
LogP: Towards a Realistic Model of Parallel Computation
�

David Culler, Richard Karp
�

, David Patterson,
Abhijit Sahay, Klaus Erik Schauser, Eunice Santos,
Ramesh Subramonian, and Thorsten von Eicken

Computer Science Division,
University of California, Berkeley

Abstract

A vast body of theoretical research has focused either on overly simplistic models of parallel
computation, notably the PRAM, or overly specific models that have few representatives in
the real world. Both kinds of models encourage exploitation of formal loopholes, rather than
rewarding development of techniques that yield performance across a range of current and
future parallel machines. This paper offers a new parallel machine model, called LogP, that
reflects the critical technology trends underlying parallel computers. It is intended to serve
as a basis for developing fast, portable parallel algorithms and to offer guidelines to machine
designers. Such a model must strike a balance between detail and simplicity in order to reveal
important bottlenecks without making analysis of interesting problems intractable. The model
is based on four parameters that specify abstractly the computing bandwidth, the communi-
cation bandwidth, the communication delay, and the efficiency of coupling communication
and computation. Portable parallel algorithms typically adapt to the machine configuration, in
terms of these parameters. The utility of the model is demonstrated through examples that are
implemented on the CM-5.

Keywords: massively parallel processors, parallel models, complexity analysis, parallel algo-
rithms, PRAM

1 Introduction

Our goal is to develop a model of parallel computation that will serve as a basis for the design and analysis
of fast, portable parallel algorithms, i.e., algorithms that can be implemented effectively on a wide variety of
current and future parallel machines. If we look at the body of parallel algorithms developed under current
parallel models, many can be classified as impractical in that they exploit artificial factors not present in any
reasonable machine, such as zero communication delay or infinite bandwidth. Others can be classified as
overly specialized, in that they are tailored to the idiosyncrasies of a single machine, such as a particular
interconnect topology. The most widely used parallel model, the PRAM[13], is unrealistic because it
assumes that all processors work synchronously and that interprocessor communication is free. Surprisingly
fast algorithms can be developed by exploiting these loopholes, but in many cases the algorithms perform
poorly under more realistic assumptions[30]. Several variations on the PRAM have attempted to identify
restrictions that would make it more practical while preserving much of its simplicity [1, 2, 14, 19, 24, 25].
The bulk-synchronous parallel model (BSP) developed by Valiant[32] attempts to bridge theory and practice

�
A version of this report appears in the Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, May 1993, San Diego, CA.�
Also affiliated with International Computer Science Institute, Berkeley.

with a more radical departure from the PRAM. It allows processors to work asynchronously and models
latency and limited bandwidth, yet requires few machine parameters as long as a certain programming
methodology is followed. We used the BSP as a starting point in our search for a parallel model that would
be realistic, yet simple enough to be used to design algorithms that work predictably well over a wide range
of machines. The model should allow the algorithm designer to address key performance issues without
specifying unnecessary detail. It should allow machine designers to give a concise performance summary
of their machine against which algorithms can be evaluated.

Historically, it has been difficult to develop a reasonable abstraction of parallel machines because the ma-
chines exhibited such a diversity of structure. However, technological factors are now forcing a convergence
towards systems formed by a collection of essentially complete computers connected by a communication
network (Figure 1). This convergence is reflected in our LogP model which addresses significant common
issues while suppressing machine specific ones such as network topology and routing algorithm. The LogP
model characterizes a parallel machine by the number of processors(

�
), the communication bandwidth(�),

the communication delay(�), and the communication overhead(�). In our approach, a good algorithm
embodies a strategy for adapting to different machines, in terms of these parameters.

MicroProcessor

Cache Memory

Network Interface
DRAM Memory

MicroProcessor

Cache Memory

erface

ory Inter-
 connection

Network

Figure 1: This organization characterizes most massively parallel processors (MPPs). Current commercial
examples include the Intel iPSC, Delta and Paragon, Thinking Machines CM-5, Ncube, Cray T3D, and
Transputer-based MPPs such as the Meiko Computing Surface or the Parsytec GC. This structure describes
essentially all of the current “research machines” as well.

We believe that the common hardware organization described in Figure 1 will dominate commercial
MPPs at least for the rest of this decade, for reasons discussed in Section 2 of this paper. In Section 3
we develop the LogP model, which captures the important characteristics of this organization. Section 4
puts the model to work, discussing the process of algorithm design in the context of the model and
presenting examples that show the importance of the various communication aspects. Implementation
of these algorithms on the CM-5 provides preliminary data towards validating the model. Section 5
presents communication networks in more detail and examines how closely our model corresponds to
reality on current machines. Finally, Section 6 compares our model to various existing parallel models, and
summarizes why the parameters making up our model are necessary. It also addresses several concerns that
might arise regarding the utility of this model as a basis for further study.

2 Technological Motivations

The possibility of achieving revolutionary levels of performance has led parallel machine designers to
explore a variety of exotic machine structures and implementation technologies over the past thirty years.
Generally, these machines have performed certain operations very well and others very poorly, frustrating
attempts to formulate a simple abstract model of their performance characteristics. However, technological

2

0

20

40

60

80

100

120

140

160

180

1987 1988 1989 1990 1991 1992

Integer FP

Sun 4
260

MIPS
M/120

IBM
RS6000

540
MIPS

M2000

HP 9000
750

DEC
alpha

Figure 2: Performance of state-of-the-art microprocessors over time. Performance is approximately number
of times faster than the VAX-11/780. The floating point SPEC benchmarks improved at about 97% per year
since 1987, and integer SPEC benchmarks improved at about 54% per year.

factors are forcing a convergence towards systems with a familiar appearance; a collection of essentially
complete computers, each consisting of a microprocessor, cache memory, and sizable DRAM memory,
connected by a robust communication network. This convergence is likely to accelerate in the future as
physically small computers dominate more of the computing market. Variations on this structure will involve
clustering of localized collections of processors and the details of the interface between the processor and
the communication network. The key technological justifications for this outlook are discussed below.

Microprocessor performance is advancing at a rate of 50 to 100% per year[17], as indicated by Figure 2.
This tremendous evolution comes at an equally astounding cost: estimates of the cost of developing the
recent MIPS R4000 are 30 engineers for three years, requiring about $30 million to develop the chip, another
$10 million to fabricate it, and one million hours of computer time for simulations[15]. This cost is borne
by the extremely large market for commodity uniprocessors. To remain viable, parallel machines must be
on the same technology growth curve, with the added degree of freedom being the number of processors
in the system. The effort needed to reach such high levels of performance combined with the relatively
low cost of purchasing such microprocessors led Intel, Thinking Machines, Meiko, Convex, IBM and even
Cray Research to use off-the-shelf microprocessors in their new parallel machines[5]. The technological
opportunities suggest that parallel machines in the 1990s and beyond are much more likely to aim at
thousands of 64-bit, off-the-shelf processors than at a million custom 1-bit processors.

Memory capacity is increasing at a rate comparable to the increase in capacity of DRAM chips:
quadrupling in size every three years[16]. Today’s personal computers typically use 8 MB of memory and
workstations use about 32 MB. By the turn of the century the same number of DRAM chips will offer 64
times the capacity of current machines. The access time falls very slowly with each generation of DRAMs, so
sophisticated cache structures will be required in commodity uniprocessors to bridge the difference between
processor cycle times and memory access times. Cache-like structures may be incorporated into the memory
chips themselves, as in emerging RAM-bus and synchronous DRAM technology[17]. Multiprocessors will
need to incorporate state-of-the-art memory systems to remain competitive.

Since the parallel machine nodes are very similar to the core of a workstation, the cost of a node is

3

comparable to the cost of a workstation. As the most expensive supercomputer costs less than 25 M$ for
the processors and memory, and since the price of workstations have remained at about 5-10 K$, the largest
parallel machines will have a few thousand nodes. This economic observation is valid today, with no vendor
producing a system with more than two thousand nodes.1

Summarizing, we can expect that the nodes of parallel machines of the 1990s will be capable of
computing hundreds of Mflops and capable of storing hundreds of megabytes. The number of such nodes
will not scale into the millions, so parallel algorithms will need to be developed under the assumption of a
large number of data elements per processor. This has significant impact on the kinds of algorithms that
are effective in practice.

