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Abstract—Automated techniques and tools for finding, ex-
ploiting and patching vulnerabilities are maturing. In order
to achieve an end goal such as winning a cyber-battle, these
techniques and tools must be wielded strategically. Currently,
strategy development in cyber – even with automated tools –
is done manually, and is a bottleneck in practice. In this paper,
we apply game theory toward the augmentation of the human
decision-making process.

Our work makes two novel contributions. First, previous work
is limited by strong assumptions regarding the number of actors,
actions, and choices in cyber-warfare. We develop a novel model
of cyber-warfare that is more comprehensive than previous work,
removing these limitations in the process. Second, we present an
algorithm for calculating the optimal strategy of the players in
our model. We show that our model is capable of finding better
solutions than previous work within seconds, making computer-
time strategic reasoning a reality. We also provide new insights,
compared to previous models, on the impact of optimal strategies.

I. INTRODUCTION

In recent years, security researchers have pursued automated

vulnerability detection and remediation techniques, attempting

to scale such analyses beyond the limitations of human hackers.

Eventually, automated systems will be heavily, and maybe

predominantly, involved in the identification, exploitation, and

repair of software vulnerabilities. This will eliminate the bot-

tleneck that human effort represented in these areas. However,

the human bottleneck (and human fallibility) will remain in

the higher-level strategy of what to do with automatically

identified vulnerabilities, automatically created exploits, and

automatically generated patches.

There are many choices to make regarding the specificities

of such a strategy, and these choices have real implications

beyond cyber-security exercises. For example, nations have

begun to make decisions on whether to disclose new software

vulnerabilities (zero-day vulnerabilities) or to exploit them

for gain [17, 36]. The NSA recently stated that 91% of

all zero-days it discovers are disclosed, but only after a

deliberation process that carefully weighs the opportunity cost

from disclosing and finally forgoes using a zero-day [28].

Before disclosure, analysts at the NSA manually consider

several aspects, including the potential risk to national security

if the vulnerability is unpatched, the likelihood of someone else

exploiting the vulnerability, and the likelihood that someone

will re-discover the vulnerability [11].

In this paper, we explore the research question of augmenting

this human decision-making process with automated techniques

rooted in game theory. Specifically, we attempt to identify the

best strategy for the use of an identified zero-day vulnerability

in a “cyber-warfare” scenario where any action may reveal

information to adversaries. To do this, we create a game model

where each new vulnerability is an event and “players” make

strategic choices in order to optimize game outcomes. We

develop our insight into optimal strategies by leveraging formal

game theory methodology to create a novel approach that can

calculate the best strategy for all players by computing a Nash

equilibrium.

Prior work in the game theory of cyber warfare has serious

limitations, placing limits on the maximum number of players,

requiring perfect information awareness for all parties, or only

supporting a single action on a single “event” for each player

throughout the duration of the entire game. As we discuss

in Section II-B, these limitations are too restrictive for the

models to be applicable to real-world cyber-warfare scenarios.

Our approach addresses these limitations by developing a

multi-round game-theoretic model that accounts for attack

and defense in an imperfect information setting. Technically,

our game model is a partial observation stochastic game

(POSG) where games are played in rounds and players are

uncertain about whether other players have discovered a zero-

day vulnerability.

Additionally, our model supports the concept of sequences of

player actions. Specifically, we make two new observations and

add support for them to our model. First, attacks launched by a

player can be observed and reverse-engineered by that player’s

opponents, a phenomenon we term “attack ricocheting” [4].

Second, patches created by a player can be reverse-engineered

by their opponents to identify the vulnerability that they were

meant to fix, a concept called “automated patch-based exploit

generation” (APEG) in the literature [6]. This knowledge, in

turn, can be used to create vulnerabilities to attack other players.

A central challenge in our work was to develop an approach

for computing the Nash equilibrium of such a game. A Nash

equilibrium is a strategy profile in which none of the players

will have more to gain by changing the strategy. It characterizes

the stable point of the game interaction in which all players are

rationally playing their best responses. However, computing a

Nash equilibrium is known as a Polynomial Parity Argument

on Directed Graphs-complete (PPAD-complete) problem [14],
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which is believed to be hard. We overcome this problem in

our context by taking advantage of specific characteristics

of cyber-warfare games, allowing us to split the problem of

computing the Nash equilibrium into two sub-problems, one

of which can be converted into a Markov decision process

problem and the other into a stochastic game. Our algorithm

is able to compute the Nash equilibrium in polynomial time,

guaranteeing the tool’s applicability to real-world scenarios.

Using the new model and the new algorithm, our tool finds

better strategies than previous work [25, 31].

Contrary to previous work, we find that players have

strategies with more utility than to attack or to disclose all

the time throughout the game. Specifically, we find that in

some situations, depending on various game factors, a player

is better served by a patch-then-attack strategy (e.g., the NSA

could disclose the vulnerability, patch their software, and then

still attack) or by a pure disclose strategy (see § VI). These

are new results not predicted by previous models. Our tool

not only found the order of the actions, but also provided a

concrete plan for actions over rounds, such as “patch, then

attack after 2 rounds of patching”.

Moreover, we observe that a previous result of prior work in

the area – the concept that it is always optimal for at least one

player to attack – does not stand in our expanded model (see

§ VI). We demonstrated this by showing an example where the

optimal strategy for both players is to disclose and patch. We

also observe that a player must ricochet and patch fast enough

in order to prevent his opponent from attacking and forcing

the vulnerability disclosure. If a player is only able to either

ricochet or patch fast enough, they might still get attacked.

The optimal strategies derived from our models have real-

world consequences – in a case study in this paper, we apply

our model to a recent fully-automated cyber security contest

run by DARPA, the Cyber Grand Challenge, which had 4.25

million dollars in prizes. Our study shows that an adoption

of our model by the third-place team, team Shellphish, would

have heavily improved their final standing. The specific strategy

picked in the approach to cyber warfare matters, and these

choices have real-world consequences. In the CGC case, the

consequence was a difference of prize winnings, but in the

real world (the challenges of which the CGC was designed to

mirror [12]), the difference could be more fundamental.

Overall, this paper makes the following contributions:

• We develop a novel model of cyber-warfare that is more

comprehensive than previous work because it 1) considers

strategies as a sequence of actions over time, 2) addresses

players’ uncertainty about their opponents, and 3) accounts

for more offensive and defensive techniques that can

be employed for cyber-warfare, such as ricocheting and

APEG (Section III).

• We present an algorithm for calculating the optimal strategy

of the players in our model. The original model is a POSG

game, which, in general, is intractable to solve [23]. We take

advantage of the structure of cyber-warfare and propose a

novel approach for finding the Nash equilibrium (Section IV).

• We show that our model is capable of finding better

solutions than previous work within seconds. We also

provide new insights, compared to previous models, on the

impact of optimal strategies. We demonstrate that optimal

strategies in a cyber-warfare are more complex than previous

conclusions [25, 31], and one must take into consideration

the unique aspect of cyber-warfare (versus physical war),

i.e., that exploits can be generated by the ricochet and

APEG techniques. This insight leads to new equilibriums

not predicted by previous work [25, 31] (Section VI).

II. BACKGROUND

In this section, we review the concepts that are relevant to

our cyber security model. Furthermore, we present an in-depth

discussion of existing work in game-theoretical modeling of

cyber warfare.

An in-depth understanding of game theory is not required for

an overall understanding of our work, and we do not include a

dedicated discussion on game theory. For the dedicated reader,

there are many excellent game theory resources that can provide

a deep understanding [20, 33].

A. Game Models & Nash Equilibriums

Game-theoretic approaches cover a range of game models,

depending on the game in question. We show the relationship

of game models in Figure 1.

