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Abstract. The security of application installers is often overlooked, but
the security risks associated to these pieces of code are not negligible.
Online public repositories have been one of the most popular ways for
end users to obtain software, but there is a lack of systematic security
evaluation of popular public repositories. In this paper, we bridge this
gap by analyzing five popular software repositories. We focus on their
software updating dynamics, as well as the presence of traces of vulnera-
ble and/or trojanized applications among the top-100 most downloaded
Windows programs on each of the evaluated repositories. We analyzed
2,935 unique programs collected in a period of 144 consecutive days. Our
results show that: (i) the repositories frequently exhibit rank changes due
to applications fast climbing toward the first positions; (ii) the reposi-
tories often update their payloads, which may cause the distribution of
distinct binaries for the same intended application (binaries for the same
applications may also be different in each repository); (iii) the installers
are composed by multiple components and often download payloads from
the Internet to complete their installation steps, posing new risks for
users (we demonstrate that some installers are vulnerable to content
tampering through man-in-the-middle attacks); (iv) the ever-changing
nature of repositories and installers makes them prone to abuse, as we
observed that 30% of all applications were reported malicious by at least
one AV.
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1 Introduction

Modern operating systems (OS) have been providing more resources to meet
users requirements over time. However, the unique needs of an heterogeneous
user population can only be fulfilled by third-party software. Whereas Linux-
based systems model for obtaining new applications often depends from official
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distribution repositories [24], MS-Windows based systems do not present any
centralized software repository, outsourcing to the users the responsibility for
downloading additional programs.

In this scenario, online software repositories have become the de-facto stan-
dard repository for most users. On the one hand, these repositories are a very
practical service, as they group multiple applications in a single place with rank-
ing and searching features. On the other hand, these repositories hardly check
binaries’ security, neither regarding vulnerabilities nor maliciousness, and their
providers often do not take full responsibility for the distributed software. There-
fore, the users themselves are responsible for the implications of installing soft-
ware downloaded from these repositories.

Actually, most users blindly trust the repositories, which makes them vulner-
able to exploitable code constructions (e.g., buffer overflows and/or man-in-the-
middle attacks) and/or Trojanization attacks, i.e., when malicious code is added
to legitimate applications. Trojanization is a common practice among attack-
ers to deceive users into installing their malicious payloads inconspicuously and,
when deployed on popular repositories, it might have a large-scale impact if
we consider the potential target population of trojanized downloads. Repository
Trojanization examples include the cases of the Arch Linux repository [9], the
Asus update system [38], and the Android platform [20].

This scenario becomes even worse if we consider that most software reposito-
ries are known for appending other components to their distributed applications
(e.g., adware), in a process named “bundling” [17]. Software bundling might end
up adding vulnerable components to previously safe applications. It might also
add tracking capabilities to initially privacy-respecting applications. It also opens
to attackers the opportunity of embedding malicious payloads in programs dis-
tributed through repositories. Recent cases include Sourceforge [34]—accused
of distributing malware via bundled binaries [18]—and malicious samples distri-
bution via application installers [28]. Despite all occurrences of trojanized soft-
ware in popular online software repositories, the academic literature dedicated to
investigate this phenomenon is limited, and the few existing work mostly target
the Android OS [1,4,37], rather than MS-Windows, whose few existing work are
still limited in coverage [13]. Therefore, to bridge this gap, we propose to investi-
gate the five more popular online software repositories (according to Alexa [2]),
aiming at shedding light on the occurrence of vulnerable constructions and Tro-
janized applications that actually may infect end users. To do so, we obtained
the 100 most-downloaded Windows programs on each of the five chosen reposi-
tories for a period of consecutive 144 days (from Feb/2019 until May/2019). We
submitted the resulting 2,935 distinct binaries to static and dynamic analysis
systems. We also developed a tool to automatically install those programs during
their run in the sandbox, which allowed us to observe interactions between the
monitored program and the OS.

Our results show that (i) the repositories are very dynamic, presenting fre-
quent rank changes, thus allowing applications to fast climb to the first rank
positions; (ii) the repositories often update their payloads, with distinct binaries
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being distributed over time even for the same applications. We also observed dif-
ferences in the installers for the same applications distributed by distinct repos-
itories; (iii) the installers are very dynamic, presenting modular constructions
and often downloading payloads from the Internet to complement their instal-
lation steps. Whereas enabling flexibility, relying on the Internet also poses new
risks if security measures are not taken. In this sense, we demonstrate that some
installers are vulnerable to content tampering via man-in-the-middle attacks;
and finally (iv) all this dynamic characteristic of installers and repositories open
space for abuse, with 30% of all applications being reported as malicious by at
least one AV.

In summary, our contributions are as follows: (i) We characterize the way
in which online software repositories update their application’s rankings and
binary sharing among distinct installers regarding their interaction with OS
components to understand their implementation decisions, scope, and impact on
users’ devices; (ii) We present statistics about multiple aspects of the installers
distributed by popular repositories aiming to support further research work and
investigations; (iii) We investigate the interaction between application installers
and the OS and evaluate installer’s implementation choices; and (iv) We pinpoint
behaviors found in installers that are compatible with malicious actions deployed
by malware samples, and discuss best practices that could be adopted for the
next-generation of non-intrusive application installers.

This paper is organized as follows: In Sect. 2, we present the main charac-
teristics of online software repositories; In Sect. 3, we present the methodology
adopted to conduct the performed experiments; In Sect. 4, we present evalu-
ation results regarding the files distributed in online software repositories; In
Sect. 5, we discuss our findings, their implications, and open research questions;
In Sect. 6, we present related work to better position our developments; we draw
our conclusion in Sect. 7.

