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ABSTRACT
Protecting the con�dentiality of applications on commodity oper-
ating systems, both on desktop and mobile devices, is challenging:
attackers have unrestricted control over an application’s processes
and thus direct access to any of the application’s assets. However,
the application’s code itself can be of great commercial value, for
example in the case of proprietary code or additional functionality
obtained as downloadable content and via in-app purchases, which
are widely used to monetize free applications through premium
content. Developers still rely heavily on obfuscation to protect their
own code from unauthorized tampering or copying, providing an
obstacle for an attacker, but not preventing compromise.

In this paper, we present T�������, an approach to o�er a prac-
tical and transparent primitive to implement code con�dentiality
by extending ARM’s TrustZone, a TEE that so far provides limited
functionality to application developers. T������� allows develop-
ers to easily designate part of their code as con�dential through
source code annotations. At compile time, T������� automatically
partitions the application into regular application code, executed in
the “normal world,” and the invisible code, transparently executed in
the “secure world.” T������� tightly couples and secures the execu-
tion in both worlds without exposing any additional attack surface
by combining a number of di�erent techniques, such as secure
code loading, system call forwarding, transparent world switching,
and the enforcement of inter-world control-�ow integrity. We im-
plemented a proof of concept of T������� and demonstrate its
feasibility in a mobile computing setting.

CCS CONCEPTS
• Security and privacy ! Software and application security;
Trusted computing; Software reverse engineering.
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1 INTRODUCTION
Applications running on a commodity operating system (OS), both
desktop, and mobile, are usually deployed in an untrusted environ-
ment, i.e., the user has full access to any of the application’s assets,
including its code. The lack of code con�dentiality introduces risks
of loss of intellectual property associated with proprietary code,
and of piracy of paid content, e.g., content provided through the
widely used in-app purchasing mechanism on mobile platforms: on
Android, where over 95% of apps are free to download [4], mobile
games alone generate an annual revenue of up to 32 billion USD
through content sold from within the application [60].

In the absence of architectural support to protect an applica-
tion’s code from unauthorized access, developers have to rely on
code obfuscation. However, obfuscation is only intended to delay
piracy, as it does not actually prevent reverse engineering: “all in-
tellectual property protection technologies will be cracked at some
point—it’s just a matter of time” [32]. Developers often sacri�ce
user experience to protect their business: the freely downloadable
Nintendo’s Super Mario Run, to protect premium content acquired
through in-app purchases, implements custom copy protection
mechanisms that require a persistent Internet connection—to the
dismay of many users [49]. Other copy protection services incur
heavy performance penalties and rather than prohibiting piracy
they are only able to delay it in order to maximize pro�ts during
the initial release window [50].

Besides obfuscation, developers can also deploy anti-tampering
and anti-debugging techniques [11], for example to detect rooted
environments and refuse to run in them [39]. In the most extreme
case, developers can avoid executing part of their code in the user
environment at all, and instead move the execution to a remote
server [52, 65]. In this paper, we demonstrate that this strict isolation
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of sensitive code can already be achieved on devices themselves by
leveraging Trusted Execution Environment (TEE).

Utilizing a TEE, in our case ARM’s TrustZone, for this purpose is
not without challenges: (1) Since they operate on a higher level of
privilege, they are only designed to execute trusted code signed by
device vendors. (2) They are resource-constrained and not designed
to execute full-�edged applications. We address these challenges in
T�������, which executes individual code components in Trust-
Zone and allows regular developers to take advantage of its isolation
guarantees without sacri�cing overall system security.

T������� provides con�dentiality, and transparent execution,
ensuring that the protected code can interact with the unprotected
portion of the code (and vice versa), as well as with the untrusted
OS through system calls. We achieve this through a generic call
forwarding and state synchronization mechanism, which does not
require the use of an additional runtime library. Con�dential code
is identi�ed through source code annotations: T������� automati-
cally partitions the application into regular application code, and
the protected invisible code. Our design o�ers an option currently
not available to developers: they can select which part of the code
should be protected, to reach a trade-o� between code con�dential-
ity, performance overhead, and required code changes.

Achieving code con�dentiality is an ambitious goal, and there are
a number of design decisions that may seemingly a�ect T�������’s
guarantees: T������� protects code pages but does not protect
data pages—including the stack—as these are shared between the
normal and secure worlds. To alleviate security concerns, T����
���� employs several safeguards such as execute-only memory,
and inter-world control-�ow integrity mechanism. T������� adds
a modest 3.11 KLOC to the Trusted Computing Base (TCB), and
isolating the protected code from the rest of TrustZone, avoiding
an increase of the attack surface.

We note that this is an already well-explored area of research,
but T������� is the �rst isolation solution providing code con�den-
tiality and the ability to selectively protect parts of the application
in a transparent way—without requiring developers to explicitly
compartmentalize the application, or heavily refactor its code. Thus,
T������� works on commodity setups and e�ectively isolates the
protected code from the TEE, and other applications running within
it to alleviate security concerns.

In summary, we make the following contributions:

• We designed and implemented T�������, an approach that
o�ers a new powerful primitive: code con�dentiality.

• We show how our design allows for the transparent execu-
tion of parts of an unmodi�ed application in di�erent isolated
execution environments, thus facilitating its adoption.

• We discuss our limited additions to the TCB and the re-
siliency of T������� against potential attacks.

• We show that T������� incurs a reasonable performance
overhead, comparable to related approaches.

To provide reproducibility of our results and foster further research
in this area, we provide the source code of our prototype at https:
//github.com/ucsb-seclab/invisible-code.

2 BACKGROUND
2.1 Trusted Execution Environments
Modern CPUs support various means for protecting user or devel-
oper supplied code from other applications, a compromised OS,
or even hardware impersonation. These mechanisms take many
forms, including containers, hypervisors, and separate execution
environments, and provide a set of security primitives:
• Isolation: The execution context, including registers and mem-
ory, is protected from other untrusted processes and even from
the untrusted OS running in the normal world.

• Attestation: The execution environment is able to prove its iden-
tity and integrity to a local or remote observer. Thus, an adversary
cannot emulate to be a “real” trusted environment. Attestation
primitives also enable verifying that the code is trusted, in terms
of its origin and integrity.

Hardware-backed isolated execution environments, such as TEEs,
are designed to run code with a higher level of trust, protecting
execution from monitoring and tampering, by partitioning the sys-
tem into two worlds that execute untrusted or trusted code—the
normal and secure world, respectively. Each world runs its own OS,
the trusted OS (supplied by the chip vendor), and the untrusted OS
(e.g., Android or Linux). TEEs execute Trusted Applications (TAs, or
trustlets, in short), which typically provide security-critical services
to the untrusted code running in the normal world. Depending on
the speci�c trusted OS, TAs can run isolated from each other (as it
is the case for user-space applications on traditional OSes). Finally,
untrusted code cannot, by de�nition, access the memory of trusted
code, and can only invoke it through well-de�ned interfaces.
ARM’s TrustZone. TrustZone [2] is a popular hardware TEE im-
plementation present in hundreds of millions of devices, including
most mobile phones, and more recently edge-computing devices [6].
Under this TEE, the secure and normal worlds are isolated, even
though both are executed by the same physical CPU. An untrusted
user-space application wishing to access a TA’s services in Trust-
Zone, is bound to use a driver interface provided by the chip vendor
to communicate with the untrusted OS. The OS is the only com-
ponent able to switch worlds, by executing the smc instruction, to
send commands to the TA. When this instruction is executed, the
CPU enters the Secure Monitor Mode, a highly-privileged mode
that provides core functionality for the world switch, mapping and
copying the required memory, registers, and so on. The request
is then passed to the trusted OS, which is responsible for loading,
executing the TA associated with the request, and returning the
results to the untrusted world.