Network technology is advancing as well, but it is not driven by the same volume market forces as
microprocessors and memory. While new media offer much higher network bandwidth, their realizable
performance is limited by the interface between the network and the node. Currently, communication
bandwidth through that interface lags far behind internal processor memory bandwidth. The lack of
attention paid to the network interface in current microprocessors also means that substantial time is lost
on each communication operation, regardless of programming style. Although the interface is improving,
processors are improving in performance even faster, so we must assume that high latency and overhead of
communication, as well as limited bandwidth will continue to be problems.

There appears to be no consensus emerging on interconnection topology: the networks of new com-
mercial machines are typically different from their predecessors and different from each other. Operating
in the presence of network faults is becoming extremely important as parallel machines go into production
use, which suggests that the physical interconnect on a single system will vary over time to avoid broken
components. Finally, adaptive routing techniques are becoming increasingly practical. Thus, attempting
to exploit a specific network topology is likely to yield algorithms that are not very robust in practice. An
abstract view of the latency and bandwidth properties of the network provides a framework for adapting
algorithms to the target machine configuration.

No single programming methodology is becoming clearly dominant: shared-memory, message-passing,
and data parallel styles all have significant popularity. Thus, the computational model should apply regardless
of programming style. The technological factors discussed above make this goal tractable as most recent
parallel machines support a range of programming styles using roughly similar hardware mechanisms[33].

The essential message is clear: technological forces are leading to massively parallel machines con-
structed from at most a few thousand nodes, each containing a powerful processor and substantial memory,
interconnected by networks with limited bandwidth and significant latency. This renders both PRAM and
network models inappropriate as a foundation for algorithm development since they do not accurately pre-
dict performance of programs on real computers. Our conclusion is that a new model which captures the
technological reality more faithfully is needed.

3 LogP Model

Starting from the technological motivations discussed in the previous section, programming experience,
and examination of popular theoretical models, we have developed a model of a distributed-memory
multiprocessor in which processors communicate by point-to-point messages. The model specifies the
performance characteristics of the interconnection network, but does not describe the structure of the
network.

The main parameters of the model are:

1Mainstream workstations may contain multiple processors in the future, perhaps on a single chip. Current trends would indicate
that large parallel machines would comprise a few thousand of these multiprocessor nodes.

4

� : an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module.

� : the overhead, defined as the length of time that a processor is engaged in the transmission or reception
of each message; during this time, the processor cannot perform other operations.

� : the gap, defined as the minimumtime interval between consecutive message transmissions or consecutive
message receptions at a processor. The reciprocal of � corresponds to the available per-processor
communication bandwidth.

�
: the number of processor/memory modules. We assume unit time for local operations and call it a cycle.

Furthermore, it is assumed that the network has a finite capacity, such that at most
�

��� ��� messages
can be in transit from any processor or to any processor at any time. If a processor attempts to transmit a
message that would exceed this limit, it stalls until the message can be sent without exceeding the capacity
limit.

The parameters � , � and � are measured as multiples of the processor cycle. The model is asynchronous,
i.e., processors work asynchronously and the latency experienced by any message is unpredictable, but is
bounded above by � in the absence of stalls. Because of variations in latency, the messages directed to a
given target module may not arrive in the same order as they are sent. The basic model assumes that all
messages are of a small size (a simple extension deals with longer messages).

In analyzing an algorithm, the key metrics are the maximum time and the maximum space used by any
processor. In order to be considered correct, an algorithm must produce correct results under all interleavings
of messages consistent with the upper bound of � on latency. However, in estimating the running time of
an algorithm, we assume that each message incurs a latency of � .2

3.1 Discussion of parameters

This particular choice of parameters represents a compromise between faithfully capturing the execution
characteristics of real machines and providing a reasonable framework for algorithm design and analysis.
No small set of parameters can describe all machines completely. On the other hand, analysis of interesting
algorithms is difficult with a large set of parameters. We believe that LogP represents “the knee of the curve”
in that additional detail would seek to capture phenomena of modest impact while dropping parameters would
encourage algorithmic techniques that are not well supported in practice.

We have resisted the temptation to provide a more detailed model of the individual processors, such
as cache size, and rely on the existing body of knowledge in implementing fast sequential algorithms on
modern uniprocessor systems to fill the gap. An implementation of a good parallel algorithm on a specific
machine will surely require a degree of tuning, but if the issues raised by the level of detail embodied in
LogP are not addressed, it would seem that the algorithm design is incomplete.

Fortunately, the parameters are not equally important in all situations; often it is possible to ignore one
or more parameters and work with a simpler model. For example, in algorithms that communicate data
infrequently, it is reasonable to ignore the bandwidth and capacity limits. In some algorithms messages
are sent in long streams which are pipelined through the network, so that message transmission time is
dominated by the inter-message gaps, and the latency may be disregarded. In some machines the overhead
dominates the gap, so � can be eliminated. One convenient approximation technique is to increase � to be
as large as � , so � can be ignored. This is conservative by at most a factor of two. We hope that parallel

2There are certain anomalous situations in which reducing the latency of certain messages actually increases the running time
of an algorithm. These arise primarily when the computational schedule is based on the order of message arrival, rather than the
information contained in the message.

5

architectures improve to a point where � can be eliminated, but today this seems premature. More specific
rationale for the particular parameters and their role is provided in the remainder of the paper.

3.2 Discouraged loopholes and rewarded techniques

The LogP model eliminates a variety of loopholes that other models permit. For example, many PRAM
algorithms are excessively fine-grained, since there is no penalty for interprocessor communication. Al-
though the EREW PRAM penalizes data access contention at the word level, it does not penalize contention
at the module level.

The technique of multithreading is often suggested as a way of masking latency. This technique assigns
to each physical processor the task of simulating several virtual processors; thus, computation does not have
to be suspended during the processing of a remote request by one of the virtual processors. In practice, this
technique is limited by the available communication bandwidth and by the overhead involved in context
switching. We do not model context switching overhead, but capture the other constraints realistically
through the parameters � and � . Moreover the capacity constraint allows multithreading to be employed
only up to a limit of ��� � virtual processors. Under LogP, multithreading represents a convenient technique
which simplifies analysis, as long as these constraints are met, rather than a fundamental requirement[27, 32].

On the other hand, LogP encourages techniques that work well in practice, such as coordinating the
assignment of work with data placement, so as to reduce the communication bandwidth requirement and
the frequency of remote references. The model also encourages the careful scheduling of computation
and overlapping of computation with communication, within the limits imposed by network capacity. The
limitation on network capacity also encourages balanced communication patterns in which no processor is
flooded with incoming messages.

Although the model is stated in terms of primitive message events, we do not assume that algorithms
must be described in terms of explicit message passing operations, such as send and receive. Shared memory
models are implemented on distributed memory machines through an implicit exchange of messages[22].
Under LogP, reading a remote location requires time 2 � �

4 � . Prefetch operations, which initiate a read
and continue, can be issued every � cycles and cost 2 � units of processing time. Some recent machines
migrate locations to local caches when they are referenced; this would be addressed in algorithm analysis
by adjusting which references are remote.

3.3 Broadcast and Summation

As a concrete illustration of the role of various parameters of the model, we sketch optimal algorithms for
two simple problems: broadcast and summation. The solutions are quite different from those on the PRAM.

First, we consider the problem of broadcasting a single datum from one processor to
���

1 others. The
main idea is simple: all processors that have received the datum transmit it as quickly as possible, while
ensuring that no processor receives more than one message. The source of the broadcast begins transmitting
the datum at time 0. The first datum enters the network at time � , takes � cycles to arrive at the destination,
and is received by the node at time � �

2 � . Meanwhile, the source will have initiated transmission to other
processors at time ��� 2 ��������� , assuming �
	 � , each of which acts as the root of a smaller broadcast tree. As
indicated in Figure 3, the optimal broadcast tree for � processors is unbalanced3 with the fan-out at each
node determined by the relative values of � , � , and � . Observe that the processor overhead of successive
transmissions overlaps the delivery of previous messages. Nodes may experience idle cycles at the end of
the algorithm while the last few messages are in transit.

