] A. S. Grimshaw, W. A. Wulf, and the Legion team. The Legion Vision of a

Worldwide Virtual Computer. Communications of the ACM, 40(1):39–45,

Jan. 1997.

[19] K. A. Hawick, H. A. James, A. J. Silis, D. A. Grove, K. E. Kerry, J. A.

Mathew, P. D. Coddington, C. J. Patten, J. F. Hercus, and F. A. Vaughan.

DISCWorld: An Environment for Service-Based Metacomputing. Technical

Report DHPC-042, 1998.

[20] A. Keller and A. Krawinkel. Lessons Learned While Operating Two Large

SCI Clusters. In Proceedings of the First IEEE/ACM International Sym-

posium on Cluster Computing and the Grid (CC-GRID), pages 303 – 310,

2001. Brisbane, Australia.

[21] T. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard. Enterprise Com-

putation. In B. Huberman, editor, The Ecology of Computation. Elsevier

Science Publishers B. V., North-Holland, 1988.

[22] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Cappello.

Javelin++: Scalability Issues in Global Computing. Concurrency: Practice

and Experience, to appear, 12:727–753, 2001.

31

[23] M. O. Neary, B. O. Christiansen, P. Cappello, and K. E. Schauser. Javelin:

Parallel Computing on the Internet. Future Generation Computer Systems,

15(5-6):659–674, Oct. 1999.

[24] M. Nibhanupudi and B. Szymanski. Runtime Support for Virtual BSP

Computer. In Parallel and Distributed Computing, Workshop on Runtime

Systems for Parallel Programming (RTSPP’98), 12th Int. Parallel Process-

ing Symp. (IPPS/SPDP), Mar. 1998.

[25] M. Nibhanupudi and B. Szymanski. BSP-based Adaptive Parallel Pro-

cessing. In R. Buyya, editor, High Performance Cluster Computing, pages

702–721. Prentice-Hall, 1999.

[26] F. S. Roberts. Applied Combinatorics. Prentice-Hall, 1984.

[27] R. Scheifler. RMI Security. http://java.sun.com/aboutJava/communityprocess/

jsr/jsr 076 rmisecurity.html, August 2000.

[28] N. Spring and R. Wolski. Application Level Scheduling of Gene Sequence

Comparison on Metacomputers. In Proceedings of the 12th ACM Interna-

tional Conference on Supercomputing, July 1998. Melbourne, Australia.

[29] R. van Nieupoort, J. Maassen, H. E. Bal, T. Kielmann, and R. Veldema.

Wide-Area Parallel Computing in Java. In ACM 1999 Java Grande Con-

ference, pages 8–14, San Francisco, June 1999.

[30] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke. CoG

Kits: A Bridge between Commodity Distributed Computing and High-

Performance Grids. In ACM Java Grande Conference, June 2000.

[31] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S.

Stornetta. Spawn: A Distributed Computational Economy. IEEE Trans-

actions on Software Engineering, 18(2), Feb. 1992.

[32] A. Wendelborn and D. Webb. Distributed pro-

cess networks project: Progress and directions. cite-

seer.nj.nec.com/wendelborn99distributed.html.

32