Memory security enforcement is accomplished by the Memory
Management Unit (MMU) and the TrustZone Address Space Con-
troller (TZASC), that control how memory is mapped and, through
the “NS bit” �ag, to which world it belongs to. Physical memory
pages can be designated as belonging to the secure world and at-
tempts to access them from the normal world raise an exception.

Many TrustZone implementations can also provide attestation
of the environment in order to support third parties in verifying
that they are communicating with a real, trusted, physical device.
Starting with Android 7.0 and KeyMaster 2, all Android devices
are expected to support veri�able asymmetric keys, including a
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Table 1: Overview of related approaches and whether they provide the listed primitives fully ( ), partially (#) or not at all (–). The majority of
approaches execute thewhole application in the protected environment unless the developer partitions itmanually into separate applications.

System Isolation Technique Protection from Usage Transparent Code Con�dentiality
Other Apps Untrusted OS Requirements Execution? At rest? At run time?

KNOX [38, 56] TrustZone  – SELinux policy  – –
SplitDroid [66] Containers  – Manual partitioning – – –
OSP [19] TrustZone+Hypervisor   Manual partitioning – –  
TrustICE [61] TrustZone+Hypervisor   Library integration – –  
InkTag [31] Hypervisor   Library integration  –  
Virtual Ghost [21] Shim Layer   Library integration  –  
Panoply [58] SGX   Library integration – –  
SCONE [7] SGX   Manual partitioning – –  
Haven [9] SGX   Manual partitioning – –  
Graphene-SGX [63] SGX   Manual partitioning – –  
PrivateZone [36] TrustZone   Library integration – –  
TLR [57] TrustZone   Manual partitioning # –  
TrustShadow [29] TrustZone   Manual partitioning # –  
CaSE [70] TrustZone   Manual partitioning #   
TEEshift [41] TEE through Asylo   Binary rewriting #   

T������� TrustZone   Source code annotation    

secure hardware-backed per-device key (e.g., RPMB, eFuses) [24].
The trusted OS can use this cryptographic hardware, combined
with vendor-provided public keys, to verify the provenance of code
before its execution.

Intel’s SGX. Another similar technology is Intel’s Software Guard
Extensions (SGX) [3], present on recent desktop and server pro-
cessors. SGX executes self-contained code in isolated enclaves and
provides similar security guarantees and attestation capabilities.
Similar to TrustZone, code in SGX enclaves can communicate with
other code only through carefully de�ned interfaces. Unlike Trust-
Zone, however, code in enclaves is not provided with any library
code or OS abstractions by default.

Limitations of existing TEEs. Isolation and attestation capabil-
ities of TEEs provide extremely desirable features, but adapting
code to work with these requires a signi�cant amount of work. The
most signi�cant barrier is the extreme separation imposed by these
environments. In the canonical implementation of either TrustZone
or SGX, developers must manually partition an application’s code
into a secure and non-secure part, and de�ne interfaces between
these two parts, as well as heavily modify the secure code part to be
compatible with the TEE. As we discuss in Section 2.2, related work
has attempted to lift some of these restrictions, but no approach
has succeeded in enabling the transparent execution of protected
code alongside the unprotected parts of an application.

2.2 Related Work
We provide an overview of related work in terms of goals, security
guarantees, and ease of adoption for the developer in Table 1. T����
���� is the only approach that ful�lls all properties listed in Table 1;
the downside, which we fully acknowledge, is that our approach
incurs more performance overhead than other solutions on short-
lived (i.e., null) calls and syscalls even in our preliminary evaluation.
Still, we feel that T������� �lls a gap in that it allows developers
to protect code con�dentiality and to select the most appropriate

trade-o� between protection and performance overhead, without
requiring a (potentially) heavy rewrite of the codebase.

Isolation between applications. Samsung KNOX [56] provides
SELinux-based process protection and isolation [38]. SplitDroid [66]
accomplishes a similar goal using Linux Containers. Systems based
on Mandatory Access Control (MAC), e.g., FlaskDroid [13], allow
for �ne-grained policies that could also be used to enforce code
con�dentiality. These systems place their trust in the OS, meaning
a compromised OS can view or manipulate the code. T������� is
resilient against more aggressive threat models (e.g., root attacker).

Isolation from the untrusted OS. OSP [19] proposes on-demand
hypervisor-based TEEs running in the normal world, which use
ARM’s hardware-backed hypervisor mode to execute code in isola-
tion.While OSP does not consider code con�dentiality, TrustICE [61]
extends it with substituting the hypervisor layer with TrustZone,
and by providing memory watermarking to prevent protected code
and data from being read by an external observer. InkTag [31] a
hypervisor to protect code during execution, and to also ensure
the integrity of the OS itself. Virtual Ghost [21] achieves the same
protections without the need for hardware virtualization, by embed-
ding the functionality into a shim layer beneath the OS. TrustICE,
InkTag, and Virtual Ghost all take steps to encrypt code in memory
during execution, but none consider code con�dentiality at rest.

The biggest downside of TEEs from the developer’s perspective
is that the isolation of execution environments is absolute, and
that the code running in this environment must be self-contained,
except for well-de�ned interfaces, and cannot make system calls
to the outside untrusted OS. Panoply [58], SCONE [7], Haven [9],
and Graphene-SGX [63] attempted to address this limitation with
“Library OS,” a library that can be linked with the code loaded into
the enclave, to allow it to communicate with other enclaves, exter-
nal libraries, and the outside OS. PrivateZone [36] implements a
similarly isolated execution environment on top of TrustZone and
also requires a custom library, which is limited to cryptographic
and memory management operations. Furthermore, interaction of
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the trusted part of the application with its counterpart in the normal
world is limited to shared memory. These approaches di�er in their
support of multi-threading, multi-processing, and inter-enclave
communication. All share a common drawback: they require sub-
stantial changes to the application in terms of manual compartmen-
talization and to integrate the Library OS. While Panoply, the most
feature-complete of these approaches, exposes many POSIX-like
abstractions to an application, handling code has to be implemented
for each exposed feature, and only a subset of the full POSIX API is
supported. In contrast, T������� supports the majority of possible
system and function calls out of the box, forwarding them trans-
parently to the normal world, and only requires special handling
routines for a subset of system calls related to process management.

The Trusted Language Runtime (TLR) [57] ports the .NET run-
time to TrustZone to enable running parts of mobile applications
as a TA but requires the developer to manually partition an appli-
cation into a trusted and an untrusted part. It further only provides
cryptographic primitives for the protection of data, not code.

TrustShadow [29] allows statically-compiled Linux code to run
unmodi�ed in TrustZone through the use of a forwarding and mar-
shaling mechanism for speci�c system calls, exceptions, and faults.
In contrast, T������� achieves transparent execution, which al-
lows for system call, function call, or other access into the normal
world, without the need of speci�c runtime support. Most impor-
tantly, while TrustShadow only considers applications as a whole
(thus assuming everything to be safe, libraries included), T�������
enables protected and unprotected code to coexist within the same
application and does not require to execute the entire application in
the secure world. Moreover TrustShadow’s goal is isolation but not
con�dentiality, as it loads the application both in normal world and
in secure world. T�������, instead, achieves code con�dentiality
by removing the special section containing the marked functions
from the application running in normal world.

TEEshift [41] is the most closely related work with the goal to
protect individual functions by executing them in a TEE. In con-
trast to T�������, TEEshift rewrites the binary to extract protected
functions, injects a shared library to interface with Asylo, and hooks
the Procedure Linkage Table (PLT) to redirect the control �ow to
the TEE. TEEshift further explicitly copies data to the protected
function and does not support functions with stack parameters.
One bene�t of TEEshift is that it is largely TEE-agnostic by us-
ing the Asylo framework as a uni�ed API for di�erent hardware
backends [28]. However, Asylo is still an early prototype that only
supports simulated backends for now.