To obtain an optimal algorithm for the summation of � input values we first consider how to sum as many
values as possible within a fixed amount of time
 . This produces the communication and computation

3A special case of this algorithm with ��� 0 and ��� 1 appears in [4].

6

0

22181410

2420

P0

P5 P3 P2 P1

P7 P6

P0

P1

P2

P3

P5

P6
P7

Time0 5 10 15 20

g g g

g

L

L
L

L

L

L

P4
L

o o o o
o

o

o

o
o o

o

o

o
o

24

P4

Figure 3: Optimal broadcast tree for
� � 8 � � � 6 � � � 4 � � � 2 (left) and the activity of each processor

over time (right). The number shown for each node is the time at which it has received the datum and can
begin sending it on. The last value is received at time 24.

schedule for the summation problem. The pattern of communication among the processors again forms a
tree; in fact, the tree has the same shape as an optimal broadcast tree[20]. Each processor has the task of
summing a set of the elements and then (except for the root processor) transmitting the result to its parent.
The elements to be summed by a processor consist of original inputs stored in its memory, together with
partial results received from its children in the communication tree. To specify the algorithm, we first
determine the optimal schedule of communication events and then determine the distribution of the initial
inputs.

If
 � � � 2 � , the optimal solution is to sum
 � 1 values on a single processor, since there is not sufficient
time to receive data from another processor. Otherwise, the last step performed by the root processor (at time

 � 1) is to add a value it has computed locally to a value it just received from another processor. The remote
processor must have sent the value at time
 � 1

� � �
2 � , and we assume recursively that it forms the root of

an optimal summation tree with this time bound. The local value must have been produced at time
 � 1
� � .

Since the root can receive a message every � cycles, its children in the communication tree should complete
their summations at times
 ��� 2 � � � �

1 � �
 ��� 2 � � � �
1
� ��� �
 ��� 2 � � � �

1
�

2 ��� � � ��� . The root
performs � � � � 1 additions of local input values between messages, as well as the local additions before it
receives its first message. This communication schedule must be modified by the following consideration:
since a processor invests � cycles in receiving a partial sum from a child, all transmitted partial sums must
represent at least � additions. Based on this schedule, it is straight-forward to determine the set of input
values initially assigned to each processor and the computation schedule. Notice that the inputs are not
equally distributed over processors. (The algorithm is easily extended to handle the limitationof � processors
by pruning the communication tree.)

The computation schedule for our summation algorithm can also be represented as a tree with a
node for each computation step. Figure 4 shows the communication schedule for the processors and the
computational schedule for a processor and two of its children. Each node is labeled with the time at which
the step completes, the wavy edges represent partial results transmitted between processors, and the square
boxes represent original inputs. The initial work for each processor is represented by a linear chain of
input-summing nodes. Unless the processor is a leaf of the communication tree, it then repeatedly receives
a value, adds it to its partial sum and performs a chain of � � � � 1 input-summing nodes. Observe that
local computations overlap the delivery of incoming messages and the processor reception overhead begins
as soon as the message arrives.

7

P0

. . .

1
2

10
11

14
15

18

2
3

4

o+1

g

L+2o+1
8

1

. . .

P5

P5

P7

28

1814106

84

P1 P2 P3 P5

P6 P7

4

P4

Figure 4: Communication tree for optimal summing (left) and computation schedule for a subset of
processors (right) for
 � 28 � � � 8 � � � 5 � � � 4 � � � 2.

4 Algorithm Design

In the previous section, we stepped through the design of optimal algorithms for extremely simple problems
and explained the parameters of our model. We now consider more typical parallel processing applications
and show how the use of the LogP model leads to efficient parallel algorithms in practice. In particular,
we observe that efficient parallel algorithms must pay attention to both computational aspects (such as the
total amount of work done and load balance across processors) and communication aspects (such as remote
reference frequency and the communication schedule). Thus, a good algorithm should co-ordinate work
assignment with data placement, provide a balanced communication schedule, and overlap communication
with processing.

4.1 Fast Fourier Transform

Our first example, the fast Fourier transform, illustrates these ideas in a concrete setting. We discuss
the key aspects of the algorithm and then an implementation that achieves near peak performance on the
Thinking Machines CM-5. We focus on the “butterfly” algorithm [9] for the discrete FFT problem, most
easily described in terms of its computation graph. The � -input (� a power of 2) butterfly is a directed
acyclic graph with � � log � � 1 � nodes viewed as � rows of

�
log � � 1 � columns each. For 0

� ��� � and
0
��� � log � , the node

� � � � � has directed edges to nodes
� � � � � 1 � and

�
¯��� � � � 1 � where ¯��� is obtained

by complementing the
� � �

1 � -th most significant bit in the binary representation of � . Figure 5 shows an
8-input butterfly.

The nodes in column 0 are the problem inputs and those in column log � represent the outputs of the
computation. (The outputs are in bit-reverse order, so for some applications an additional rearrangement

8

Columns

0 1 2 3
0
1
2
3
4
5
6
7

R
ow

s

remap

Figure 5: An 8-input butterfly with
� � 2. Nodes assigned to processor 0 under the hybrid layout are

circled.

step is required.) Each non-input node represents a complex operation, which we assume takes one unit of
time. Implementing the algorithm on a parallel computer corresponds to laying out the nodes of the butterfly
on its processors; the layout determines the computational and communication schedules, much as in the
simple examples above.

4.1.1 Data placement and work assignment

There is a vast body of work on this structure as an interconnection topology, as well as on efficient
embeddings of the butterfly on hypercubes, shuffle-exchange networks, etc. This has led many researchers
to feel that algorithms must be designed to match the interconnection topology of the target machine. In
real machines, however, the � data inputs and the � log � computation nodes must be laid out across

�

processors and typically
� � � � . The nature of this layout, and the fact that each processor holds many

data elements has a profound effect on the communication structure, as shown below.
A natural layout is to assign the first row of the butterfly to the first processor, the second row to the

second processor and so on. We refer to this as the cyclic layout. Under this layout, the first log
�� columns

of computation require only local data, whereas the last log
�

columns require a remote reference for each
node. An alternative layout is to place the first

�� rows on the first processor, the next
�� rows on the second

processor, and so on. With this blocked layout, each of the nodes in the first log
�

columns requires a remote
datum for its computation, while the last log

�� columns require only local data. Under either layout, each
processor spends

�� log � time computing and
� �
�� � � � log

�
time communicating, assuming � 	 2 � .

Since the initial computation of the cyclic layout and the final computation of the blocked layout are
completely local, one is led to consider hybrid layouts that are cyclic on the first log

�
columns and blocked

on the last log
�

. Indeed, switching from cyclic to blocked layout at any column between the log
�

-th and
the log

�� -th (assuming that ��� � 2) leads to an algorithm which has a single “all-to-all” communication
step between two entirely local computation phases. Figure 5 highlights the node assignment for processor
0 for an 8-input FFT with

� � 2 under the hybrid layout; remapping occurs between columns 2 and 3.
The computational time for the hybrid layout is the same as that for the simpler layouts, but the

communication time is lower by a factor of log
�

: each processor sends
�
� 2 messages to every other,

requiring only � � �� � �� 2 � � � time. The total time is within a factor of
�
1
� �

log � � of optimal, showing that
this layout has the potential for near-perfect speedup on large problem instances.

9

4.1.2 Communication schedule

The algorithm presented so far is incomplete because it does not specify the communication schedule (the
order in which messages are sent and received) that achieves the stated time bound. Our algorithm is a
special case of the “layered” FFT algorithm proposed in [25] and adapted for the BSP model[32]. These
earlier models do not emphasize the communication schedule: [25] has no bandwidth limitations and hence
no contention, whereas [32] places the scheduling burden on the router which is assumed to be capable of
routing any balanced pattern in the desired amount of time.