In cyber security games, players hide information about

their exploit development. To accommodate this, we set up the

model as an incomplete information game where the players in

the model do not know whether other players have discovered

a zero-day or not. This assumption is natural: an exploit is

only a zero-day from the perspective of each player having

never seen it before.

Because cyber security games last from hours to days, it is

possible for players to take multiple actions in a game. For

example, a player could hold a vulnerability at the beginning

of the cyber security game and exploit other players later. In

order to support these strategies, we design our model as a

multi-stage game.

Furthermore, the players may find a vulnerability at any

time during the game, changing the state of the game from

that point. This property is supported by the concept of a

stochastic game (SG). For an SG, the game played at any

given iteration depends probabilistically on the previous round

played and the actions of players in previous round. SG can

also be viewed as a multi-player version of Markov Decision

Process (MDP) [15].

Combining these concepts, if a game 1) has players with

incomplete information, 2) consists of multiple rounds, and

3) players’ knowledge may change during the game, then the

game is a partially observable, stochastic game (POSG). A

POSG can also be considered as a multi-player equivalent of

a partially observable Markov decision process (POMDP).

A Nash equilibrium is a strategy profile in which players will

not have more to gain by changing their strategy. In our paper,

we will focus on building the game model and finding the Nash
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Fig. 1: The relationship of game models.

equilibrium of the game. Although there are cases of games

calling for significantly more refined equilibrium concepts (e.g.,

perfect Bayesian equilibrium or sequential equilibrium), we

follow the argument from previous work, which claims that

the generally-coarser concept of Nash equilibrium adequately

captures the strategic aspects of cyber security games [25].

B. Game Theory of Cyber Warfare

Game theory has been applied in many security contexts,

most commonly with a focus on network security or the

economics of security, e.g., [1, 7, 8, 16, 21, 22, 24, 26, 29, 35].

In our paper, we focus exclusively on game theory as it is

applied specifically to cyber-warfare situations. In this section,

we will describe existing approaches to modeling cyber-warfare

and discuss our improvements over these techniques.

Moore et al. [25] proposed the cyber-hawk model in order

to find the optimal strategy for both players. The cyber-hawk

model describes a game where each player chooses to either

keep vulnerabilities private (and create exploits to attack their

opponent) or disclose them. They conclude that the first player

to discover the vulnerability should always attack, precluding

vulnerability disclosure.

However, this model is limited to a one-shot game where

players are only allowed to make one choice between attack and

disclosure. After this choice, the game is over. This limitation

makes the approach an unrealistic one for modeling real-life

cyber-warfare.

The cyber-hawk model raised new questions that need

to be explored, such as if a player determines to use a

vulnerability offensively, how soon they should commence the

attack. Schramm [31] proposes a dynamic model to answer this

question. The model indicates that waiting reduces a player’s

chance of winning the game, which implies that if a player

determines to attack, he should act as soon as possible.

The Schramm model relies on a key assumption of full player
awareness, requiring that players know whether, and how long

ago, their opponent discovered a vulnerability. This assumption

is unlikely to be valid in real-world scenarios, because nations

keep the retained vulnerabilities (if they have any at all) secret.

Additionally, it is still limited to two players and supports only

one single taken action, after which the game ends.

Given the latest defensive and offensive techniques [2, 4, 34]

and the evaluation on the impacts of zero-day attacks [5, 19],

we observe three things missing in previous models that are

vital for choosing players’ best strategies in cyber-warfare.

First, players in a cyber-warfare often have multiple actions

over multiple rounds. As an example of a multiple round

game, consider the NSA statement above. Although the NSA

claimed to disclose 91% of all zero-day vulnerabilities, it did

not mention whether they ever exploited (even if just a single

machine) before or after the disclosure.

Second, players in cyber-warfare are uncertain whether other

players have discovered vulnerabilities. Instead, players use

observations such as network traffic and patch releases to infer

possible states. This uncertainty influences player decisions, as

a player must account for all the possible states of the other

players in order to maximize his expected utility. Previous

approaches cannot be extended to handle multiple steps with

partial information and dependencies.

Third, both attacking and disclosing reveal the information

of a vulnerability. Previous work showed that a patch may be

utilized by attackers to generate new exploits [6]. However, we

show that attacking leaks information, and we introduce the

notion of ricochet into the game theory model. In the automated

patch-based exploit generation (APEG) [6] technique, a player

infers the vulnerable program point from analyzing a patch

and then creates an exploit. Similarly, in the ricochet attack

technique, a player detects an exploit (e.g., through network

monitoring or dynamic analysis) and then turns around and

uses the exploit against other players. For instance, Costa et

al. have proposed monitoring individual programs to detect

exploits, and then replaying them as part of their technique

for self-certifying filters [9], where the filters self-certify by

essentially including a version of the original exploit for replay.

Since then, fully-automated shellcode replacement techniques

have emerged, making automatic exploit modification and reuse

possible [4]. Both inadvertent disclosures (through attacks) and

intentional disclosures (and patching) create new game actions

which previous work does not account for. Policy makers and

other users of previous models [25, 31] can reach incorrect

conclusions and ultimately choose suboptimal strategies.

III. PROBLEM STATEMENT AND GOALS

In this section, we formally state the cyber-warfare game.

We will describe the problem setup, lay out our assumptions,

present the formalized POSG model and finally clarify the goal

of our work.

A. Problem Setup

The cyber-warfare game needs to be general and compatible

with known cyber-warfare events such as the Stuxnet event.

One requirement is that the cyber-warfare game model must

support players with comprehensive techniques, rather than

the simple choices that prior models allow. Figure 2 shows

the workflow of the player in our model. There are three

ways for a player to learn of a vulnerability. A player may

detect an attack, receive the disclosure from other players, or

discover the vulnerability by himself. After a player learns a

vulnerability, the strategy generator will compute the strategy

for the vulnerability.

1) Players

All players are participating in a networked scenario. They

are capable of finding new vulnerabilities, monitoring their own
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Fig. 2: The workflow of the player in the cyber-warfare game.

Parameter Definition

pi(t)
The probability distribution over time that
player i discovers a vulnerability at round t.

qi(t)
The probability to launch a ricochet attack with
exploits that player i received in the previous
round.

hi(t)

The ratio of the amount of patched vulnerable
resources over the total amount of vulnerable
resources by t rounds after the vulnerability is
disclosed.

δi

The number of rounds required by player
i to generate a patch-based exploit after a
vulnerability and the corresponding patch are
disclosed.

ui(t)
The dynamic utility that player i gains by
attacking his opponents at round t.

TABLE I: Parameters for player i.

connections and ricocheting an attack, patching after vulnera-

bility disclosure, and generating patch-based exploits. Players

may have different levels of skills, which are characterized

using the parameters listed in Table I.

These parameters are a substantial component of our model.

For player i, the vulnerability discovery skill is denoted by

pi(t), which is a function of probability that the player discovers

a zero-day vulnerability distributed over rounds. Their level

of ricochet ability is characterized by parameter qi(t), which

is the probability of launching a ricochet attack with exploits

they recovered from the traffic received in the previous round.

A player’s patching skill is represented by function hi(t).
hi(t) is the ratio of the amount of patched vulnerable resources

over the total amount of vulnerable resources by t rounds after
the vulnerability is disclosed. In the real world, while patching

a single computer might take only minutes, patching all

vulnerable resources (depending on the organization, containing

thousands of instances) might take days to months [5]. While

one player is patching, other players could possibly attack, and

any vulnerable resources that have not been patched will suffer

from the attack.

The last parameter, δi, describes player i’s level of APEG

skills, which is the number of rounds required by the player

to generate a patch-based exploit after a vulnerability and the

corresponding patch are disclosed. Finally, the attacking utility,

denoted as ui(t), encodes the dynamic utility that player i
gains by attacking his opponents at round t before the patch

is released.