Finally, CaSE [70] provides the highest degree of protection of
any related approach by using Cache-as-RAM, with the limitation
of the size available for code and data—including stack and heap—
of the application that resides in the cache (e.g., 32 KB for the L2
cache on the ARM Cortex-A8). It is tightly coupled to the employed
architecture, up to the point of requiring reverse engineering the
cache structure of the SoC.

Application partitioning. Approaches to automatically partition
applications into security-sensitive and non-sensitive code typically
isolate functions that handle con�dential data [43, 44, 55, 67]. All of
these approaches su�er from pointer aliasing [30] and still require
developer support in annotating con�dential data. Panoply [58]

uses compiler annotations to split code, but only the unprivileged
enclave can communicate with the privileged one. In contrast, T����
���� allows for a more �exible partitioning, where the execution
of protected and unprotected code can be interleaved in a transpar-
ent manner, yet provides con�dentiality for the protected code. In
future work, T������� can be complemented with a call-graph
analysis to propagate the invisible code annotations in order to
help developers achieve better usability.
Code obfuscation. Developers heavily rely on packing, and ob-
fuscation to make reverse engineering more complex. These tech-
niques create an arms race: no matter how much e�ort a developer
puts into obfuscating the code, at some point it will be broken.While
malware authors deploy obfuscation through run-time packers with
increasing complexity [64], security researchers have proposed a
number of unpackers based on dynamic analysis that exploit the
fact that at some point during execution the unpacked code re-
sides in memory [37, 46, 53, 54]. A formal analysis of software
obfuscation has also concluded that a perfect “uncrackable” soft-
ware obfuscation technique does not exist [8]. As a consequence,
HOP [48] recently proposed to implement secure code obfuscation
in hardware using Oblivious RAM (ORAM). Other related work
has also further proposed an architecture for execute-only memory
(XOM) [42], as well as implemented this primitive for commodity
Linux applications in Norax [18], but does not consider a hostile
untrusted OS as part of its threat model.

3 DESIGN GOALS
Current isolation-based systems require developers to manually
partition their code, shuttle data between partitions, and may im-
pose restrictions on the functionality of the secured portion of code.
Obfuscation, on the other hand, merely raises the bar for an attacker,
while providing no concrete code protection guarantees. Our goal
is to provide a powerful code con�dentiality mechanism that al-
lows developers to integrate and protect part of their codebase in a
�exible, secure, and easy-to-use manner.
Threat model. We consider a “pay once, use everywhere” attacker
model, where the attacker has complete control over the untrusted
user space, as well as the OS (i.e., rooted/jailbroken devices). In this
scenario, the attacker may freely tamper with the execution, e.g.,
through the interception of system calls.

T������� relies on the various hardware-based guarantees of-
fered by TEEs, and it assumes that the OS running in the TEE is
bug-free and that its security mechanisms work as expected (e.g.,
user-space processes in the secure world are e�ectively isolated
from each other). In addition to hardware, T������� implicitly
trusts its own trusted components used for forwarding and decryp-
tion, and other components, particularly the compiler, the servers
holding unencrypted copies of the protected code, and the TEE’s
loader. We believe that this is a reasonable assumption: the compiler
and standard TEE hardware and software components are already
implicitly trusted by any developer, leaving our modest additions
to the TEE and forwarding mechanism as the only newly intro-
duced on-device trusted components. These features, combined
with the additional safeguards we provide, guarantee the con�den-
tiality of code under large classes of attacks such as DMA, warm
and cold boot attacks, and code-related side-channels. However,
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there are a number of attacks that we consider as out-of-scope: at-
tacks focusing on data con�dentiality, and system availability, and
generic side-channel attacks (e.g., against TrustZone). Furthermore,
as T�������’s design goals do not include execution integrity, the
results of computations cannot be trusted. Approaches to defend
against these attacks are complementary to our work.
Code con�dentiality. Our main goal is to provide a �exible and
powerful code con�dentiality primitive: all code is encrypted from
the moment it leaves the distribution platform, until it is securely
executed within the TEE. While TrustZone already provides some
form of con�dentiality, most current approaches do not fully ad-
dress code con�dentiality concerns, as they either focus on di�erent
goals, such as integrity and data con�dentiality, or do not provide
deployment scenarios able to protect code at rest.
Transparent forwarding. Allowing the execution of protected
code that is tightly coupled with code executed in the normal world
is the most challenging aspect of our approach. Redirecting the
control �ow (i.e., to library functions mapped in the normal world),
allowing the execution of system calls implemented by the un-
trusted OS, and sharing non-secure data pages, altogether create
favorable conditions to violate code con�dentiality. T������� is
designed to thwart such attacks by employing hardware and soft-
ware guarantees provided by TrustZone, and additional measures
(e.g., enforcing inter- and intra-world control-�ow integrity, and
prohibiting secure OS system calls).
Transparent integration. We require minimal modi�cations to
the existing TEE and OS, and employ readily available COTS tech-
nologies, in order to ease integration. To provide transparent inte-
gration, related approaches usually resort to a Library OS [7, 9, 58],
but the limited availability of secure memory on TrustZone lim-
its the applicability of this approach to small libraries providing
only very speci�c functionality [36]. Instead, we allow developers
to select protected components with simple source code annota-
tions, which can be seamlessly integrated without the need for
cumbersome explicit interfaces.
Limited attack surface. A reasonable concern is that T�������
might increase the attack surface of the TEE, leading to the compro-
mise of secure components. Therefore, we rely on robust isolation
mechanisms to prevent the invisible code (which is not trusted)
from interacting with the trusted OS, including the aforementioned
enforcement of control-�ow integrity and prohibiting system calls
within the secure OS for our components.
Minimal overhead. As the unprotected and protected code runs
in two di�erent worlds, there is a performance overhead associated
with their interaction, a problem shared by all compartmentaliza-
tion approaches. In practice, most of the overhead lies within the
context switch between worlds, and it depends on the amount and
nature of code to be protected, more speci�cally, on how much this
portion of code needs to interact with the unprotected part. We aim
at achieving a reasonably low performance overhead under realis-
tic settings. This way, a developer can choose a suitable trade-o�
between code con�dentiality and performance overhead.
Out-of-scope goals. There are a number of possible goals that,
even though related, T������� does not aim at achieving. First,
this work focuses on code con�dentiality, but it does not deal with

code availability. In other words, our system does not aim at pro-
tecting from an attacker who attempts to mount a denial-of-service
attack against an application (by crashing it, for example). In fact,
a compromised OS can always simply refuse to boot. This is a lim-
itation that we share with all related approaches [7, 9, 17, 19, 29,
36, 51, 57, 58, 61, 63, 70]. Thus, in its current form our approach
is better suited for protecting applications such as games, and not
critical applications (e.g., software in medical devices) Second, this
work does not aim at protecting the con�dentiality of data, includ-
ing aspects such as handling users’ credentials and where to store
them. Our approach could be supplemented by orthogonal work on
encrypting sensitive data in memory [69]. Third, T������� can be
complementary to other solutions, such as secure user input [68],
DRM schemes, and obfuscation.

4 APPROACH OVERVIEW
To achieve the aforementioned goals, T������� consists of the
following components, which we discuss in more detail in Section 5.

Code partitioning. This component splits the application into
two parts, the invisible code and the unprotected code. The only
requirement for an application developer to use T������� is to
specify which part of the code to protect through source code anno-
tations. At compile time, T������� then places the invisible code in
a special section (e.g., the .invisible section). Depending on the
deployment model (see Section 4.1 for two concrete scenarios), the
content of the .invisible section is stored inside the application
itself, or on a remote server.