A naive schedule would have each processor send data starting with its first row and ending with its last
row. Notice, that all processors first send data to processor 0, then all to processor 1, and so on. All but ��� �
processors will stall on the first send and then one will send to processor 0 every � cycles. A better schedule
is obtained by staggering the starting rows such that no contention occurs: processor

�
starts with its

� �
�

2 -th
row, proceeds to the last row, and wraps around.

4.1.3 Implementation of the FFT algorithm

To verify the prediction of the analysis, we implemented the hybrid algorithm on a CM-5 multiprocessor
and measured the performance of the three phases of the algorithm: (I) computation with cyclic layout,
(II) data remapping, and (III) computation with blocked layout. The CM-5 is a massively parallel MIMD
computer based on the Sparc processor. Each node consists of a 33 Mhz Sparc RISC processor chip-
set (including FPU, MMU and 64 KByte direct-mapped write-through cache), 8 MBytes of local DRAM
memory and a network interface. The nodes are interconnected in two identical disjoint incomplete
fat trees, and a broadcast/scan/prefix control network.4 Figure 6 demonstrates the importance of the
communication schedule: the three curves show the computation time and the communication times for the
two communication schedules. With the naive schedule, the remap takes more than 1.5 times as long as the
computation, whereas with staggering it takes only 1

7 th as long.
The two computation phases involve purely local operations and are standard FFTs. Figure 7 shows

the computation rate over a range of FFT sizes expressed in Mflops/processor. For comparison, a CM-5’s
Sparc node achieves roughly 3.2 MFLOPS on the Linpack benchmark. This example provides a convenient
comparison of the relative importance of cache effects, which we have chosen to ignore, and communication
balance, which other models ignore. The drop in performance for the local FFT from 2.8 Mflops to
2.2 Mflops occurs when the size of the local FFTs exceeds cache capacity. (For large FFTs, the cyclic phase
involving one large FFT suffers more cache interference than the blocked phase which solves many small
FFTs.) The implementation could be refined to reduce the cache effects, but the improvement would be
small compared to the speedup associated with improving the communication schedule.

4.1.4 Quantitative analysis

The discussion so far suggests how the model may be used in a qualitative sense to guide parallel algorithm
design. The following shows how the model can be used in a more quantitative manner to predict the
execution time of an implementation of the algorithm. From the computational performance in Figure 7 we
can calibrate the “cycle time” for the FFT as the time for the set of complex multiply-adds of the butterfly
primitive. At an average of 2.2 Mflops and 10 floating-point operations per butterfly, a cycle corresponds
to 4 � 5 ��� , or 150 clock ticks (we use cycles to refer to the time unit in the model and ticks to refer to the
33 Mhz hardware clock). In previous experiments on the CM-5[33] we have determined that ��� 2 ���
(0.44 cycles, 56 ticks) and, on an unloaded network, ��� 6 ��� (1.3 cycles, 200 ticks). Furthermore, the

4The implementation does not use the vector accelerators which are not available at the time of writing.

10

FFT points (Millions)

S
ec

o
n

d
s

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18

Naive
Remap

Computation

Staggered
Remap

Figure 6: Execution times for FFTs of various sizes on a 128 processor CM-5. The compute curve represents
the time spent computing locally. The bad remap curve shows the time spent remapping the data from a
cyclic layout to a blocked layout if a naive communication schedule is used. The good remap curve shows
the time for the same remapping, but with a contention-free communication schedule, which is an order of
magnitude faster. The X axis scale refers to the entire FFT size.

FFT points (Millions)

M
fl

o
p

s/
P

ro
c

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18

Phase III

Phase I

Figure 7: Per processor computation rates for the two computation phases of the FFT in Mflops (millions
of floating-point operations per second).

11

bisection bandwidth5 is 5MB/s per processor for messages of 16 bytes of data and 4 bytes of address, so
we take � to be 4 ��� (0.44 cycles, 56 ticks). In addition there is roughly 1 ���

�
0 � 22

� � ����� � � 28 � � ��� � � of local
computation per data point to load/store values to/from memory. Analysis of the staggered remap phase
predicts the communication time is

�� max
�
1 ���

�
2 � � ��� � � . For these parameter values, the transmission

rate is limited by processing time and communication overhead, rather than bandwidth. The remap phase
is predicted to increase rapidly to an asymptotic rate of 3.2MB/s. The observed performance is roughly
2MB/s for this phase, nearly half of the available network bandwidth.

FFT points (Millions)

M
B

/s
/P

ro
c

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18

Predicted

Double Net

Synchronized

Staggered

Naive

Figure 8: Predicted and measured communication rates expressed in Mbytes/second per processor for
the staggered communication schedule. The staggered schedule is theoretically contention-free, but the
asynchronous execution of the processors causes some contention in practice. The synchronized schedule
performs a barrier synchronization periodically (using a special hardware barrier). The double net schedule
uses both data networks, doubling the available network bandwidth.

The analysis does not predict the gradual performance drop for large FFTs. In reality, processors execute
asynchronously due to cache effects, network collisions, etc. It appears that they gradually drift out of sync
during the remap phase, disturbing the communication schedule. To reduce this effect we added a barrier
synchronizing all processors after every

�
�

2 messages.6 Figure 8 shows that this eliminates the performance
drop.

We can test the effect of reducing � by improving the implementation to use both fat-tree networks
present in the machine, thereby doubling the available network bandwidth. The result shown in Figure 8
is that the performance increases by only 15% because the network interface overhead (�) and the loop
processing dominate.

This detailed quantitative analysis of the implementation shows that the hybrid-layout FFT algorithm
is nearly optimal on the CM-5. The computation phases are purely local and the communication phase is

5The bisection bandwidth is the minimum bandwidth through any cut of the network that separates the set of processors into
halves.

6For simplicity, the implementation uses the hardware barrier available on the CM-5. The same effect could have been achieved
using explicit acknowledgement messages.

12

overhead-limited, thus the processors are 100% busy all the time (ignoring the insignificant � at the end of
the communication phase). Performance improvements in the implementation are certainly possible, but
without affecting the algorithm itself.

4.1.5 Overlapping communication with computation

In future machines we expect architectural innovations in the processor-network interface to significantly
reduce the value of � with respect to � . Algorithms for such machines could try to overlap communication
with computation in order to mask communication time, as in the optimal summation example. If � is
small compared to � , each processor idles for � � 2 � cycles between successive transmissions during the
remap phase. The remap can be merged into the computation phases, as in the optimal algorithms[28].
The initial portion of the remap is interleaved with the pre-remap computation, while the final portions
can be interleaved with the post-remap computation. Unless � is extremely large, this eliminates idling of
processors during remap.

4.2 Other examples

We now discuss three other problems that have been carefully studied on parallel machines and show how the
LogP model motivates the development of efficient algorithms for them. Here we provide only a qualitative
assessment of the key design issues.

4.2.1 LU Decomposition

Linear algebra primitives offer a dramatic example of the importance of careful development of high
performance parallel algorithms. The widely used Linpack benchmark achieves greater than 10 GFLOPS
on recent parallel machines. In this section we examine LU decomposition, the core of the Linpack
benchmark, to show that the key ideas employed in high performance linear algebra routines surface easily
when the algorithm is examined in terms of our model.

In LU decomposition using Gaussian elimination, an � � � non-singular matrix
�

is reduced in � � 1
elimination steps to a unit-diagonal lower triangular matrix � and an upper triangular matrix � such that� � � ��� for some permutation matrix

�
. Since � and � are constructed by overwriting

�
, we will refer

only to the matrix
�

, with
�����	�

denoting the matrix
�

at the start of step
�

. In the
�

-th elimination step, the�
-th row and column of

� ���	�
are replaced by the

�
-th column of � and the

�
-th row of � . This involves

partial pivoting to determine the pivot, i.e., the element in column
�

(below the diagonal) of largest absolute
value, swapping the

�
-th and pivot rows of

� ���	�
, and scaling of the

�
-th column by dividing it by the pivot.