2) Player States and Actions

Each player i has a state denoted by θi in each round, where

θi ∈ Θi = {¬D, D}. ¬D refers to the situation in which a

player has not yet learned of a zero-day, while D refers to the

situation in which a player knows the vulnerability, either by

actively finding the vulnerability and developing an exploit or

by passively “stealing” the exploit from an attack or a patch.

In each round, players choose one of the following actions:

{ATTACK, PATCH, NOP (no action), STOCKPILE}, where the

semantics of ATTACK, PATCH, and NOP have their literal mean-

ing, and STOCKPILE means holding a zero-day vulnerability

for future use.

Players are limited in their actions by their state. This

is acceptable for stochastic games and does not impact the

difficulty or insights of the model [20, §6.3.1]. In particular,

while a player in state ¬D can only act NOP, a player in

state D can choose an action among ATTACK, PATCH and

STOCKPILE before the patch is released, and between ATTACK

and NOP after the release, depending on their skill at detecting

attacks or APEG.

B. Game Factors & Assumptions

Our model considers the game within the scope of the

following factors and assumptions:

• We do not distinguish between a player discovering the

vulnerability and knowing about how to exploit it in our

game. This is because in many cases, when a nation

acquires a zero-day vulnerability, the nation also learns

about the zero-day exploit. For example, nations acquire

zero-day vulnerabilities by purchasing zero-day exploits

from vulnerability markets [17, 18, 27]. We acknowledge

that discovering a vulnerability and creating an exploit are

conceptually different, but we leave the separation of those

two as future work.

• We do not distinguish between a player disclosing a vulnera-

bility and releasing a patch. The known patching mechanisms

such as Microsoft update make secret patching unlikely to

happen in the real world, and in most cases, the disclosure

of a vulnerability comes with a patch or a workaround.

• We assume that players are monitoring their systems, and

may probabilistically detect an attack. We also assume they

may be able to then ricochet the exploit to other players. We

note that the detection may come through monitoring of the

network (in the case of network attacks), or other measures

such as honeypots, dynamic analysis of suspicious inputs,

etc. For example, Vigilante [9] detects exploits and creates a

self-certifying alert (SCA), which is essentially a replayable

exploit. We note that such attacks may be detected over a

network (e.g., in CTF competitions, these are called reflection

attacks [30]) or via dynamic analysis, as with Vigilante.

• We assume that once a patch reveals information about the

vulnerability, other players can use the patch to create an

exploit. For example, Brumley et al. shows this can be done

automatically in some instances [6]. We note that patch-based
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exploit generation is useful because the resulting exploit can

be used before the patch is applied on all vulnerable systems.

C. Formalization

We formalize the cyber security game as a n-player zero-sum

partial observation stochastic game:

POSG = 〈NP ,AP ,ΘP ,ΦP , RP 〉.
In our paper, we focus on 2 players (|NP | = 2) called player

1 and player 2.

1) Game State

The complete game state ΘP is defined as T ×R×Θ1×Θ2,

where T is the round number, R is the specific round when

the patch is released, and Θi is the set of player i’s states

(Θi = {¬D, D}). The round of releasing a patch is ∅ before a

patch is released. The patch release time is needed because it

is a public indicator of the discovery of the vulnerability. We

use this to bound uncertainty, since after a patch is released

every player has the potential (and eventual) understanding of

the vulnerability.

2) State Transition

In each round, the game is in a concrete state, but the players

have incomplete information about that state. The players make

an observation and then choose an action. The chosen actions

transition the game to a new state. The transition function

is public for both players. Transitions in a game may be

probabilistic. We denote the probability transition function

over game states by ΦP : ΘP × AP
1 × AP

2 → Δ(ΘP ) and

show these transitions in Figure 3. This divides the game state

into five categories:

a. Neither player has discovered a vulnerability (Figure 3a,

〈t, ∅,¬D,¬D〉). The available action for each player is NOP,

and the probability that player i discovers a vulnerability in the

current round is pi(t). Since players discover vulnerabilities

independently, the joint probability of player 1 in state θ1 and

player 2 in θ2 is equal to the product each player is in his

respective state.

b. Only one player has discovered a vulnerability (Figure 3b,

〈t, ∅,¬D, D〉 or 〈t, ∅, D,¬D〉). Suppose player 2 has the exploit,

then player 2 has three possible actions while player 1 has one.

If player 2 chooses to ATTACK, the probability that player 1

transits to state D is equal to the joint probability of finding the

vulnerability by himself, and that detecting player 2’s attack. If

player 2 chooses to STOCKPILE, the probability that player 1

will be in state D in the next round is equal to the probability

that he independently discovers the vulnerability. If player 2

chooses to PATCH, player states remain unchanged and the

patch releasing round will be updated to t.

c. Both players have discovered the vulnerability and they

withhold it (Figure 3c, 〈t, ∅, D, D〉). If neither player releases

a patch, the states and the patch-releasing round remain the

same. Otherwise, the game will transition to 〈t+ 1, t, D, D〉.
d. One player has disclosed the vulnerability, while the

other player has not discovered it (Figure 3d, 〈t, r, D,¬D〉 or

〈t, r,¬D, D〉). Suppose player 1 releases the patch at round r,

then player 2 will generate an exploit based on this patch in δ2
rounds. If player 1 chooses to NOP during those rounds, then

player 2 will keep developing the patch-based exploit until the

(r + δ2)-th round. Otherwise, if player 1 chooses to ATTACK,

then player 2 will detect the attack with probability q2(t) and

transition to state D in the next round after doing so.

e. Both players have discovered the vulnerability, and the

vulnerability has been disclosed (Figure 3e, 〈t, r, D, D〉). In

this case, player states and the patch-releasing round remains

unchanged.

3) Utility

Players’ utility for each round is calculated according to

the reward function for one round RP : AP
1 ×AP

2 → R. This

function is public, but the actual utility per round is secret

to players because players do not always know the action of

the other players. We assume that the amount of utility that a

player gains is equal to the amount that the other player loses,

which makes our game zero-sum.
The reward function is calculated using the attacking utility

functions u1,2(t) and the patching portion functions h1,2(t). We

define the reward function before and after patching separately,

which are shown as Table II and Table III. In both tables,

player 1 is the row player and player 2 is the column player.

D. Goals

In this paper, we focus on calculating the pure strategy Nash

equilibrium for our cyber-warfare model. However, computing

the Nash equilibrium of a general POSG remains open even for

a two-player game, due to nested belief [23, 37]. This means

that players are concerned about not only the game state, but

also the other player’s belief over the game state. The players’

0-level beliefs are represented as probabilities over the game

state. Based on 0-level beliefs, players must meta-reason about

the beliefs that players hold about others’ beliefs. These levels

of meta-reasoning – called nested beliefs – can keep going

indefinitely to infinite levels. If a player stops at a limited level

of nested belief, the other players can reason about further

levels of nested beliefs and change the result of the game. A

player must include the infinite nested belief as part of their

utility calculation when determining an optimal strategy.

IV. FINDING EQUILIBRIUMS

Although the POSG model, as an incomplete information

game, characterizes the uncertainty inherent in cyber-warfare,

computing the equilibriums of a general POSG remains open.

However, we discover three insights, specific to cyber-warfare,

that help us reduce the complexity of the game and calculate

the Nash equilibrium for our cyber-warfare game model.
First, if player i releases a patch, then all players subse-

quently know player i has found the vulnerability. We use this

to split the cyber war game into two phases: before disclosure

and after disclosure.
Second, players can probabilistically bound how likely

another player is to discover a vulnerability based upon their
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〈t, ∅,¬D,¬D〉 〈NOP, NOP〉

〈t+ 1, ∅, D, D〉

〈t+ 1, ∅,¬D, D〉

〈t+ 1, ∅, D,¬D〉

〈t+ 1, ∅,¬D,¬D〉

p1(t)p2(t)

(1− p1(t))p2(t)

p1(t)(1− p2(t))

(1− p1(t))(1− p2(t))

(a) Neither player has discovered a vulnerability.