Secure code retrieval. At run time, the main application retrieves
the encrypted invisible code, and decrypts it with a device-dependent
key. In particular, the server encrypts the invisible code with the
public key associated with the TrustZone instance of a given device.
The security of this phase builds on two observations: (1) the private
key associated with this public key is only accessible within the
trusted OS (and is unique for each device); (2) remote attestation
ensures that the server is communicating with a “real” TrustZone
instance, and not with an attacker attempting to emulate one.

Secure code loading. After retrieval, the protected code is de-
crypted in secure memory, and a new user thread is spawned in
the secure world. The necessary page table entries are created and
updated on both the secure and normal world. To allow T����
����’s threads and normal TAs to run alongside, we decouple their
handling by employing speci�c metadata in the thread structure.

Transparent forwarding. The last step consists of executing the
protected code in secure memory, a process which leverages TEE
hardware guarantees, consistent and compatible memorymappings,
and a lightweight RPC mechanism. A key aspect here is the protec-
tion of transitions between the normal and secure world, for which
T������� adopts both traditional intra-world control-�ow integrity
(CFI) [14, 22], and a novel inter-world CFI mechanism.

In our design, data pages are shared between the invisible code
and its untrusted counterpart, which may open our system to Iago
attacks [15] or Blind ROP [12]. The untrusted OS could maliciously
alter code pointers stored in data pages and attempt to jump to
arbitrary locations in the invisible code. However, this would still
not reveal the actual instructions but just their side e�ects.
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Figure 1:On-demand deployment scenario (e.g., through an app store).
The protected component is downloaded and decrypted at run time,
and executed transparently to the main application.

4.1 Deployment Scenarios
Deploying a system like T������� naturally requires the coop-
eration of the OS developers and TEE vendors. Since their own
internal requirements and policies may in�uence how this system
could be deployed, we envision two scenarios that both require a
trusted third party, but could be integrated into existing app stores,
such as Google Play, or game distribution platforms, such as Steam.

On-demand provisioning. In this scenario, the developer desig-
nates (part of) an individual component, such as a functionality
provided through in-app purchases, as con�dential. When the devel-
oper publishes the application to the app store, it provides the store
operator with an unencrypted copy of this additional component.
A bundle containing the encrypted code is then provisioned on
demand whenever a user makes the request to buy this component.

This provisioning model is similar to (and could be integrated
with) Android app bundles, which allow on-demand dynamic de-
livery of content through the Google Play Store [26]. Note that as
of mid-2021 this is the mandatory distribution model in the Google
Play Store, i.e., the store itself builds and deploy (parts of the) �nal
app to users [27], further facilitating this deployment scenario.

The primary bene�t of this approach is that it allows the trusted
third party, such as the app store, to inspect the code that is exe-
cuted by T�������, to ensure it adheres to content policies and
does not implement any harmful behavior. Another bene�t of this
approach is that it can be built on top of the existing infrastruc-
ture for downloading applications and in-app purchases already
present in app stores—including mechanisms for keeping track of
user accounts and authorized devices.

As illustrated in Figure 1, this scenario involves the following
steps: (1) The application issues a download request to the store and
includes a certi�cate with the public key of the device. The store
veri�es, based on the certi�cate, whether the device is authorized to
receive the requested component, e.g., whether the in-app purchase
was successful. The store also veri�es that the just-received public
key is in fact associated to a legitimate TrustZone instance. We note
that this step can be performed via attestation: the store does not
need to store or manage a list of “valid” public keys. (2) The store
appends a signature generated with its private key over the code
blob and encrypts the requested blob with the device-speci�c public
key. (3) The store sends the encrypted blob back to the application.
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Figure 2: Overview of T������� and its components.

(4) The application issues a Secure Code Loading request inwhich the
code blob is loaded into TrustZone and decrypted with the device-
speci�c private key (which is stored in TrustZone). (5) TrustZone
�rst veri�es whether the signature matches the store’s public key
to verify its authenticity. If the signature can be veri�ed, TrustZone
then executes the decrypted invisible code.

On-install provisioning.This scenario is similar to the on-demand
provisioning, but instead of downloading the invisible code during
run time, the encrypted invisible code is already embedded in the
application during installation. In this scenario, the store encrypts,
at download time, the “con�dential” part of the application. For this
step, the store uses the public portion of the TEE-backed per-device
key, whose TEE-provenance can be validated, once again, via at-
testation. In this way the application is bound to a speci�c device
key. We note that this process is similar to how Apple currently
already distributes iOS applications, to make sure they can only
be executed on speci�c devices: Apple encrypts iOS applications
with a key associated with a user’s account [59], but in contrast to
T������� the whole application resides in memory unencrypted
during run time. On Android, we can use Keystore, which is de-
signed to derive secure hardware keys for attestation and to secure
the communication with servers [25].

5 TARNHELM’S COMPONENTS
In this section, we presentT�������’s components, as illustrated in
Fig. 2, and the technical challenges we addressed in detail. We leave
the implementation details of our proof of concept for Section 6.

5.1 Code Partitioning
T������� partitions code into two components: the invisible code,
and the main application. The developer selects the protected code
with source code annotations, considering the trade-o� between
performance and resilience needs, the size of the invisible code, and
the development e�ort during the integration process.

Code annotations have a function-level granularity, and at com-
pile time, annotated functions are placed in the .invisible section
of the binary. This step does not require modi�cations to the com-
piler toolchain, as the desired functionality is obtained through
inclusion of a header �le. Listing 1 shows a straightforward inte-
gration example. Orthogonal approaches (discussed in Section 2.2)
could automate the partitioning by inferring functions that should
be protected, e.g., based on the use of sensitive variables. We leave
the implementation of such a partitioning to future work.
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5.2 Secure Code Retrieval and Loading
Once the application is installed on the user’s device, the main
application starts the process of securely downloading the invisible
code, e.g., when a user triggers an in-app purchase. The per-device
public key described in Section 4 is sent to the remote server, which
uses it to encrypt the protected code, and send it back to the user’s
device. TrustZone uses its private key to decrypt the code, which is
then ready to be loaded in the secure world.

Even an attacker with root privileges cannot access the private
key in TrustZone, therefore the code is protected from being in-
tercepted during this step. To defend against an attacker trying to
emulate a fake TrustZone environment, i.e., by using a public key
for which they have the associated private key, we rely on Trust-
Zone’s remote attestation and hardware root of trust [20, 23, 62].

The invisible code is then decrypted in the memory space of
a new secure world user thread. To implement the forwarding
mechanism, and to protect code con�dentiality, the physical pages
have the “NS bit” �ag unset: trying to access these pages from
outside T������� and the TEE will result in a fault. To keep the
memory mappings consistent, and manage faults, we developed a
new memory management mechanism.

5.3 Memory Management
Data pages are shared to avoid handling data dependencies. Code
pages, instead, are not shared to achieve code con�dentiality, e�ec-
tively blocking the untrusted OS from reading the invisible code,
and to avoid executing untrusted code in the secure world. By for-
warding data mappings we keep the memory layout consistent
across worlds and avoid compatibility issues without having to
patch pointers. Fig. 3 shows an example page table.
Data pages. All the data pages, including the stack, have specular
page table entries across worlds: physical, and virtual addresses
are the same, and changes are re�ected back in both worlds. While
special care needs to be taken to ensure code con�dentiality (see Sec-
tion 7.3), this solution has many advantages: since both the normal
and the invisible code can access data expecting it to be located at
the same address, no marshaling, and pointer patching is required,
and we avoid duplicating memory content.
Code pages. The .invisible code pages are loaded into secure
memory, and the related page table entries are added to both worlds.
Since an attacker could try and run arbitrary codewithin the context
of the invisible code, the unprotected code (i.e., the .text section)
is not mapped into the secure world. The secure bit can be applied
with a granularity as small as a page, therefore, normal and invisible
code cannot co-exist in the same page: this does not concern the
developer in practice, and is handled transparently by our system.
Run-time memory synchronization. At run time, code compo-
nents in both worlds might allocate additional memory, requiring
us to synchronize data page table entries for both worlds. Concep-
tually, two “extreme” strategies are available: (1) Update both page
tables immediately after each memory allocation. (2) Update the
page tables only when the secure world actually needs to access
them. To keep modi�cations to the untrusted and trusted kernel to a
minimum, while still allowing fast transitions, we chose a trade-o�
between these strategies: we update the page tables on each context
switch between the two worlds.