Thereafter, the
� � � � � � � � � � � lower right square submatrix of

� �
���
is updated to

� �
��� 1 � :
� �
��� 1 ���
 � � �
���

��
 � � � � � �
 � � ��� � � �
1 � ��� � � �

The row permutations that result from pivoting are carried along as part of the final result. The parallelism
in this algorithm is trivial: at step

�
all
� � � � � 2 scalar updates are independent. The pivoting, swapping

and scaling steps could be parallelized with appropriate data layout.
To obtain a fast algorithm, we first focus on the ratio of communication to computation. Observe that

regardless of the data layout, the processor responsible for updating
� ���	�
��
 must obtain � � � and � �
 . A bad

data layout might require each processor to obtain the entire pivot row and the entire multiplier column.
Thus, step

�
would require 2

� � � � � � � � time for communication 7 and 2
� � � � � 2 � �

time for computation.

7We are assuming here that the 2 ��������� elements of the pivot row and multiplier column are distributed equally among
processors and are communicated by an efficient all-to-all broadcast.

13

The communication can be reduced by a factor of 2 by choosing a column layout in which � � �
columns

of
�

are allocated to each processor. For this layout, only the multipliers need be broadcast since pivot
row elements are used only for updates of elements in the same column. A more dramatic reduction in
communication cost can be had by a grid layout in which each processor is responsible for updating a� � � � � � � � � � � � � � � � �

submatrix of
�����	�

. This requires each processor to receive only 2
� � � � � � � �

values, a gain of
� �

in the communication ratio. Some of this advantage will be foregone due to the
communication requirements of pivoting and scaling down a column that is shared by many processors.
However, this cost is asymptotically negligible in comparison to the communication cost for update. 8

Our specification of the grid layout is incomplete since there are many ways to distribute
�

among
�

processors so that each receives a submatrix of
�

determined by a set of � � � �
rows and columns. The

two extreme cases are blocked and cyclic allocation in each dimension. In the former case, the rows and
columns assigned to a processor are contiguous in

�
while in the latter they are maximally scattered (

� �

apart). It should be clear that blocked grid layout leads to severe load imbalance: by the time the algorithm
completes � � � �

elimination steps, 2
� �

processors would be idle and only one processor is active for the
last � � � �

elimination steps. In contrast, the scattered layout allows all
�

processors to stay active for all
but the last

� �
steps. It is heartening to note that the fastest Linpack benchmark programs actually employ

a scattered grid layout, a scheme whose benefits are obvious from our model.9

4.2.2 Sort

In general, most sorting algorithms have communication patterns which are data-dependent although some,
such as bitonic sort, do exhibit highly structured oblivious patterns. However, since processors handle
large subproblems, sort algorithms can be designed with a basic structure of alternating phases of local
computation and general communication. For example, column sort consists of a series of local sorts and
remap steps, similar to our FFT algorithm. An interesting recent algorithm, called splitter sort[7], follows
this compute-remap-compute pattern even more closely. A fast global step identifies

� �
1 values that

split the data into
�

almost equal chunks. The data is remapped using the splitters and then each processor
performs a local sort.

4.2.3 Connected Components

Generally, efficient PRAM algorithms for the connected components problem have the property that the data
associated with a small number of graph nodes is required for updating the data structures at all other nodes
in the later stages of computation. For example, in [29] each component is represented by one node in the
component and processors “owning" such nodes are the target of increasing numbers of “pointer-jumping"
queries as the algorithm progresses. This leads to high contention, which the CRCW PRAM ignores, but
LogP makes apparent.

We consider a randomized PRAM algorithm given in [31] and adapt it to the LogP model. By carefully
analyzing various subroutines and performing several local optimizations, we are able to show that the

8We remark also that pipelining successive elimination steps appears easier to organize with column layout than with grid layout:
we could schedule the broadcast of multipliers during the � -th step so that the processor responsible for the ����� 1 � -st column
receives them early, allowing it to initiate the ����� 1 � -st elimination step while the update for the previous step is still under way.

9The variations that we have described above do not change the basic algorithm which is built around a rank-1 update operation
on a matrix. In blocked LU decomposition, the elimination step involves operations on sub-matrices. Instead of dividing by the pivot
element, the inverse of the pivot sub-matrix is computed and used to compute the multiplier submatrices. Similarly, the elimination
step involves multiplication of sub-matrices or rank- � updates where � is the side of the sub-matrices. Blocked decomposition has
been found to outperform scalar decomposition on several machines. (See, for example, [12].) The main reason for this is the
extensive use of Level 3 BLAS (which are based on matrix-matrix operations and re-use cache contents optimally) in the blocked
decomposition algorithm.

14

severe contention problem of naive implementations can be considerably mitigated and that for sufficiently
dense graphs our connected components algorithm is compute-bound. For details of the analysis and the
implementation, see [31].

5 Matching the Model to Real Machines

The LogP model abstracts the communication network into three parameters. When the interconnection
network is operating within its capacity, the time to transmit a small message will be 2 � � � : an overhead of �
at the sender and the receiver, and a latency of � within the network. The available bandwidth per processor
is determined by � and the network capacity by � � � . In essence, the network is treated as a pipeline of depth

� with initiation rate � and a processor overhead of � on each end. From a purely theoretical viewpoint, it
might seem better to define � to be a simple function of

�
. However, from a hardware design viewpoint, it

might seem important to specify the topology, routing algorithm, and other properties. In this section, we
consider how well our “middle ground” model reflects the characteristics of real machines.

5.1 Average distance

A significant segment of the parallel computing literature assumes that the number of network links traversed
by a message, or distance, is the primary component of the communication time. This suggests that the
topological structure of the network is critical and that an important indicator of the quality of the network
is the average distance between nodes. The following table shows the asymptotic average distance and the
evaluation of the formula for the practical case,

� � 1 � 024.

Network Ave. Distance
� � 1 � 024

Hypercube log �
2 5

Butterfly log � 10
4deg Fat Tree 4 log4 �

�
2 � 3 9.33

3D Torus 3
4 � 1 � 3 7.5

3D Mesh � 1 � 3 10
2D Torus 1

2 � 1 � 2 16
2D Mesh 2

3 � 1 � 2 21

For configurations of practical interest the difference between topologies is a factor of two, except for
very primitive networks, such as a 2D mesh or torus. Even there, the difference is only a factor of four.
Moreover, this difference makes only a small contribution to total message transmission time, as discussed
below.

5.2 Unloaded communication time

In a real machine, transmission of an � -bit long message in an unloaded or lightly loaded network has four
parts. First, there is the send overhead; i.e., the time that the processor is busy interfacing to the network
before the first bit of data is placed onto the network. The message is transmitted into the network channel
a few bits at a time, determined by the channel width � . Thus, the time to get the last bit of an � -bit
message into the network is

�
� ����� cycles. The time for the last bit to cross the network to the destination

node is � � , where � is the distance of the route and � is the delay through each intermediate node. Finally,
there is the receive overhead, i.e., the time from the arrival of the last bit until the receiving processor can

15

do something useful with the message. In summary, the total message communication time for an � bit
message across � hops is given by the following.

 � � � � � �
 � ��� � ���
� � � � � �
�� �	�

Table 1 indicates that, for current machines, message communication time through a lightly loaded
network is dominated by the send and receive overheads, and thus is relatively insensitive to network
structure. Furthermore, networks with a larger diameter typically have wider links (larger �), smaller
routing delays (�), and a faster cycle time because all the physical wires are short. All these factors reduce
the transmission time. Thus, modeling the communication latency as an arbitrary constant, in the absence of
contention, is far more accurate than simple rules, such as � � log

�
. In determining LogP parameters for

a given machine, it appears reasonable to choose � ��

����� �
������
2 , � � � � � � �

� � , where � is the maximum
distance of a route and � is the fixed message size being used, and � to be � divided by the per processor
bisection bandwidth.