〈t, ∅,¬D, D〉

〈t+ 1, t,¬D, D〉

〈t+ 1, ∅,¬D, D〉

〈t+ 1, ∅, D, D〉

〈t+ 1, ∅, D, D〉

〈t+ 1, ∅,¬D, D〉
〈NOP, ATTACK〉

〈NOP, STOCKPILE〉

〈NOP, PATCH〉 1

(1− p1(t))

p1(t)

q1(t) + p1(t)(1− q1(t))

(1− p1(t))(1− q1(t))

(b) One player (player 2) has discovered a vulnerability.

〈t, ∅, D, D〉

〈PATCH, ∗〉

〈∗, PATCH〉

〈ATTACK, STOCKPILE〉

〈ATTACK, ATTACK〉

〈STOCKPILE, STOCKPILE〉

〈STOCKPILE, ATTACK〉

〈t+ 1, ∅, D, D〉

〈t+ 1, t, D, D〉

1

1

(c) Both players have discovered and withhold the vulnerability.

〈t, r, D,¬D〉

〈t, t− δ2, D,¬D〉

〈NOP, NOP〉

〈ATTACK, NOP〉

〈∗, ∗〉

〈t+ 1, r, D, D〉

〈t+ 1, r, D,¬D〉

〈t+ 1, r, D,¬D〉

〈t+ 1, t− δ2, D, D〉

q2(t)

1− q2(t)

1

1

(d) One player (player 1) has discovered and disclosed a
vulnerability, while the other player has not discovered the
vulnerability.

〈t, r, D, D〉

〈ATTACK, NOP〉

〈ATTACK, ATTACK〉

〈NOP, NOP〉

〈NOP, ATTACK〉

〈t+ 1, r, D, D〉1

(e) Both players have discovered the vulnerability, and the
vulnerability has been disclosed.

Fig. 3: The transitions of game states. For each sub-figure, the left-hand side is the state of the current round and the right-hand side is the
state of the next round.

NOT DISCOVER DISCOVER

NOP ATTACK STOCKPILE PATCH

NOT DISCOVER NOP 0 −u2(t) 0 0

DISCOVER

ATTACK u1(t) u1(t)− u2(t) u1(t) 0
STOCKPILE 0 −u2(t) 0 0

PATCH 0 0 0 0

TABLE II: The reward matrix at round t before patch is released. The table shows the reward of player 1 (the row player). The reward of
player 2 (the column player) is the negative value of that of player 1.

skill level. This is because the probability is inferred based on

players’ attributes, such as the discovery probability, ricochet

probability, and those attributes are public to all players.

Finally, although players are uncertain about the state of the

other players (which they represent as a probability distribution

of player states), they know the probability of their opponents

being in a state given the public information of the opponents,

such as the vulnerability discovery probability (e.g., based upon

prior zero-day battles) and the ricochet probability.

Based on the above insights, we convert the POSG model

to a stochastic game model by encoding the belief of each

player into the game state. In our game, the belief of a player

is the probability that the player thinks the other player has

found the vulnerability. We can compute the Nash equilibrium

for the converted stochastic game by dynamic programming.

We will also discuss the observation of players’ strategy after

vulnerability disclosure.

A. The Stochastic Game

As our assumption that a player’s belief about the state of

opponent players can be estimated from the globally-known

player properties, the POSG model reduces to a much more

tractable stochastic model in the pre-disclosure phase. We

define the stochastic game (SG) model

SG = 〈NS ,AS ,ΘS ,ΦS , RS〉

We retain the definition of players in POSG, NP = N S =
{player 1, player 2}.

1) Player Actions

The player action in SG is defined as a combination of

player actions under different player states. For example, if
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NOT DISCOVER DISCOVER

NOP ATTACK NOP

DISCOVER
NOP 0 −u2(t)h1(t− r) 0

ATTACK u1(t)h2(t− r) u1(t)h2(t− r)− u2(t)h1(t− r) u1(t)h2(t− r)
NOT DISCOVER NOP 0 −u2(t)h1(t− r) 0

TABLE III: The reward matrix at round t after patch is released. The table shows the reward of player 1 (the row player). The reward of
player 2 (the column player) is the negative value of that of player 1.

player i plays ATTACK in state D and NOP in state ¬D, the

corresponding action in the SG model is {D : ATTACK,¬D :
NOP}. For each player action ai, we will use ai[D] and ai[¬D]
to denote the action in state D and ¬D, respectively.

2) Game State

The game state ΘS in the SG model is defined as ΘS = T ×
R×R×R. Besides the current round number T and the patch

releasing round number R, a game state includes the beliefs

of the two players about each other, which is the probability

that a player has discovered a vulnerability from the other

player’s perspective, bi ∈ [0, 1]. A game state θS ∈ ΘS can be

represented as θS = 〈t, r, b1, b2〉, in which player 2 thinks the

probability that player 1 has discovered the vulnerability is b1,

and player 1 thinks the probability that player 2 has discovered

the vulnerability is b2.

Unlike the POSG model, the game states in the SG model

include the uncertainty of a player about the other player’s

state. In each round of the game, players know their own states;

although they do not know the other player’s state, they infer

the likelihood of the other player’s state based on the other

player’s parameters. In addition, a player also knows the other

player’s beliefs about the game state because the player also

knows the parameters of himself. Therefore, we are able to

convert to the SG model under the structure of the game states

above.

3) State Transition

We define the state transition function of the SG model as

ΦS : ΘS ×AS
1 ×AS

2 → Δ(ΘS). We represent the probability

that a game transitions to θS using ΦS(·)[θS ]. The transition

between the game states is shown in Figure 4. The game states

are divided by the time before and after vulnerability disclosure,

because the actions and information available to players are

different between the two phases.

Before Disclosure (Figure 4a). Suppose the game is in state

〈t, ∅, b1, b2〉. If neither player acts ATTACK, the probability that

player i discovers the exploits at the current round is pi(t)
and the probability that player i discovers the exploit by the

current round is 1− (1− bi)(1− pi(t)). The game transits to

state 〈t+1, ∅, 1− (1− b1)(1−p1(t)), 1− (1− b2)(1−p2(t))〉.
If a player chooses to ATTACK, the probability that their

opponent will acquire the exploit in the current round is the

joint probability that the opponent discovers the vulnerability

by himself and that he detects the exploit. Meanwhile, if the

opponent detects the exploit, they will be certain that the

attacker has the exploit. For example, if player 1 ’s action

is {D : ATTACK,¬D : NOP} while player 2 ’s action is

{D : STOCKPILE,¬D : NOP}, the game will transition to

〈t+1, ∅, 1−(1−b1)(1−p1(t)), 1−(1−b2)(1−p2(t))(1−q2(t))〉
with the probability of 1−q2(t) and 〈t+1, ∅, 1, 1−(1−b2)(1−
p2(t))(1− q2(t))〉 with the probability of q2(t).

Similarly, if both players act ATTACK in state D, the game

will transition to one of four possibilities. If neither player

detects the exploit, the game state will be 〈t+ 1, ∅, 1− (1−
b1)(1−p1(t))(1−q1(t)), 1−(1−b2)(1−p2(t))(1−q2(t))〉. If

player 1 detects the exploit while player 2 does not, the game

state will be 〈t+1, ∅, 1− (1− b1)(1− p1(t))(1− q1(t)), 1〉. If

player 2 detects the exploit while player 1 does not, the game

state will be 〈t + 1, ∅, 1, 1 − (1 − b2)(1 − p2(t))(1 − q2(t))〉.
Finally, if both players detect the exploit, the game state will

be 〈t+ 1, ∅, 1, 1〉.
If one player acts PATCH, both players will patch immediately.