#include <stdio.h>
int curr_idx = 0;
+ #define __tarnhelm __attribute__ (( section (�. invisible �)))
+ __tarnhelm void* get_processed_data(struct object *data){
- void* get_processed_data(struct object *data){

increment_counter(data);
// use data to perform some computation
return data;

}
void increment_counter(struct object *data){

if(data != NULL){
data ->counter += curr_idx;
curr_idx ++;

}
}
int main(){

struct object curr_data;
...
get_processed_data(curr_data);
...

}

Listing 1:Example use of the __tarnhelm source code annotation.. The
functions tarnhelm_init and tarnhelm_cleanup are initialization
and cleanup routines that are added automatically.

Figure 3: Page table setup for the normal and the secure world. En-
tries highlighted in red indicate that the secure bit is set (VA=virtual
address, PA=physical address).

While our user thread executes in secure world, the untrusted
OS might swap out data pages used by the invisible code. Right
before switching the execution context, T������� pins all the data
pages (through appropriate metadata) to keep the untrusted OS
from swapping them away. When the execution transitions back
to the normal world, our system sets the dirty bit for each page
directory, and page table entry, so that the untrusted OS knows that
these pages may have been modi�ed (this is useful when a copy of
a given memory page was already stored on persistent storage).

As shown in Section 8, this step imposes most of the run-time
overhead. We allow the developer to allow faster transitions by
disabling this mechanism for performance-critical logic of the ap-
plication that does not require updates to memory mappings.

5.4 System Call Forwarding
T������� transparently forwards system calls from the invisible
code to the untrusted OS (see Fig. 4) and prohibits the invisible
code from invoking any functionality of the trusted OS, preventing
exploiting this attack surface [45].

The trusted OS is noti�ed through an interrupt whenever the
code running in the secure world attempts to invoke a system call.
When an interrupt is received from the invisible code, the trusted
OS starts an RPC call to the untrusted OS. This call eventually leads
to the invocation of the system call handler of the untrusted OS, at
which point the requested system call is executed. Once the system
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Figure 4: System Call Forwarding (secure to normal world).

call is �nished, the system call handler returns, and the control is
passed back to the interrupt handler of the trusted OS. At this point,
the invisible code resumes its execution just after the system call,
as any application would expect.

When the trusted OS transfers control to the untrusted OS, and
vice versa, the current context is updated: all the general-purpose
registers are set to the same values as in the other world. Since the
data pages of the memory (including the stack) are shared between
the two worlds, the side e�ects of the just-executed system call are
visible to the invisible code running in the secure world. We note
that, in contrast to related work, our approach allows us to have a
transparent and generic mechanism to handle almost any system
call, and we do not need to add custom support for the majority
of them. This approach works even with system calls that interact
with complex parts of the untrusted OS, such as stdin and stdout.
However, as discussed in Section 9, there are system calls, such
as the ones related to process management, which need special
handling to make them aware of the invisible code.

Porting the implementation of the system calls to the trusted
OS would solve some of these limitations, however, it introduces a
number of security concerns: the higher the number of system calls
that are implemented (and exposed) by the trusted OS, the greater
is its attack surface, which contradicts our goal of minimizing the
attack surface introduced in the TEE.

Our system allows to protect individual functions with minimal
modi�cations to an application, both the normal and the invisible
code components might be interdependent and expect to be able to
transparently interact with each other. In terms of execution �ow,
the normal code component could invoke a function located in invis-
ible code, or, alternatively, the invisible code could invoke a function
located in the normal code (e.g., a library function). Even within
the execution of a single function it may be necessary to switch
from one world to the other several times. We handle these world
transitions transparently, covering arbitrarily complex scenarios
(in terms of nesting). We implement a mechanism for transparent
world switches by modifying abort handlers in both worlds. In
particular, given our page table setup (see Fig. 3), each attempt to
jump from one world to the other one causes the invocation of
memory-related error handlers.

When the code in the normal world attempts to jump to a mem-
ory address in secure memory (e.g., with a blx instruction), this

Figure 5: Transparent World Switch (secure to normal world).

instruction raises a domain error abort (due to the memory pro-
tection), which triggers the invocation of the untrusted OS’ abort
handler. The abort handler checks transitions to secure memory,
making sure that an invisible code function starts at that address,
creates an RPC request to the trusted OS, and forwards the context
(register values). The trusted RPC handler retrieves the suspended
user-space thread, updates its context, and resumes its execution.
From this moment on, the invisible code is executed. Once the
execution of the invisible code function is complete, the code re-
turns to the caller, e.g., by executing a return instruction. Since
there are no page table entries in the secure world associated with
the .text section (see Fig. 3), this instruction generates a prefetch
abort, which in turn transfers the execution to the prefetch abort
handler of the trusted OS. The handler then passes the updated
context to the untrusted OS via an RPC request and the execution
of the normal world process is resumed after updating its context.

Analogously, when a secure world code component invokes a
function implemented in the code running in the normal world
(see Fig. 5), the execution transparently transitions from the secure
world to the normal world. The novel aspect of our design is that the
invisible code can transparently execute arbitrary code, including
code mapped in non-secure memory, or system calls.

5.5 Inter-World Control-Flow Integrity
As described so far, our design may still allow an attacker to infer
the content of the secure memory: the system call forwarding and
transparent world switch may allow the normal world to redirect
the execution to arbitrary locations in the invisible code. Further-
more, as data pages are shared between both worlds, a malicious
OS could alter the execution of the invisible code. This degree of
freedom could allow an attacker to infer each protected instruction
one by one. To address these concerns, T������� combines two
CFI techniques into a comprehensive IW-CFI: (1) inter-world CFI for
transitions between worlds and (2) intra-world CFI for transitions
within the invisible code. While we base the latter on traditional CFI
techniques, we designed the former speci�cally for our approach.
Table 2 summarizes the actions performed by T�������.

5.5.1 Inter-World Transitions. As none of the data pages of the
invisible code can be trusted, T������� maintains a shadow stack
in the trusted OS’s kernel containing the return values for inter-
world transitions for each active process.
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Table 2: Actions performed by T������� during various transitions to enforce Control-Flow Integrity.

#From/To! Untrusted OS Trusted OS

Untrusted ret N/A Verify and pop the return address from the shadow stack (C��� 1)
OS call N/A Verify function entry point and push return address on the shadow stack (C��� 2)

Trusted ret Pop shadow stack (C��� 3) Verify return location to be valid (C��� 4)
OS call Push return address on the shadow stack (C��� 5) Verify function entry point for indirect calls (C��� 6)

UntrustedOS to trustedOS (U2T).U2T transitions happenwhen
the code running in the normal world tries to jump to the invisible
code, either because of a call to a function or return to a location.
We check that the jump’s target address is either the start of a
function (call instruction, C��� 2) or is at the top of the shadow
stack (return instruction, C��� 1). If this is not the case, we detect
this as CFI violation and kill the process in the trusted OS.
Trusted OS to untrusted OS (T2U). Similar to U2T, T2U transi-
tions happen because of a call (C��� 4) or a return (C��� 3) from
invisible code into code in the normal world. Unlike U2T transitions,
we do not perform any veri�cation of the target address; we just
maintain the shadow stack consistency by push and pop operations.
This is an optimization allowed by our threat model, which assumes
that any code running in the normal world is untrusted, and its
content could be modi�ed dynamically (as explained in Section 3).