Machine Network Cycle �
 � ��� �
�� �	� � avg. � T(� =160)
ns bits cycles cycles (1024 Proc.) (1024 Proc.)

nCUBE/2 Hypercube 25 1 6400 40 5 6760
CM-5 Fattree 25 4 3600 8 9.3 3714
Dash[22] Torus 30 16 30 2 6.8 53
J-Machine[11] 3d Mesh 31 8 16 2 12.1 60
Monsoon[26] Butterfly 20 16 10 2 5 30

nCUBE/2 (AM) Hypercube 25 1 1000 40 5 1360
CM-5 (AM) Fattree 25 4 132 8 9.3 246

Table 1: Network timing parameters for a one-way message without contention on several current com-
mercial and research multiprocessors. The final two rows refer to the active message layer, which uses the
commercial hardware, but reduces the interface overhead.

The send and receive overheads in Table 1 warrant some explanation. The very large overheads for
the commercial message passing machines (nCUBE/2 and CM-5) reflect the standard communication layer
from the vendor. Large overheads such as these have led many to conclude that large messages are
essential. For the nCUBE/2, the bulk of this cost is due to buffer management and copying associated
with the asynchronous send/receive communication model[33]. This is more properly viewed as part of
the computational work of an algorithm using that style of communication. For the CM-5, the bulk of the
cost is due to the protocol associated with the synchronous send/receive, which involves a pair of messages
before transmitting the first data element. This protocol is easily modeled in terms of our parameters as
3
� � �

2 � � � � � , where � is the number of words sent. The final two rows show the inherent hardware
overheads of these machines, as revealed by the Active Message layer[33].

The table also includes three research machines that have focused on optimizing the processor net-
work interface: Dash[22] for a shared memory model, J-machine[11] for a message driven model, and
Monsoon[26] for a dataflow model. Although a significant improvement over the commercial machines,
the overhead is still a significant fraction of the communication time.

5.3 Saturation

In a real machine the latency experienced by a message tends to increase as a function of the load, i.e.,
the rate of message initiation, because more messages are in the network competing for resources. Studies

16

such as [10] show that there is typically a saturation point at which the latency increases sharply; below the
saturation point the latency is fairly insensitive to the load. This characteristic is captured by the capacity
constraint in LogP.

5.4 Long messages

The LogP model does not give special treatment to long messages, yet some machines have special hardware
(e.g., a DMA device connected to the network interface) to support sending long messages. The processor
overhead for setting up that device is paid once and a part of sending and receiving long messages can be
overlapped with computation. This is tantamount to providing two processors on each node, one to handle
messages and one to do the computation. Our basic model assumes that each node consists only of one
processor that is also responsible for sending and receiving messages. Therefore the overhead � is paid for
each word (or small number of words). Providing a separate network processor to deliver or receive long
messages can at best double the performance of each node. This can simply be modeled as two processors
at each node.

5.5 Specialized hardware support

Some machines provide special hardware to perform a broadcast, scan, or global synchronization. In LogP,
processors must explicitly send messages to perform these operations.10 However, the hardware versions of
these operations are typically limited in functionality; for example, they may only work with integers, not
floating-point numbers. They may not work for only a subset of the machine.

The most common global operation observed in developing algorithms for the LogP model is a barrier,
as in the FFT example above. As discussed below, some parallel models assume this to be a primitive
operation. It is simpler to support in hardware than global data operations. However, there is not yet
sufficient evidence that it will be widely available. One virtue of having barriers available as a primitive is
that analysis is simplified by assuming the processors exit the barrier in synchrony.

5.6 Contention free communication patterns

By abstracting the internal structure of the network into a few performance parameters, the model cannot
distinguish between “good” permutations and “bad” permutations. Various network interconnection topolo-
gies are known to have specific contention-free routing patterns. Repeated transmissions within this pattern
can utilize essentially the full bandwidth, whereas other communication patterns will saturate intermediate
routers in the network. These patterns are highly specific, often depending on the routing algorithm, and
amount of buffering in each router, as well as the interconnection topology. We feel this is an important
message to architects of parallel computers. If the interconnection topology of a machine or the routing
algorithm performs well on only a very restricted class of communication patterns, it will only be usable to a
very specific set of algorithms. Even so, for every network there are certain communication patterns where
performance will be degraded due to internal contention among routing paths. The goal of the hardware
designer should be to make these the exceptional case rather than the frequently occurring case. A possible
extension of the LogP model to reflect network performance on various communication patterns would be
to provide multiple � ’s, where the one appropriate to the particular communication pattern is used in the
analysis.

10It is an unintended use of the model to synchronize implicitly without sending messages, e.g. by relying on an upper bound on
the communication latency

�
.

17

6 Other Models

Our model was motivated by the observation of a convergence in the hardware organization of general
purpose massively parallel computers. Parallel systems of the next decade will consist of up to a few
thousand powerful processor/memory nodes connected by a fast communication network. In this section
we briefly review some of the existing computational models and explain why they fail to fully capture the
essential features of the coming generation of machines.

6.1 PRAM models

The PRAM[13] is the most popular model for representing and analyzing the complexity of parallel
algorithms. The PRAM model is simple and very useful for a gross classification of algorithms, but it does
not reveal important performance bottlenecks in distributed memory machines because it assumes a single
shared memory in which each processor can access any cell in unit time. In effect, the PRAM assumes
that interprocessor communication has infinite bandwidth, zero latency, and zero overhead (� � 0 � � �
0 � � � 0). Thus, the PRAM model does not discourage the design of algorithms with an excessive amount
of interprocessor communication. Since the PRAM model assumes that each memory cell is independently
accessible, it also neglects the issue of contention caused by concurrent access to different cells within the
same memory module. The EREW PRAM deals only with contention for a single memory location. The
PRAM model also assumes unrealistically that the processors operate completely synchronously.

Although any specific parallel computer will, of course, have a fixed number of processors, PRAM
algorithms often allow the number of concurrently executing tasks to grow as a function of the size of the
input. The rationale offered for this is that these tasks can be assigned to the physical processors, with each
processor apportioning its time among the tasks assigned to it. However, the PRAM model does not charge
for the high level of message traffic and context switching overhead that such simulations require, nor does
it encourage the algorithm designer to exploit the assignment. Similar criticisms apply to the extensions of
the PRAM model considered below.

It has been suggested that the PRAM can serve as a good model for expressing the logical structure of
parallel algorithms, and that implementation of these algorithms can be achieved by general-purpose sim-
ulations of the PRAM on distributed-memory machines[27]. However, these simulations require powerful
interconnection networks, and, even then, may be unacceptably slow, especially when network bandwidth
and processor overhead for sending and receiving messages are properly accounted.

6.2 Extensions of the PRAM model

There are many variations on the basic PRAM model which address one or more of the problems discussed
above, namely memory contention, asynchrony, latency and bandwidth.

Memory Contention: The Module Parallel Computer [19, 24] differs from the PRAM by assuming that
the memory is divided into modules, each of which can process one access request at a time. This
model is suitable for handling memory contention at the module level, but does not address issues of
bandwidth and network capacity.

Asynchrony: Gibbons[14] proposed the Phase PRAM, an extension of the PRAM in which computation is
divided into “phases.” All processors run asynchronously within a phase, and synchronize explicitly
at the end of each phase. This model avoids the unrealistic assumption that processors can remain
in synchrony without the use of explicit synchronization primitives, despite uncertainties due to
fluctuations in execution times, cache misses and operating system calls. To balance the cost of

18

synchronization with the time spent computing, Gibbons proposes to have a single processor of a
phase PRAM simulate several PRAM processors. Other proposals for asynchrony include[8, 18, 21].

Latency: The delay model of Papadimitriou and Yannakakis[25] accounts for communication latency, i.e.
it realizes there is a delay between the time some information is produced at a processor and the time
it can be used by another. A different model that also addresses communication latency is the Block
Parallel Random Access Machine (BPRAM) in which block transfers are allowed[1].

Bandwidth: A model that deals with communication bandwidth is the Local-Memory Parallel Random
Access Machine (LPRAM)[2]. This is a CREW PRAM in which each processor is provided with an
unlimited amount of local memory and where accesses to global memory are more expensive. An
asynchronous variant which differs in that it allows more than one outstanding memory request has
been studied in [23].