If player 1 releases a patch, the game will transition to 〈t +
1, t, 1, b2〉, as everyone is certain that player 1 has the exploit. If

player 2 releases a patch, the game will transit to 〈t+1, t, b1, 1〉
and if both player release a patch, the game will transition to

〈t+ 1, t, 1, 1〉.
After Disclosure (Figure 4b). After disclosure, both players

will know the vulnerability so they will stop searching for it.

Also, the player disclosing a vulnerability is public so both

players know that the player is in state D. Suppose player

1 discloses a vulnerability in round r. In response, player

2 starts APEG and will generate the exploit by round r + δ2.

Meanwhile, player 2 still has the chance to ricochet attacks if

player 1 attacks. Therefore, the belief of player 2 ’s possession

of the exploit will increase if player 1 attacks in the previous

round.

4) Utility

We calculate players’ utility by the single-round reward

function RS : ΘS ×AS
1 ×AS

2 → R. Given a game state and

players actions, the single-round reward is equal to the expected

reward over player states.

Given player i and a player state θi, the probability that

the player is in state θi when the SG game state is θS =
〈t, r, b1, b2〉, which is denoted by P (θS , θi), is equal to

P (θS , θi) = P (〈t, r, b1, b2〉, θi) =
{

bi if θi = ¬D
1− bi if θi = D

Recall the reward function for the POSG model RP : AP
1 ×

AP
2 → R takes as input the players’ actual actions and produces

as output the utility of one player (because the utility of the

other is the negative value for zero-sum game). We calculate

the reward for the SG model using RP . In specific, we have

RS(θS , aS1 , a
S
2 ) =

∑
θ1

∑
θ2

P (θS , θ1)P (θS , θ2)R
P (aS1 [θ1], a

S
2 [θ2])
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〈t, ∅, b1, b2〉

{D : PATCH,¬D : NOP},{D : PATCH,¬D : NOP}

{D : PATCH,¬D : NOP},{D : ATTACK,¬D : NOP}

{D : PATCH,¬D : NOP},{D : STOCKPILE,¬D : NOP}

{D : ATTACK,¬D : NOP},{D : PATCH,¬D : NOP}

{D : STOCKPILE,¬D : NOP},{D : PATCH,¬D : NOP}

{D : ATTACK,¬D : NOP},{D : ATTACK,¬D : NOP}

{D : ATTACK,¬D : NOP},{D : STOCKPILE,¬D : NOP}

{D : STOCKPILE,¬D : NOP},{D : ATTACK,¬D : NOP}

{D : STOCKPILE,¬D : NOP},{D : STOCKPILE,¬D : NOP}

〈t+ 1, t, 1, 1〉

〈t+ 1, t, 1, 1− (1− b2)(1− p2(t))〉

〈t+ 1, t, 1, 1〉

〈t+ 1, t, 1, 1− (1− b2)(1− p2(t))〉

〈t+ 1, t, 1− (1− b1)(1− p1(t)), 1〉

〈t+ 1, t, 1, 1〉

〈t+ 1, t, 1− (1− b1)(1− p1(t)), 1〉

〈t+ 1, ∅, 1− (1− b1)(1− p1(t))(1− q1(t)), 1〉

〈t+ 1, ∅, 1, 1− (1− b2)(1− p2(t))(1− q2(t))〉

〈t+ 1, ∅, 1, 1〉

〈t+ 1, ∅, 1− (1− b1)(1− p1(t))(1− q1(t)), 1− (1− b2)(1− p2(t))(1− q2(t))〉

〈t+ 1, ∅, 1− (1− b1)(1− p1(t)), 1− (1− b2)(1− p2(t))(1− q2(t))〉

〈t+ 1, ∅, 1, 1− (1− b2)(1− p2(t))(1− q2(t))〉

〈t+ 1, ∅, 1− (1− b1)(1− p1(t))(1− q1(t)), 1− (1− b2)(1− p2(t))〉

〈t+ 1, ∅, 1− (1− b1)(1− p1(t))(1− q1(t)), 1〉

〈t+ 1, ∅, 1− (1− b1)(1− p1(t)), 1− (1− b2)(1− p2(t))〉

1

1− q1(t)

q1(t)

1

1− q2(t)

q2(t)

1

q1(t)(1− q2(t))

(1− q1(t))q2(t)

q1(t)q2(t)

(1− q1(t))(1− q2(t))

1− q2(t)

q2(t)

1− q1(t)

q1(t)

1

(a) Before disclosing a vulnerability.

〈t, r, 1, b2〉

{D : ATTACK},{D : ATTACK,¬D : NOP}

{D : ATTACK},{D : STOCKPILE,¬D : NOP}

{D : STOCKPILE},{D : ATTACK,¬D : NOP}

{D : STOCKPILE},{D : STOCKPILE,¬D : NOP}

〈t+ 1, r, 1, b2 + (1− b2)q2(t)〉

〈t+ 1, r, 1, 1〉

〈t+ 1, r, 1, b2 + (1− b2)q2(t)〉

〈t+ 1, r, 1, b2〉

〈t+ 1, r, 1, 1〉

〈t+ 1, r, 1, b2〉

〈t, t− δ2, 1, b2〉

{D : ATTACK},{D : ATTACK,¬D : NOP}

{D : ATTACK},{D : STOCKPILE,¬D : NOP}

{D : STOCKPILE},{D : ATTACK,¬D : NOP}

{D : STOCKPILE},{D : STOCKPILE,¬D : NOP}

〈t+ 1, t− δ2, 1, 1〉

1− q1(t)

q1(t)

1

1− q1(t)

q1(t)

1

1

(b) After disclosing a vulnerability. Suppose player 1 discloses a vulnerability.

Fig. 4: The transition of game states in the stochastic game. The left-hand sides of the arrows are game states with possible strategies. The
right-hand sides of the arrows are the possible game states after transition.

B. Compute the Nash Equilibrium

A Nash equilibrium is a strategy profile where neither player

has more to gain by altering its strategy. It is the stable point

of the game when both players are rational and making their

best response. Let NES : ΘS → R denote player 1 ’s utility

when both players play the Nash equilibrium strategy in the

SG model. Since the game is a zero-sum game, the utility of

player 2 is equal to −NES .

We compute the Nash equilibrium inspired by the Shapley

method [32], which is a dynamic programming approach

for finding players’ best responses. For game state θs =

〈t, r, b1, b2〉, the utility of player 1 is equal to sum of the

reward that player 1 gets in the current round and the expected

utility that he gets in the future rounds. In the future rounds,

players will continue to play with their best strategies, so the

utility in the future rounds is equal to the one that corresponds

to the Nash equilibrium in the future game states. Therefore, the

utility of the Nash equilibrium of a game state is as following:

NES(θS) = max
aS
1 ∈AS

min
aS
2 ∈AS

{
RS(θS , aS1 , a

S
2 )+

∑

θ∈ΘS

ΦS(θS , aS1 , a
S
2 )[θ] ·NES(θ)

}

(1)
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In theory, the game could go for infinite rounds when neither

players discloses a vulnerability. In this case, the corresponding

utility will be equal to 0, positive infinity or negative infinity.

However, for implementation, we need to set a boundary to

guarantee that the recursive calculation of Nash equilibrium

will stop. We introduce MAXt to denote the maximum round

of the game, and we assume that

NES(〈t, r, b1, b2〉) = 0, if t ≥MAXt. (2)

C. Optimize the Game After Disclosure

Equation 1 is only applicable for calculating the Nash

equilibrium of the SG model. Nonetheless, we find an optimized

way to compute the Nash equilibrium after the vulnerability

is disclosed (r �= ∅). The optimized approach is based on the

finding that if a player discloses a vulnerability, the other player

should attack right after he generates the exploits. We call the

player who discloses the vulnerability the explorer, and the

other player who witness the disclosure of the vulnerability

the observer. Intuitively, disclosure implies that the explorer

has discovered the vulnerability, and the observer’s attack

will not reveal to the explorer any new information about

the vulnerability. Therefore, there is no collateral damage if

the observer attacks, and the observer’s best strategy is to

constantly attack until his adversary completes patching. We

formally prove the finding as follows.