5.5.2 Intra-world Transitions. T������� enforces intra-world CFI
to ensure that transitions within the invisible code itself are pro-
tected: as the stack is shared, during the execution of the invisible
code on a multi-core processor, a malicious OS could change the
return address on the stack to control the invisible code’s execution.
Call instruction. If the target address of an indirect call instruction
belongs to invisible code, it should be the beginning of a function to
ensure that call instructions within the invisible code can redirect
the execution to the beginning of a function (C��� 5).
Return instruction. If a return instruction is redirecting the exe-
cution within the invisible code, we verify that the return address
is valid by checking that the previous instruction (i.e., return ad-
dress) is either a direct call instruction to the current function or
an indirect call instruction (C��� 6).
Jump instructions. The most challenging case requires checking
the target of indirect jmp instructions against a set of valid targets,
and it is currently not implemented in our prototype. Nonetheless,
this is an orthogonal research direction that is well-explored by
previous work (e.g., MoCFI [22]).
We perform our CFI enforcement by using only registers, as any
instruction in any of the data pages could be a�ected by a concur-
rently running untrusted OS, especially on a multi-core processor.
Since on ARM all indirect call instructions (i.e., bl and blx) are
register-based, we check the destination address by using inline
compile-time instrumentation. The return path, where the destina-
tion address could come from the stack, is hard to enforce using
register only instructions. Therefore, we implement a dedicated
system call in the trusted OS, which prevents a malicious OS from
a�ecting the return address.

Even though IW-CFI prevents arbitrary execution redirection
during inter-world transitions, an attacker can still redirect the
execution of invisible code to one of the valid locations. However,

they do not have access to a �ne-grained mechanism to infer each
instruction separately and can only deduce addresses of function
entry points and the location of call instructions.

6 IMPLEMENTATION
We implemented T������� based on the default OP-TEE 2.3.0 32-
bit QEMU con�guration [1]. We added 3.11K lines of code (LOC)
to the TCB: 1,415 LOC to the OP-TEE OS, 566 to the Linux abort
handler and include �les, and 1,129 to the OP-TEE Linux driver.

Transparent execution. The bootstrapping phase consists of cre-
ating a process (or a session) in the secure world and loading the
invisible code section.We then remove the memory pages of the sec-
tion and insert �ctitious memory pages in the page table, with the
same starting physical address as that of the invisible code residing
in the secure world. When the application in the normal world tries
to jump to the invisible code a prefetch abort is trapped, and the
modi�ed abort handler forwards the execution to the secure world
via an OPTEE_SMC_TARNHELM_EXECUTION_FORWARDING command.
OP-TEE then bootstraps the execution of the user thread and starts
executing it, since we only map the data memory pages. When the
execution needs to return to the normal world (i.e., via a bx lr
instruction) an OPTEE_MSG_RPC_CMD_TARNHELM_PREFETCH_ABORT
is issued. OP-TEE’s RPC mechanism in the normal world is then
interrupted to allow the user thread that is aborted in the normal
world to resume. Finally, the user thread is aborted again, and as
soon as another abort happens in the normal world, execution in
the secure world is restarted by returning from the RPC request that
was left interrupted. System calls can be serviced by the normal
world by requesting the service via RPC (illustrated in Fig. 4). Fig. 9
in Appendix A.1 further illustrates this forwarding mechanism.

Inter-world CFI. For every process that is executing invisible
code, we implement the shadow stack as a per-process structure of
128 entries in the trusted kernel. We verify inter-world transitions
during system call forwarding and transparent world switching,
i.e., in the interrupt handler (Fig. 4) and the abort handler (Fig. 5).

As mentioned in Section 5.5.2), using inline instrumentation for
the veri�cation of the return path would make our system vulner-
able to tampering from the untrusted OS, e.g,. time-of-check to
time-of-use (TOCTTOU) attacks [16]. Thus, we introduce a dedi-
cated system call in the trusted OS to perform the veri�cation.

To enforce CFI within the trusted OS (i.e., C��� 5, 6), we im-
plemented an LLVM [40] pass which performs the following in-
strumentation for all the functions within the .invisible code
section: (1) Before every indirect call instruction (C��� 5): we retrieve
the target address and if it belongs to the invisible code section, we
verify that it is the beginning of a function. (2) Before every return
instruction (C��� 6): we add a system call, i.e., svc instruction with
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the system call number 0x7900 and return address (fetched using
llvm.returnaddress) as the argument.

Finally, to ease the veri�cation of function entry points (C��� 1
and 5), we add an array containing the addresses of all the invisible
functions to the .invisible section.

7 SECURITY EVALUATION
In this section, we discuss T�������’s TCB and attack surface,
how T������� mitigates attacks against code con�dentiality, as
well as potential security concerns raised by our design choices.

7.1 TCB Size and Attack Surface
T�������’s additions to the TCB are small (3.11 KLOC, see Sec-
tion 6), compared to those of other approaches (see Table 1 in
Section 2.2), primarily due to the properties of its design. Related
work focused on adapting code to run in isolated execution envi-
ronments and often includes runtime libraries that must be linked
with the protected code, making them part of the TCB.

T�������’s system and function call forwarding mechanism,
instead, avoids the need for any runtime library at all. The same
forwarding mechanism, combined with the mapping of memory
for the protected code, provides isolation not only from the normal
world, but also from the rest of the secure world: like in Private-
Zone [36], the “protected” code does not have the possibility to
interact with the trusted OS or other TAs. Thus, we do not consider
the invisible code as part of our TCB. As we discuss later in this
section, our design is resilient to invisible code containing security
vulnerabilities or attacks that gain execution within its context.

7.2 Attacks on Code Con�dentiality
Instruction inference attacks. An adversary controlling the un-
trusted OS may attempt to infer the instructions of invisible code
one by one: e.g., by jumping to arbitrary positions in the protected
code and by monitoring how the registers and data are modi�ed,
they can infer that a given instruction is adding the content of two
registers. T������� protects from this attack by enforcing CFI.
The attacker can only infer the location of call and return instruc-
tions, as well as function entry points, as these would be valid CFI
targets. Thus, the attacker can only observe, in a black-box way,
the net e�ect of entire functionality of a protected function. See
also Appendix A.2.1 for a more in-depth discussion.
Control-�ow redirection attacks. Since the data pages, includ-
ing the stack, are shared with the untrusted OS, and may contain
code pointers like a return address, an untrusted OS has a chance to
hijack the control �ow. In fact, an attacker controlling the untrusted
OS can modify the code pointers in the shared data sections to redi-
rect the execution to an arbitrary location in the invisible code.
This attack could be executed stealthily on a multi-core processor,
where a malicious OS can change the code pointer concurrently
while the invisible code is being executed on a di�erent core. Once
again, CFI protects from these attacks. See also Appendix A.2.2 for
a more in-depth discussion.
Data-only attacks.A similar argument applies to data-oriented at-
tacks [33, 34] and Block Oriented Programming attacks [35], which
assume access to the code pages. This assumption does not hold in