Memory Hierarchy: Whereas PRAM extends the RAM model by allowing unit time access to any
location from any processor and LogP essentially views each node as in the RAM, the Parallel
Memory Hierarchy model (PMH)[3] rejects the RAM as a basis and views the memory as a hierarchy
of storage modules. Each module is characterized by its size and the time to transfer a block to
the adjoining modules. A multiprocessor is represented by a tree of modules with processors at
the leaves. This model is based on the observation that the techniques used for tuning code for the
memory hierarchy are similar to those for developing parallel algorithms.

Other primitive parallel operations: The scan-model[6] is an EREW PRAM model extended with unit-
time scan operations (data independent prefix operations), i.e., it assumes that certain scan operations
can be executed as fast as parallel memory references. For integer scan operations this is approximately
the case on the CM-2 and CM-5.

The observation of the deficiences of the PRAM led Snyder to conclude it was unrealizable and to
develop the Candidate Type Architecture (CTA) as an alternative[30]. The CTA is a finite set of sequential
computers connected in a fixed, bounded degree graph. The CTA is essentially a formal description of a
parallel machine; it requires the communication cost of an algorithm to be analyzed for each interconnection
network used. The BSP model presented below abstracts the structure of the machine, so the analysis
of algorithms is based on a few performance parameters. This facilitates the development of portable
algorithms.

6.3 Bulk Synchronous Parallel Model

Valiant’s Bulk Synchronous Parallel (BSP) model is closely aligned with our goals, as it seeks to bridge
the gap between theoretical work and practical machines[32]. In the BSP model a distributed-memory
multiprocessor is described in terms of three elements:

1. processor/memory modules,

2. an interconnection network, and

3. a synchronizer which performs barrier synchronization.

A computation consists of a sequence of supersteps. During a superstep each processor performs local
computation, and receives and sends messages, subject to the following constraints: the local computation
may depend only on data present in the local memory of the processor at the beginning of the superstep,

19

and a processor may send at most
�

messages and receive at most
�

messages in a superstep. Such a
communication pattern is called a

�
-relation.

Although the BSP model was one of the inspirations for our work, we have several concerns about it at
a detailed level.

� In the BSP model, the length of a superstep must be sufficient to accommodate an arbitrary
�

-relation
(and hence the most unfavorable one possible). Our model enables communication to be scheduled
more precisely, permitting the exploitation of more favorable communication patterns, such as those
in which not all processors send or receive as many as

�
messages. Valiant briefly mentions such

refinements as varying
�

dynamically or synchronizing different subsets of processors independently,
but does not describe how such refinements might be implemented.

� In the BSP model, the messages sent at the beginning of a superstep can only be used in the next
superstep, even if the length of the superstep is longer than the latency. In our model processors work
asynchronously, and a processor can use a message as soon as it arrives.

� The BSP model assumes special hardware support to synchronize all processors at the end of a
superstep. The synchronization hardware needed by the BSP may not be available on many parallel
machines, especially in the generality where multiple arbitrary subsets of the machine can synchronize.
In our model all synchronization is done by messages, admittedly at higher cost than if synchronization
hardware were available.

� Valiant proposes a programming environment in which algorithms are designed for the PRAM model
assuming an unlimited number of processors, and then implemented by simulating a number of PRAM
processors on each BSP processor. He gives a theoretical analysis showing that the simulation will
be optimal, up to constant factors, provided that the parallel slackness, i.e. the number of PRAM
processors per BSP processor, is sufficiently large. However, the constant factors in this simulation
may be large, and would be even larger if the cost of context switching were fully counted. For
example, in a real processor, switching from one process to another would require resetting not only
the registers, but also parts of the cache.

6.4 Network models

In a network model, communication is only allowed between directly connected processors; other commu-
nication is explicitly forwarded through intermediate nodes. In each step the nodes can communicate with
their nearest neighbors and operate on local data. Many algorithms have been created which are perfectly
matched to the structure of a particular network. Examples are parallel prefix and non-commutative sum-
ming (tree), physical simulations and numerical solvers for partial differential equations (mesh), FFT and
bitonic sorting (butterfly). However, these elegant algorithms lack robustness, as they usually do not map
with equal efficiency onto interconnection structures different from those for which they were designed.
Most current networks allow messages to “cut through” intermediate nodes without disturbing the processor;
this is much faster than explicit forwarding.

The perfect correspondence between algorithm and network usually requires a number of processors
equal to the number of data items in the input. In the more typical case where there are many data items per
processor, the pattern of communication is less dependent on the network. Wherever problems have a local,
regular communication pattern, such as stencil calculation on a grid, it is easy to lay the data out so that
only a diminishing fraction of the communication is external to the processor. Basically, the interprocessor
communication diminishes like the surface to volume ratio and with large enough problem sizes, the cost of
communication becomes trivial. This is also the case for some complex communication patterns, such as
the butterfly, as illustrated by the FFT example in Section 4.

20

We conclude that the design of portable algorithms can best be carried out in a model such as LogP, in
which detailed assumptions about the interconnection network are avoided.

6.5 Potential Concerns

The examples of the previous sections illustrate several ways in which our model aids algorithm design. As
with any new proposal, however, there will naturally be concerns regarding its utility as a basis for further
study. Here we attempt to anticipate some of these concerns and describe our initial efforts to address them.

1. Does the model reveal any interesting theoretical structure in problems?

2. The model is much more complex than the PRAM. Is it tractable to analyze non-trivial algorithms?

3. Many algorithms have elegant communication structures. Is it reasonable to ignore this?

4. Similarly, there are algorithms with trivial communication patterns, such as local exchanges on a grid.
Is it reasonable to treat everything as the general case?

5. Many interconnection topologies have been well-studied and their properties – both good and bad –
are well understood. What price do we pay for ignoring topology?

The first two concerns are general algorithmic concerns and the last three are more specific to the
handling of communication issues in our model. We address the algorithmic concerns first.

6.5.1 Algorithmic Concerns

The first of these concerns is partially addressed by the simple examples discussed in Section 3. The problem
of how best to sum � numbers results in a formulation that is distinct from that obtained on the PRAM or
various network models. We believe that the greater fidelity of the model in addressing communication
issues in a manner that is independent of interconnection topology brings out an interesting structure in a
variety of problems.

The second concern is perhaps the more significant: can we do reasonable analysis with so many
factors? The first remark to be made on this issue is that not all the factors are equally relevant in all
situations and one can often work with a simplified model. In many algorithms, messages are sent in long
streams that can be pipelined, so that communication time is dominated by the inter-message gaps and �
can be ignored. Algorithms that exhibit very small amounts of communication can be analyzed ignoring �
and � . If overlapping communication with computation is not an issue, � need not be considered a separate
parameter at all. We have presented analyses of several algorithms that illustrate these ideas.

6.6 Communication Concerns

As we discussed in the comparison to network models, the elegant communication pattern that some
algorithms exhibit on an element-by-element basis disappears when we have a large number of elements
allocated to each processor. For a communication structure to be meaningful, it must exist when data is
mapped onto large processor nodes. We note, however, that the benefits of the structured communication
pattern are not entirely foregone in this mapping: the structure guides us in choosing an effective element-to-
processor allocation. In fact, with appropriate data layout the communication pattern for many algorithms is
seen to be built around a small set of communication primitives such as broadcast, reduction or permutation.
This was illustrated by the FFT example in Section 4, where we observed that once layout is addressed,
the basic communication pattern is simply a mapping from a cyclic layout to a blocked one. Very similar

21

observations apply to parallel sorting, summation, LU decomposition, matrix multiplication and other
examples. For a simple communication pattern such as a grid, the LogP model motivates one to group
together a large number of neighboring grid points onto the same processor so that the computation to
communication ratio is large. The precise juxtaposition of processors is not as important.

7 Summary

Our search for a machine-independent model for parallel computation is motivated by technological trends
which are driving the high-end computer industry toward massively parallel machines constructed from
nodes containing powerful processors and substantial memory, interconnected by networks with limited
bandwidth and significant latency. The models in current use do not accurately reflect the performance
characteristics of such machines and, thus are an incomplete framework for development of practical
algorithms.