Theorem 1. If one player discloses a vulnerability, the best
response of the other player is {D : ATTACK,¬D : NOP}.
Proof. Without loss of generality, we assume that player

1 discloses a vulnerability, and the current game state for

the SG model is SG〈t, r, 1, b2〉. The corresponding game

state for the POSG model is either POSG〈t, r, D, D〉 or

POSG〈t, r, D,¬D〉, shown in Figure 5.

If player 2 has not discovered the vulnerability, then the

actual game state is POSG〈t, r, D,¬D〉. Player 2 can only

play NOP, so their action is NOP when they are in state ¬D.

If player 2 has discovered the vulnerability, then the actual

game state is POSG〈t, r, D, D〉. Player 2 chooses actions

between ATTACK and STOCKPILE, and the game will deter-

ministically transition to state POSG〈t+ 1, r, D, D〉. Recall

that RP (a1, a2) represents the utility of player 1 when player

1 chooses action a1 and player 2 chooses action a2. Let

NEP (θP ) denote the utility of player 1 in state θP when

both players play the Nash equilibrium strategy. Thus, we have

NEP (〈t, r, D, D〉)
= max

aP
1 ∈AP

min
aP
2 ∈AP

{
RP (aP1 , aP2 ) +NEP (〈t+ 1, r, D, D〉)

}

= max
aP
1 ∈AP

min
aP
2 ∈AP

RP (aP1 , aP2 ) +NEP (〈t+ 1, r, D, D〉)
(3)

According to the reward matrix in Table III, ATTACK dominates

STOCKPILE, and the best strategy for player 2 in state D

is ATTACK. Overall, the best strategy for player 2 is {D :
ATTACK,¬D : NOP}.

A special case is that both players disclose a vulnerability at

the same round. Under this situation, both players will attack

right after disclosure, since both players are the observers and

the explorers. As observers, the players will attack once they

can; as explorers, the players know how to exploit.

Given the above theorem, the SG model after disclosure

becomes a Markov decision process in which the explorer

makes a decision given a state of the stochastic game.

Next, we discuss how to compute the best response for the

explorer. Given a game state, the explorer chooses one action

between ATTACK and STOCKPILE. Suppose player 1 is the

explorer.

First, we discuss the algorithm to compute the best response

for the POSG game state. If player 2 is in state D, then the game

state is 〈t, r, D, D〉. According to Table III, player 1 should

play ATTACK:

NEP
(〈t, r, D, D〉) = RP (ATTACK, ATTACK)+

NEP
(〈t+ 1, r, D, D〉) (4)

Let ΦS(θX)[θY ] be the probability that a game transitions

from θX to θY . If player 2 is in state ¬D and the game is

in state 〈t, r, D,¬D〉, player 1 should choose the action with

greater utility according to the following formula:

NEP
(〈t, r, D,¬D〉) = max

aP
1 ∈{ATTACK,STOCKPILE}

{

RP (aP1 , NOP) +
∑

θ∈ΘP

ΦP
(〈t, r, D,¬D〉)[θ]NEP (θ)

} (5)

Finally, given a game state of the SG model SG〈t, r, 1, b2〉, the

best response for player 1 is the action with greater expected

value of the utilities over POSG states.

NES
(〈t, r, 1, b2〉

)
= max

aP
1 ∈{ATTACK,STOCKPILE}

{

b2 ·NEP
(〈t, r, D, D〉)+

(1− b2) ·NEP
(〈t, r, D,¬D〉)

}
(6)

V. IMPLEMENTATION

In the previous section, we proposed algorithms to calculate

the Nash equilibrium of the game. The game is divided into

two stages, each of which is solved by dynamic programming.

We implemented the code in Python. In this section, we show

our pseudo-code in order to convey a clearer structure of the

method.

Algorithm 1 shows the calculation for the Nash equilibrium

before a vulnerability is disclosed. Given a round index and

beliefs of the players, the goal is to compute player utility when

both players rationally play their best response. If the round

index is equal to or larger than MAXt, which is the maximum

number of rounds argument self-configured for the game, then

the calculation will stop. Otherwise, the algorithm finds the

Nash equilibrium according to Equation 1 and Figure 4a. For

each Nash equilibrium candidate, if players do not disclose the

vulnerability, the game will continue in the before-disclosure

phase, else the game will step to the after-disclosure phase.

Algorithm 2 shows the computation for the Nash equilibrium

after a vulnerability is disclosed. If the game has equal to or

more than MAXt rounds, then the game is over. Otherwise,

we update players’ state according their APEG skill. If both

15



SG〈t, r, 1, b2〉

POSG〈t, r, D,¬D〉

POSG〈t, r, D, D〉 POSG〈t+ 1, r, D, D〉

POSG〈t+ 1, r, D,¬D〉

POSG〈t+ 1, r, D,¬D〉

POSG〈t+ 1, r, D, D〉

〈ATTACK, ATTACK〉

〈ATTACK, STOCKPILE〉

〈STOCKPILE, ATTACK〉

〈STOCKPILE, STOCKPILE〉

〈ATTACK, NOP〉

〈STOCKPILE, NOP〉

b2

1− b2
1

1

1− q2(t)

q2(t)

Fig. 5: The relationship between the SG and the POSG models after disclose a vulnerability. SG〈·〉 denotes the game state of the SG model
and POSG〈·〉 denotes the game state of the POSG model. Suppose player 1 discloses a vulnerability.

Input :
t: The index of the current round
b1, b2: The probability that player 1 and player 2 have discovered the

vulnerability.
Output :
NES(〈t, ∅, b1, b2〉)[i]: The utility of player i under the Nash

equilibrium at round t before disclosure.

1 if t >= MAXt then
2 Game is over.
3 end
4 θS ← 〈t, ∅, b1, b2〉;
5 ΘT ← set of possible states transiting from θS ;
6 max ← −∞;

7 foreach aS1 ∈ AS do
8 min ←∞;

9 foreach aS2 ∈ AS do
10 t← R(θS , aS1 , a

S
2 ) +

∑
θ∈ΘS ΦS(θS , aS1 , a

S
2 )[θ]NES(θ);

11 if min > t then
12 min ← t;
13 end
14 end
15 if max < min then
16 max ← min;
17 end
18 end
19 NES(〈t, ∅, b1, b2〉)[1] ← max;

20 NES(〈t, ∅, b1, b2〉)[2] ← -max;

21 return NES (〈t, b1, b2〉);

Algorithm 1: The before-disclosure game algorithm.

players have generated the exploit, then both of them should

attack. If not, the player who did not disclose the vulnerability

should attack once he has generated the exploit. The other

player who disclosed the vulnerability should choose between

attack and stockpile depending on the sum of the utilities at

the current round and that in the future.

VI. EVALUATION AND CASE STUDIES

In this section, we apply our algorithm to calculate the Nash

equilibrium of cyber-warfare games and discuss the following

questions:

The Attack-or-Disclose Question. Previous models [3, 10,

25, 31] limit that a player is allowed to choose only one action

which is either attack or disclose. We extend to allow players

playing a sequence of actions. Will a player get more utility if

he is allowed to play a sequence of actions?

The One-Must-Attack Question. The cyber-hawk

model [25] concludes that at least one player will attack.