T������� as the target code pages are not readable due to execute-
only memory protection.
Iago attacks. As part of these types of attacks an untrusted OS
maliciously alters its reply to the trusted OS in order to a�ect its
security [15]. Memory mappings could be maliciously altered by
the untrusted OS by introducing a double mapping between data
and a page containing invisible code. We prevent this by checking
for problematic conditions, i.e., for an overlap between non-secure
memory and memory containing invisible code.
Blind ROP. This advanced exploitation technique allows an at-
tacker to “blindly” compromise a system without having access
to its binary by automatically extracting and combining remotely
available ROP gadgets [12]. T������� is resilient to this attack: a
core assumption of Blind ROP is to identify a “read” gadget and to
then use it to leak the rest of the binary. In T�������, however,
memory containing invisible code cannot be read due to the execute-
only permission. Moreover, CFI limits the capability of Blind ROP
of “exploring” the invisible code. Thus, we argue that this attack is
not applicable in our context: even if such an arbitrary-read gadget
were found, it is not possible to weaponize it.
Vulnerabilities in the invisible code.One other (legitimate) con-
cern is that the invisible code may contain memory corruption
vulnerabilities, which an attacker could exploit to leak con�dential
code. While it is certainly possible that these vulnerabilities may ex-
ist, we note that they would not provide any additional advantage to
the attacker. In fact, an attacker would exploit these vulnerabilities
to obtain control over the program counter—something they can
already achieve by modifying the unprotected data and the stack,
as discussed earlier. Once again, execute-only memory and CFI
prevent that the attacker can tamper with the code con�dentiality.
Compromised TA. Code con�dentiality in T������� can even
survive the compromise of standard TAs o�ered by the trusted OS
(which is usually considered a very strong form of compromise).
Invisible code exists as a user-space process separate from other
TAs, thus, process separation ensures that compromised TAs are
not able to read it. Vice versa, vulnerabilities in the invisible code
cannot be used by the attacker to gain advantage over other TAs
running in the same TEE.
Emulated TEE. An attacker may emulate a TEE and could thus
leak the invisible code. However, as discussed in Section 4, we can
utilize the attestation features of TrustZone to only allow code ever
to be executed on a real, “certi�ed” hardware-backed TEE, avoiding
a loss of con�dentiality by emulating a TEE.

7.3 Security Implications of Design Decisions
Data pages are unprotected. Data pages, including the stack, are
not protected, and shared. By abusing this aspect, an attacker may
trick the invisible code to jump to arbitrary location or to disclose its
own code through data-oriented attacks [16]. Such attacks, require
a high degree of manual interaction by the attacker and per-app
e�ort, signi�cantly raising the bar, and can be further mitigated by
AArch64’s execute-only memory (XOM) [5]. Our memory mapping,
and forwarding mechanisms, complemented with execute-only
memory, and CFI, prevent these attacks from leading to any form
of compromise of the trusted OS.
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Table 3:Microbenchmark of T�������’s individual components.

Component Time

Invisible code initialization 0.316s
Invisible code cleanup 0.44ms
System call forwarding 116.88�s
Data mapping (secure world) 71�s
Data mapping (normal world) 231.337�s
IW-CFI indirect call (trusted OS, C��� 6) 0.111�s
IW-CFI return (trusted OS, C��� 4) 19.431�s

Invisible code is not modi�ed. Except for the CFI pass, the invis-
ible code is not modi�ed, and it is run “as is.” That is, the invisible
code is not aware of the di�erent privilege boundaries and which
input can or cannot be trusted. We note that, as per the point above,
all data is already considered as untrusted. Even under this strong
assumption, we argue that T������� is resilient to the attacks
described in this section.
Untrusted code in the TEE allows confused deputy attacks?
Machiry et al. [45] demonstrated that one could exploit vulnerable
TAs to mount a confused deputy attack and compromise the trusted
OS. T������� is not a�ected by this attack as it executes invisible
code as a special form of TAs that cannot request servicing system
calls from the trusted OS. Thus, even if the attacker obtains code
execution over the invisible code, they would virtually not have
any chance of compromising the trusted OS.
Untrusted code in the TEE allows TA compromise? One re-
maining concern is that an untrusted TA may compromise other
TAs running in the same TEE. However, thanks to process isolation
already implemented by OP-TEE the attacker does not have any
ability to interact with or read the memory of other TAs.

8 PERFORMANCE EVALUATION
We evaluate T������� on QEMU emulating an ARMv7 Cortex-
A15 with soft-mmu, running on an Intel Core 8-core i7-930 CPU
(2.80GHz) desktop machine with 12GB of memory.
Microbenchmarks. We measured the overhead introduced by
T�������’s individual components as an average over 2,000 exe-
cutions (see Table 3). While the initialization phase of the invisible
code takes a considerable time of 316ms, during run time, T����
���� has a reasonable performance: The system call forwarding
incurs an overhead of ⇠117�s, with one of the main contributing
factors being the world switch (⇠28�s); the synchronization of data
mappings incurs⇠303�s overhead, out of which⇠232�s are spent in
the normal world. This is because the untrusted OS has to perform
an entire page table walk of the process, pin the corresponding
pages, and copy the virtual-to-physical mappings to the shared
memory. In the secure world, the trusted OS has to allocate a page
table and add the corresponding mappings, taking 71�s. As men-
tioned in Section 5.3, the e�ect of the data mapping overhead on the
overall performance can be greatly reduced by using on-demand
synchronization of the data mappings. Finally, the overhead im-
posed by IW-CFI is minimal, and, in the case of a return (C��� 4)
with ⇠19.431�s only slightly over a system call time of ⇠18.795�s.
Overhead of transparent world switches.We further measured
the overhead of transparent world switches between the normal
world (NW) and the secure world (SW). Table 4 shows the results.

Table 4: Overhead of the Transparent World Switch. Avg. time of
inter-world call and return in three scenarios: with both the for-
warding of data mappings and IW-CFI enabled (w/ DM+IWCFI),
with just the forwarding of datamappings enabled (w/ DM fwd) and
disabled (w/o DM fwd). id-call stands for indirect call (i.e., blx).

Direction w/ DM+IWCFI w/ DM fwd w/o DM fwd

SW
call����! NW

ret���! SW 495.529�s 494.539�s 152.093�s

NW
call����! SW

ret���! NW 505.348�s 497.549�s 151.298�s

SW
id-call������! NW

ret���! SW 514.903�s N/A N/A

Figure 6: LMbench overhead.

It is expected to see similar overheads for transitions in either

direction, i.e., SW
call���! NW

ret��! SW, and NW
call���! SW

ret��! NW.
For each transition, the majority of the overhead is caused by the
data mappings: ⇠ 343�s (494.539�s – 152.093�s). Again, on-demand
synchronization can be used to reduce this overhead. Furthermore,
IW-CFI adds almost no overhead. However, there is a slight increase

in overhead for the NW
call���! SW transition. InC��� 1, the additional

checks IW-CFI has to perform compare to a push to the shadow
stack (C��� 3). There is an additional overhead of ⇠19�s (514.903�s
– 495.529�s) for the transition SW

id-call�����!NW because of the checks
performed by the IW-CFI for the indirect calls (C��� 5).
LMbench results. Related work mostly relies on LMbench [47]
for microbenchmarks. For each test case, we annotated the main
function performing the test as .invisible and measured the
overhead. For almost all test cases, the main overhead is caused by
the forwarding of data mappings. IW-CFI adds negligible overhead,
and overall the overhead is comparable with the one imposed by
related work (see Figure 6 and detailed results in Table 5).
Macro experiment with a real-world game. As an indicator for
real-world performance we evaluate T������� by implementing
two di�erent “bonus” functionalities to be protected for the game
2048 (https://github.com/mevdschee/2048.c). The �rst bonus di-
vides all tiles by 2 and requires only one round trip in the secure
world, representing a best-case scenario. The second cleans a ran-
dom tile, representing a worst-case scenario, as it requires one round
trip to secure world, and two back to the normal world from the se-
cure context to a low latency function: glibc’s rand implementation
providing results in line with the null microbenchmark. Figure 7
shows the run-time overhead with the di�erent features of T����
���� enabled. To further stress test the data mapping mechanism,
we repeat the macro experiment allocating dirty data pages: Fig-
ure 8, shows a slow (+1x/page) and linear increase of the overhead
when growing the data pages allocated for the protected process.
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Table 5: LMbenchmicrobenchmark.Overhead of T������� and as reported by related work, compared to the baseline Linux OS in 3 scenarios:
with the forwarding of data mappings enabled (w/ DM fwd), disabled (w/o DM fwd), with data mappings and IW-CFI enabled (w/ DM+IWCFI).