The LogP model attempts to capture the important bottlenecks of such parallel computers with a small
number of parameters: the latency

� � � , overhead
� � � , bandwidth

� ��� of communication, and the number
of processors

� � � . We believe the model is sufficiently detailed to reflect the major practical issues in
parallel algorithm design, yet simple enough to support detailed algorithmic analysis. At the same time, the
model avoids specifying the programming style or the communication protocol, being equally applicable to
shared-memory, message passing, and data parallel paradigms.

Optimal algorithms for broadcast and summation demonstrate how an algorithm may adapt its com-
putational structure and the communication schedule in response to each of the parameters of the model.
Realistic examples, notably the FFT, demonstrated how the presence of a large number of data elements per
processor influences the inherent communication pattern. This suggests that adjusting the data placement is
an important technique for improving algorithms, much like changes in the representation of data structures.
Furthermore, these examples illustrate the importance of balanced communication, which is scarcely ad-
dressed in other models. These observations are borne out by implementation on the CM-5 multiprocessor.
Finally, alternative parallel models are surveyed.

We believe that the LogP model opens several avenues of research. It potentially provides a concise
summary of the performance characteristics of current and future machines. This will require refining the
process of parameter determination and evaluating a large number of machines. Such a summary can focus
the efforts of machine designers toward architectural improvements that can be measured in terms of these
parameters. For example, a machine with large gap � is only effective for algorithms with a large ratio of
computation to communication. In effect, the model defines a four dimensional parameter space of potential
machines. The product line offered by a particular vendor may be identified with a curve in this space,
characterizing the system scalability. It will be important to evaluate the complexity of a wide variety of
algorithms in terms of the model and to evaluate the predictive capabilities of the model. The model provides
a new framework for classifying algorithms and identifying which are most attractive in various regions of
the machine parameter space. We hope this will stimulate the development of new parallel algorithms and
the examination of the fundamental requirements of various problems within the LogP framework.

Acknowledgements

Several people provided helpful comments on earlier drafts of this paper, including Larry Carter, Dave
Douglas, Jeanne Ferrante, Seth Copen Goldstein, Anoop Gupta, John Hennessy, Tom Leighton, Charles
Leiserson, Lesley Matheson, Rishiyur Nikhil, Abhiram Ranade, Luigi Semenzato, Larry Snyder, Burton
Smith, Guy Steele, Robert Tarjan, Leslie Valiant, and the anonymous reviewers.

22

Computational support was provided by the NSF Infrastructure Grant number CDA-8722788. David
Culler is supported by an NSF Presidential Faculty Fellowship CCR-9253705 and LLNL Grant UCB-ERL-
92/172. Klaus Erik Schauser is supported by an IBM Graduate Fellowship. Richard Karp and Abhijit
Sahay are supported by NSF/DARPA Grant CCR-9005448. Eunice Santos is supported by a DOD-NDSEG
Graduate Fellowship. Ramesh Subramonian is supported by Lockheed Palo Alto Research Laboratories
under RDD 506. Thorsten von Eicken is supported by the Semiconductor Research Corporation.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir. On Communication Latency in PRAM Computation. In Proceedings
of the ACM Symposium on Parallel Algorithms and Architectures, pages 11–21. ACM, June 1989.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communication Complexity of PRAMs. In Theoretical Computer
Science, pages 3–28, March 1990.

[3] B. Alpern, L. Carter, E. Feig, and T. Selker. The Uniform Memory Hierarchy Model of Computation. Algorith-
mica, 1993. (to appear).

[4] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for message-passing systems.
In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 11–22, June 1992.

[5] G. Bell. Ultracomputers: A Teraflop Before Its Time. Communications of the Association for Computing
Machinery, 35(8):26–47, August 1992.

[6] G. E. Blelloch. Scans as Primitive Parallel Operations. In Proceedings of International Conference on Parallel
Processing, pages 355–362, 1987.

[7] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A Comparison of Sorting
Algorithms for the Connection Machine CM-2. In Proceedings of the Symposium on Parallel Architectures and
Algorithms, 1990.

[8] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model. In Proceedings of the
Symposium on Parallel Architectures and Algorithms, pages 169–178, 1989.

[9] J. M. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comp,
19:297–301, 1965.

[10] W. J. Dally. Performance Analysis of
�

-ary � -cube Interconnection Networks. IEEE Transaction on Computers,
39(6):775–785, June 1990.

[11] W. Dally et al. The J-Machine: A Fine-Grain Concurrent Computer. In IFIP Congress, 1989.

[12] J. J. Dongarra, R. van de Geijn, and D. W. Walker. A Look at Scalable Dense Linear Algebra Libraries. In
J. Saltz, editor, Proceedings of the 1992 Scalable High Performance Computing Conference. IEEE Press, 1992.

[13] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceedings of the 10th Annual Symposium
on Theory of Computing, pages 114–118, 1978.

[14] P. B. Gibbons. A More Practical PRAM Model. In Proceedings of the ACM Symposium on Parallel Algorithms
and Architectures, pages 158–168. ACM, 1989.

[15] J. L. Hennessy. MIPS R4000 Overview. In Proc. of the 19th Int’l Symposium on Computer Architecture, Gold
Coast, Australia, May 1992.

[16] J. L. Hennessy and D. A. Patterson. Computer Architecture — A Quantitative Approach. Morgan Kaufmann,
1990.

[17] IEEE. Symposium Record — Hot Chips IV, August 1992.

[18] P. Kanellakis and A. Shvartsman. Efficient parallel algorithms can be made robust. In Proceedings of the 8th
Symposium on Principles of Distributed Computing, pages 211–221, 1989.

23

[19] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM Simulation on a DistributedMemory Machine.
In Proceedings of the Twenty-Fourth Annual ACM Symposium of the Theory of Computing, pages 318–326, May
1992.

[20] R. M. Karp, A. Sahay, E. Santos, and K. E. Schauser. Optimal Broadcast and Summation in the LogP Model.
Technical Report UCB/CSD 92/721, UC Berkeley, 1992.

[21] Z. M. Kedem, K. V. Palem, and P. G. Spirakis. Efficient robust parallel computations. In Proceedings of the 22nd
Annual Symposium on Theory of Computing, pages 138–148, 1990.

[22] D. Lenoski et al. The Stanford Dash Multiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[23] C. U. Martel and A. Raghunathan. Asynchronous PRAMs with memory latency. Technical report, University of
California, Davis, Division of Computer Science, 1991.

[24] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallel machines with
restricted granularity of parallel memories. Acta Informatica, 21:339–374, 1984.

[25] C. H. Papadimitriou and M. Yannakakis. Towards an Architecture-Independent Analysis of Parallel Algorithms.
In Proceedings of the Twentieth Annual ACM Symposium of the Theory of Computing, pages 510–513. ACM,
1988.

[26] G. M. Papadopoulos and D. E. Culler. Monsoon: an Explicit Token-Store Architecture. In Proc. of the 17th
Annual Int. Symp. on Comp. Arch., Seattle, Washington, May 1990.

[27] A. G. Ranade. How to emulate shared memory. In Proceedings of the 28th IEEE Annual Symposium on
Foundations of Computer Science, pages 185–194, 1987.

[28] A. Sahay. Hiding Communication Costs in Bandwidth-Limited Parallel FFT Computation. Technical Report
UCB/CSD 92/722, UC Berkeley, 1992.

[29] Y. Shiloach and U. Vishkin. An
���

log ��� Parallel Conectivity Algorithm. Journal of Algorithms, 3:57–67, 1982.

[30] L. Snyder. Type Architectures, Shared Memory, and the Corollary of Modest Potential. In Ann. Rev. Comput.
Sci., pages 289–317. Annual Reviews Inc., 1986.

[31] R. Subramonian. The influence of limited bandwidth on algorithm design and implementation. In Dartmouth
Institute for Advanced Graduate Studies in Parallel Computation (DAGS/PC), June 1992.

[32] L. G. Valiant. A Bridging Model for Parallel Computation. Communications of the Association for Computing
Machinery, 33(8):103–11, August 1990.

[33] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In Proc. of the 19th Int’l Symposium on Computer Architecture, Gold Coast,
Australia, May 1992.

24