Input :
t: The index of the current round
r: The index of the round at which a vulnerability is disclosed
b1, b2: The probability that player 1 and player 2 have discovered the

vulnerability.
Output :
NES(〈t, r, b1, b2〉): The player utility under the Nash equilibrium at

round t after the vulnerability is disclosed at round r.

1 if t >= MAXt then
2 Game is over.
3 end
4 foreach i ∈ {1, 2} do
5 if bi < 1 and t > r + δi then
6 bi ← 1;
7 end
8 end
9 if b1 == 1 && b2 == 1 then

10 NES(〈t, r, b1, b2〉)← NEP (〈t, r,D,D〉);
11 end
12 else if b2 < 1 then
13 NES

(〈t, r, b1, b2〉
)← maxaP

1 ∈{ATTACK,STOCKPILE}
{
b2 ·

NEP
(〈t, r, D, D〉)+ (1− b2) ·NEP

(〈t, r, D,¬D〉)};
14 end
15 else
16 NES

(〈t, r, b1, b2〉
)← minaP

2 ∈{ATTACK,STOCKPILE}
{
b1 ·

NEP
(〈t, r, D, D〉)+ (1− b1) ·NEP

(〈t, r,¬D, D〉)};
17 end
18 return NES(〈t, r, b1, b2〉);

Algorithm 2: The after-disclosure game algorithm.

Does our model support this conclusion? If not, is there any

counter-example? What causes the counter-example?

The CGC Case Study. How to apply the model to published

cyber-conflict events such as the Cyber Grand Challenge, which

is a well-designed competition approximating a real-world

scenario? Does our model improve the competitor’s score if

the other players do not change their actions in the game?

The MAXt Effect Evaluation. How does the configuration

of MAXt affect the results?

Performance Evaluation. What is the runtime performance

of the automatic strategic decision-making tool?

We investigate the questions by performing several case

studies. Although these cases have concrete parameter values,

they characterize general situations in cyber warfare where

players have different levels in one or more technical skills.

The Attack-or-Disclose Question. Previous models assert

that a player should either always attack, or always disclose.
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Player 1 Player 2
pi(t) p1(t) = 0.5, ∀t p2(t) = 0.5, ∀t
ui(t) u1(t) = 1,∀t u2(t) = 20, ∀t
qi(t) q1(t) = 0.2, ∀t q2(t) = 0.9, ∀t
δi δ1 = 20 δ2 = 20

hi(t) h1(t) = 1− 0.9t, t < 2 h2(t) = 1− 0.1t, t < 10
h1(t) = 1, t ≥ 10 h2(t) = 1, t ≥ 10

TABLE IV: Case I. Player 1’s best strategy is to disclose then attack.

However, using our tool, we find cases where a player has a

better strategy than to attack or to disclose all the time. For

example, consider a game with the parameters in Table IV. In

this case, player 1’s optimal strategy is to disclose and then

attack 2 rounds after disclosure.

Intuitively, there are three reasons for player 1 to choose the

disclose-then-attack strategy. First, player 1 has more vulnerable

resources than player 2, so he will lose if both players attack

before disclosure. Second, player 2 has a relatively high ricochet

probability, so he will be very likely to generate ricochet attacks

if player 1 attacks. Finally, player 1 patches faster than player 2,

so he will finish patching earlier, when player 2 is still partially

vulnerable. Therefore, player 1 prefers disclose-then-attack

strategy over only attacking or only disclosing.

The One-Must-Attack Question. Previous work concludes

that at least one player must attack [25]. However, we argue

that the conclusion is inaccurate, by showing cases in which

neither player prefers attacking. Consider the game with the

settings shown in Table V. We find that both players will

choose to PATCH after they find the vulnerability. The intuition

is that player 1 should never choose to ATTACK because he will

suffer a greater loss if player 2 launches ricochet attacks. Player

1 should also never choose to STOCKPILE, because player 2

may re-discover the vulnerability and then ATTACK. Therefore,

player 1’s best strategy is to PATCH once he discovers the

vulnerability. After player 1 discloses a vulnerability, player 2

receives the patch and generates exploits based on the patch,

which costs him δ2 rounds. Within the rounds, player 1 would

have completely patched his own machines, which makes any

future attack from player 2 valueless.

Furthermore, we observe two necessary elements leading to

players’ not attacking strategy: ricochet capability and patching

capability. To illustrate our observation, we computed the Nash

equilibrium of two other games, where we only changed the

value of the ricochet or patching parameters, and we found

that one player will prefer attacking in new games.

First, we consider the scenario excluding ricochet. We keep

the parameters Table V, but set qi(t) = 0, ∀t. We observe that

both players will attack until the end of the game. Because

ATTACK always bring positive benefit while STOCKPILEand

NOP always bring 0 benefit, ATTACK dominates STOCKPILEand

NOP at any round. Therefore, the optimal strategy for both

players is to attack as soon as they discover the vulnerability.

Second, we consider the scenario where one player slows

down his patching speed. Suppose we replace the original

patching function h2(t) with h2(t) = 1 − 0.1t, t < 20 and

h2(t) = 1, t ≥ 20. We observe that the best strategy for player

1 is to attack, since some of the player 2’s resources remain

Player 1 Player 2
pi(t) p1(t) = 0.8, ∀t p2(t) = 0.01, ∀t
ui(t) u1(t) = 2,∀t u2(t) = 20, ∀t
qi(t) q1(t) = 0.2, ∀t q2(t) = 0.9, ∀t
δi δ1 = 20 δ2 = 20

hi(t) h1(t) = 1− 0.9t, t < 10 h2(t) = 1− 0.1t, t < 10
h1(t) = 1, t ≥ 10 h2(t) = 1, t ≥ 10

TABLE V: Case II. Both players’ best strategy is to disclose without
attacking.

vulnerable after player 1 is done with patching. This case

indicates that even though the ricochet attack exists, if a player

does not patch fast enough, he will still be attacked by his

opponent. In conclusion, we find that both ricochet and speedy

patching are necessary in order to prevent adversaries from

attacking.

The CGC Case Study. The Cyber Grand Challenge (CGC)

is an automated cyber-security competition designed to mirror

“real-world challenges” [12]. This competition provides an

excellent opportunity to evaluate the strategies suggested by

our model against those actually carried out by competitors.

The CGC final consists of 95 rounds. In this case study, we

experimented on the ranking of the third-place team in the

Cyber Grand Challenge, Shellphish. Based on their public

discussions regarding their strategy, Shellphish simply attacked

and patched right away [13]. This made them an optimal subject

of this case study, as, since they would use their exploits as

soon as possible (rather than stockpiling them), we can closely

estimate their technical acumen for the purposes of testing our

model. We call our modified, more strategic, player “Strategic-

Shellphish”.

In our experiment, we adapted our model to the CGC final in

the following way. First, we update the reward function on the

CGC scoring mechanism. As the CGC final is not a zero-sum

game, we compute the Nash equilibrium by focusing on the

current round. Second, we separate the game by binaries, and

for each binary we model Strategic-Shellphish as one player

while all the non-Shellphish team as the other player. Third,

we estimated the game parameters according to the data from

the earlier rounds, then calculated the optimal strategy and

applied the strategy in the later rounds. For example, we get

the availability score for the patch by deploying it in the earlier

rounds. The data is from the public release from DARPA,

which includes the player scores for each vulnerable binaries

in each round.

In the first CGC experiment, we estimated the game parame-

ters by the information of the first 80 rounds of the game, and

applied the model on the 80-95 rounds. This range included 11

challenge binaries, and we simulated Shellphish’s performance,

if they had used our model for strategy determinations, across

these programs. The score comparison for each vulnerability is

shown in Figure 6, with the x axis representing the 11 binaries

and the y axis representing the scores. The new scores are either

higher or equal to the original score. Among these binaries, our

model helps improve 5 cases out of 11. The overall score for the

11 vulnerabilities is shown in Figure 7. The original Shellphish

team got 38598.7 points, while our model got 40733.3 points.
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Fig. 6: The per-vulnerability score comparison between the original
Shellphish team and Strategic-Shellphish – the Shellphish team + our
model.