Test case T������� TrustShadow InkTag Virtual Ghost
Baseline w/o DM fwd Overhead w/ DM fwd Overhead w/ DM+IWCFI Overhead [29] [31] [21]

open/close 173.561�s 646.117�s 3.72x 1589.438�s 9.15x 1763.000�s 10.15x 1.40x 4.83x 7.95x
signal handler install 47.935�s 508.761�s 10.61x 1564.208�s 32.37x 1612.143�s 33.63x 2.36x 3.24x –
fork+exec – N/A – N/A – N/A – 2.37x 4.20x 3.04x
select (200fd) 141.400�s 602.355�s 4.25x 1707.142�s 12.07x 1717.500�s 12.14x 1.25x 3.40x –
read 36.160�s 343.406�s 9.49x 1067.333�s 29.51x 1093.747�s 30.24x – – –
write 156.179�s 279.523�s 1.78x 668.256�s 4.27x 673.125�s 4.30x – – –
stat 97.330�s 407.037�s 4.18x 1155.340�s 11.87x 1168.556�s 12.00x – – –

Figure 7: Overhead for the protected functionality in the game 2048.

Figure 8: Overhead with growing data map and forwarding enabled.

9 LIMITATIONS AND FUTUREWORK
Our current prototype has a number of technical limitations. T����
���� does not support fork() of the process in normal world or in
the secure world. In the former case, support for fork() could be
implemented by adding a new command in the trusted OS to allow
forking of the invisible process and hooking into copy-on-write
functionality in the normal world to keep mappings synchronized
with the secure world, similar to OverShadow [17]. In the latter case,
a threading model in which the component running in the secure
world is a single thread would be well-suited for T�������’s use
cases. System calls that allow arbitrary control transfers, such as
setjmp(), longjmp(), and setcontext(), are also not supported,
as they violate the control �ow and thus are prohibited by IW-
CFI. Event handlers and other asynchronous code can also not be
protected with our prototype.

The amount of protected code is limited by the amount of �xed
physical memory available to the secure world in OP-TEE. This can
be changed, but OP-TEE currently requires that this reservation is
�xed at compile time. Moreover, T������� assumes the protected
code to be read-only and, as such, code that is self-modifying or

position-independent is not supported. Although trusted OSes gen-
erally do not support ASLR [10], it would be possible to support it
by bundling relocation entries falling in the invisible code section,
with the encrypted code, and parsing them in our loader.

Tarnhelm has been benchmarked with on a 32-bit QEMU since
at the time of writing, it‘s the only platform meeting our assump-
tion of a shared memory layout between worlds. While we would
ideally like to benchmark our approach on real device, we believe
that our preliminary results are promising and show that our ap-
proach would incur a reasonable overhead. The lack of execute-only
memory permission settings in our prototype, which was intro-
duced with AArch64, can be mitigated with a compile-time VA bit
masking of memory accesses as introduced by Virtual Ghost [21],
making our approach applicable to low-power edge-computing
devices, such as those running on the ARMv8-m architecture with
TrustZone extensions.

Finally, supporting complex runtimes such as an entire Java
VirtualMachine (JVM) or a Python interpreter is not trivial, as doing
so while also deploying IW-CFI becomes impractical. Implementing
protection similar to IW-CFI or greater can still be achieved by
disabling access to the data pages from the normal world while the
interpreter is running as invisible code.

10 CONCLUSION
T������� leverages a Trusted Execution Environment (TEE) for
the con�dential execution of code, e.g., functionality o�ered through
in-app purchases in mobile applications. T������� allows develop-
ers to selectively protect parts of their applications through simple
source code annotations without any further code modi�cations.
T������� transparently executes the invisible code in the secure
world, while allowing unsecured components to continue running
in the normal world, and facilitating interactions between both
components, secured by our novel inter-world CFI enforcement.

Our preliminary evaluation indicates that the performance over-
head is reasonable. While we acknowledge that our current pro-
totype1 has limitations, we provide it to the community to build
upon our techniques and evaluate it on real-world applications
for di�erent use cases. We believe our work shows that a better
(and practical) alternative to obfuscation is feasible, and we hope
to inspire further work in this area.

1Source code available at https://github.com/ucsb-seclab/invisible-code
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A APPENDIX
A.1 Implementation Details

Figure 9: Sequence diagram of the transparent world switchwhen (1)
starting and (2) resuming the execution of invisible code.
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A.2 Attack Scenarios
A.2.1 Instruction Inference A�ack. We demonstrate the importance
of protecting transitions between the normal and the secure world
by presenting a possible attack that could bemounted by an attacker
having full control over the untrusted OS to infer the content of
the invisible code.

Consider the following ARM assembly code snippet under the as-
sumption that an attacker can control the content of all the registers
and knows the memory address:
00001A24 mov r0, r3
00001A26 ldr r2, [r0]

During the execution in the untrusted OS, an attacker can start
with �lling all general purpose registers with small unique prime
numbers, the PC set to 0x00001A24, and switch to the trusted OS.
Without IW-CFI the trusted OS has to blindly trust the content of
the registers and forward the execution to 0x00001A24 with the
corresponding register content. Now, a read data abort happens
at 0x00001A26 and the execution switches back to the untrusted
OS (controlled by the attacker). Given the PC, the location of the
data abort and the content of the registers, the attacker can check
if any of the registers contains the data abort address. In our case,
the abort address is the same as the content of register r0 and
the attacker can infer that the instruction at 0x00001A26 should be
ldr <some_register>,[r0]. Furthermore, from the content of the
current registers, given that the initial PCwas 0x00001A24, it is easy
to deduce that the instruction at address 0x00001A24 should be mov

r0,r3. The initial loading of the registers with prime numbers helps
in solving the cases where arithmetic instructions are involved.

In this way, without IW-CFI, an attacker controlling the un-
trusted OS can leak the content of invisible code instruction by
instruction.

A.2.2 Control-Flow Redirection A�ack. It is not enough to protect
only the inter-world transitions because the data pages including
the stack are shared with the untrusted OS. The data pages could
contain code pointers like a return address. An attacker controlling
the untrusted OS can modify the code pointers in the shared data
sections to redirect the execution to an arbitrary location in the
invisible code. This attack could be executed stealthily on a multi-
core processor, where a malicious, untrusted OS can change the
code pointer concurrently while the invisible code is being executed
on a di�erent core.

To prevent these attacks, we use a coarse-grained CFI mecha-
nism to protect all the indirect calls and return instructions. The
enforcement should be performed by using only registers, as any
instruction in any of the data pages could be a�ected by a concur-
rently running untrusted OS speci�cally on a multi-core processor.
In the ARM architecture, that has all of its indirect call instructions
register based i.e., bl and blx, we can check the destination address
by using inline compile-time instrumentation. However, for the
return path, where the destination address could come from stack,
it is hard to enforce using register only instructions. We implement
this using a system call in the trusted OS kernel; this prevents a
malicious, untrusted OS from a�ecting the return address.
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