Fig. 7: The overall score comparison between the original Shellphish
team and Strategic-Shellphish for the game round 80-95.

Moreover, our Strategic-Shellphish team won against all other

teams in terms of these 11 vulnerabilities.

We observed that Strategic-Shellphish withdrew the patch

of some vulnerabilities after the first round of patching. After

the first round of patching, Strategic-Shellphish got the precise

score for availability, and this helped it compare the cost of

patching to the expected lost in the future rounds.

In the second CGC experiment, we estimated the game

parameters by the information of the first 15 rounds. Given

the parameters, Strategic-Shellphish calculates the likelihood

that the other teams discovers the vulnerability, and it uses our

algorithm to determine the best response. Before it is well-

aware of the patching cost, we assigned the cost to 0. After

the first round of patching, we updated the patching cost and

adjusted the future strategy.

The score for the entire game is shown in Figure 8. The

original Shellphish team got 254,452 points and ranked third

in the game. On the other hand, the Strategic-Shellphish got

268,543 points, which is 6000 points higher than the score of

the original 2nd-rank team. Our experiment highlights the

importance of our model as well as the optional strategy

solution. If a team such like Shellphish used our model, it

could have achieved a better result compared to its original

strategy. In fact, in the Cyber Grand Challenge, the difference

between third (Shellphish) and second (Strategic-Shellphish)

place was $250,000.

The MAXt Effect Evaluation. To understand the effect of

MAXt on the final result, we fixed the parameter values in

Table IV and varied the value of MAXt from 1 to 15. For each

game, we computed the Nash equilibrium and its corresponding

players’ utilities. As the game is a zero-sum game and the

utility of player 2 is always symmetric to that of player 1, we

Fig. 8: The overall score comparison between the original Shellphish
team and Strategic-Shellphish for the entire game.

will focus on player 1’s utility.

Fig. 9: Player 1’s Utility over different maximum number of round
(MAXt).

Figure 9 shows player 1’s utility. We observed that when

MAXt is small, the change of MAXt will affect the Nash

equilibrium and players’ utilities. As MAXt becomes larger,

the change of MAXt will no longer affect the Nash equilib-

rium, and the players’ utilities will become stable. In our case,

when MAXt = 1, player 1 will patch and player 2 will attack

for both rounds. When MAXt = 2, player 1 will disclose at

the first round and attack at the second round, while player 2

will attack for both rounds, and, meanwhile, patch if player 1

discloses the vulnerability. When MAXt ≥ 3, player 1 will

disclose at the first round and attack since the third round. This

observation implies that players tend to be more aggressive in

a shorter game. It also explains why the result of the cyber-

hawk model [25] is suboptimal: if the game is considered as a

single-round game, players will neglect the loss in the future

and make a local optimal strategy rather than a global optimal

one.

Performance Evaluation. In this evaluation, we fixed the

player parameters and measured the time for computing the

Nash equilibrium under different MAXt values from 1 to 50.

We show the time performance in Figure 10. Based on the

figure, we found that although the time of computing increases

as MAXt grows, our tool is able to find the Nash equilibrium

of all games within seconds. In practical, MAXt needs to

be configured properly in order to balance between the action

frequency (i.e. Should a player act per minutes or per day?) and

the action performance (i.e. How long do we need to respond

to the zero-day vulnerability events?).
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Fig. 10: The time (in second) for computing the Nash equilibrium
over different maximum number of round MAXt.

VII. DISCUSSION AND FUTURE WORK

Our work advances zero-day strategy research by con-

structing a game model covering features that are of great

significance in real-world cyber warfare, such as activity

over multiple rounds, partial availability of information, and

emergent offensive techniques like APEG and ricochet. In this

section, we discuss some aspects to be addressed in future

work.

Irrational Players and Collusion. We focus on a setting

with rational players engaged in zero-sum games. It is well

established that governments and people act irrational from time

to time. Nonetheless, an analysis of rational behavior highlights

an important consideration point. We leave the modeling of

non-rational behavior and non-zero-sum games as future work.

Parameter Sensitivity. Our model employs parameters to

capture players’ different skill levels. These parameters need

to be evaluated, and one way is to use a relevant benchmark

proposed by Axelrod et al. [3]. For example, one can estimate

pi(t) by reasoning about the ratio of the vulnerabilities

independently rediscovered in software from the research by

Bilge et al. [5]. As the White House stated that the government

weighed the likelihood that the other nations re-discover the

vulnerability, the evaluation approach should have already

existed. In the future, we need to investigate the robustness of

the model under different parameter margins.

Multiple Nash Equilibria. It is possible that multiple Nash

equilibria exist in a cyber-warfare game. However, due to the

zero-sum game property, player utilities remain the same for

all Nash equilibria. Therefore, any Nash equilibrium is players’

optimal strategy. Although we do not discuss the entire set of

possible Nash equilibria, finding them all is a straightforward

extension of our algorithm, in the way that one could record

all strategies with same value as the maximum one.

Deception. Although the game parameters are public, they

can be manipulated by players. For example, a player could

pretend to be weak in generating exploits by never launching

any attack against anyone. In our paper, we do not consider

player deception, and we leave it for future work.

Inferring Game State from Parameters. We consider that

players infer the states of other players by detecting attacks

or learning vulnerability disclosure. However, we do not

consider that players could these state by reasoning about game

parameters. For example, suppose we have a game with public

game parameters denoting that player 1 is able to capture all

the attacks and player 2 should always attack after he generates

an exploit. In this case, if player 1 does not detect attacks from

player 2, then player 2 has not generated an exploit, and the

belief on player 2 should be zero all the time until player 1

detects an attack. To tackle this problem, a possible way is to

solve the game separately with different groups of parameter

conditions.

Multiple Vulnerabilities. Our game model focuses on one

vulnerability. We assume that vulnerabilities are independent,

and a game with multiple vulnerabilities can be viewed as

separate games each of which has a single vulnerability.

To combine multiple vulnerabilities in a game, a possible

direction is to consider modification of the game parameters.

For example, instead of the probability that the opponent re-

discovers the vulnerability, we could use the probability that

the opponent discovers any vulnerabilities. Also, we could

extend the utility function by including the utility gained from

other vulnerabilities.

Limited Resources. When players are constrained by limited

resources, they may have fewer strategy choices. For example,

if a player has limited resources, he may not be able to

simultaneously generate an exploit and generate a patch. The

limited resources may affect players’ best response as well as

the Nash equilibrium. In the future, we need to come up with

updated model and algorithm to address this issue.

The Incentives of Patching. In our model, we consider

patching as a defensive mechanism that only prevents players

from losing utility. This leads to players not having incentives

to disclose a vulnerability. We argue that patching might bring

positive benefits to players. For instance, a player would have

a better reputation if he chooses to disclose a vulnerability

and patch their machines. We leave the consideration of the

positive reputation caused by disclosure as future work.

VIII. CONCLUSION

In this paper, we present a cyber-warfare model which

considers strategies over time, addresses players’ uncertainty

about their opponents, and accounts for new offensive and

defensive techniques that can be employed for cyber-warfare,

e.g., the ricochet attack and APEG. We propose algorithms

for computing the Nash equilibrium of the model, and our

algorithm is able to find better strategies than previous work

within seconds. Moreover, by solving the game model, we

allow decision makers to calculate utility in scenarios like

patch-then-exploit, as well as show where, in the parameter

space of the game model, it makes more sense to patch than

to attack. Our model also challenges previous results, which

conclude that at least one player should attack, by showing

scenarios where attacking is not optimal for either player.
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