2 Online Software Repositories

Online software repositories are popular websites: Softpedia ranks first in the
Alexa’s Shareware website list [2], with million accesses and downloads everyday.
Google Chrome ranks third in this repository and accounts for 6M downloads.
Microsoft Skype, the 28th, was downloaded 3M times. Other repositories present
same magnitude data: Ubit ranks first in the CNET repository and was down-
loaded 24M times. Therefore, every action in these repositories has potential
to affect million users. In this scenario, every small percentage matters in the
long-tail.

Table 1 summarizes the diverse operation of the software repositories. It
shows who starts the procedure to include a software in the repository (e.g.,
according to user’s requests or to the website managers), who reviews the inclu-
sion request (e.g., website managers), if the rankings are sponsored or not (e.g.,
if applications can climb ranking positions if they pay for it), on which servers
the payloads are stored (e.g., internal repository’s servers or developer’s servers),
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Table 1. Repository Summary. Repositories are diverse in multiple aspects.

Repository Uploaded by Reviewed by Sponsored ranking Servers Security checks

FileHorse Users Site ! Internal/External "

Cnet Users Site " External* "

FileHippo Site Site ! Internal "

SourceForge Users ! ! Internal "

Softpedia Users Site ! Internal/External "

and if the repository checks the distributed binaries (e.g., by performing some
type of AV scanning). For most repositories, the process for adding a new soft-
ware is started by the user filling some form. This will be further reviewed by
the website managers. All repositories advertise they assure the software qual-
ity, but no guideline is specified for any repository. FileHippo does not accept
user requests and its managers decide by themselves which application will be
included. In Sourceforge’s case, a project can be directly imported from Github.
Once a software is included, its download page mentions the software creator, but
they do not report who requested the software to be included. Most repositories
allow the software to become popular by themselves, according to the number of
downloads. CNET is a noticeable exception, allowing developers to sponsor their
applications and climb ranking positions. Therefore, the application ranked first
in the CNET repository is not necessarily the most popular application among
all.

Most payloads are stored on internal repository servers and some repositories
also allow users to directly get files from external sources (as an alternative link
option). In most cases, the links point to the software creator’s page. In CNET’s
case, they point to a CDN. Requests are performed along with tokens which
allow identifying the request origin. In our tests, on the one hand, direct links
always resulted in the download of the same updated binaries available in the
software creator’s page. On the other hand, internal links always served distinct
files than the official release (mostly outdated versions). All repositories claim
the provided files are security checked. Some of them are backed by popular
solutions, such as Avast (FileHippo) and Bitdefender (SourceForge). Despite
that, it is not clear to what extent analyses are performed.

3 Methodology

In this section, we describe our methodology for our experiments in collecting
and analyzing programs distributed via online software repositories.

Repository Selection and Programs Collection. We selected the five most
popular online software repositories according to Alexa score [2]: Softpedia [32],
Source Forge [34], CNet [10], File Hippo [11], and File Horse [12]. Our inten-
tion was to ensure a broad range of samples and, at the same time, to be able to
process all collected data on a daily basis. We developed an automated crawler
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(using Python’s Scrapy [29]) to collect programs distributed by the aforemen-
tioned repositories. Our crawler operates as follows: (i) it first traverses all appli-
cation ranking pages enumerating the available software and pages; (ii) it selects
the top 100 most downloaded apps in the ranking; (iii) it accesses each selected
application page and retrieves the download links; (iv) it downloads the file to
our storage. This process was repeated daily for the five selected repositories,
for a consecutive period of 144 days (from Feb/2019 until May/2019). Meta-
data from downloaded files were stored on a sqlite database, allowing further
queries, such as: (i) what binary hashes were associated to which repositories;
(ii) the binary’s ranking position on a given day; (iii) the amount of distinct
hashes collected under the same program’s name in a given repository, among
other information presented in Sect. 4.

Automated Application Installation and Analysis. Although some
installers enable unattended software installs, most of them requires users to
interact with GUIs to proceed with installing steps (Fig. 1). Therefore, to scale
analysis of thousand samples, we developed a “clicker”, i.e., an installing automa-
tion script that simulates user interaction with application installers. More
specifically, we developed an Autoit [5] script to click the Next and Finish
buttons displayed within graphical windows, allowing installers to proceed with-
out human interaction.

Fig. 1. Automated Installation Example. AutoIT scripts click on the next button
until the installation is complete.

We leverage static and dynamic analyses procedures [31] to identify whether
an installer was Trojanized with malicious payloads and/or was implemented
following bad development practices. To do so, we propose to match behaviors
identified in installers to those knowingly exhibited by malware and suspicious
software [16]. Our hypothesis is that benign software will exhibit none or few
suspicious behaviors. We conducted static analysis procedures based on basic
binary inspection—format and library identification, and samples submission
to VirusTotal [35], to verify if those binaries would be detected by some AV
installed on users’ devices. The dynamic analysis consisted of running the sam-
ples in a virtualized sandbox machine with a malware monitoring system [7]
to observe processes creation, filesystem operations, registry key changes, and
network traffic. All valid Windows binaries were uploaded to that sandbox, in
which each one was installed using our clicker.

Assumptions. The experimental setup described in this section is supported
by the following assumptions: (i) Our goal is not to provide an exhaustive anal-
ysis of all existing application installers, but a view on the most downloaded
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(and supposedly most installed) applications; (ii) Since not all websites will be
reachable and not all binaries will be available every day, our goal is to provide
a long-term view of the evaluated repositories dynamics, instead of a snapshot
of a certain day; and (iii) We understand that some installers’ operation might
be unsuccessful due to the sandbox execution and the clicker stimulation. Thus,
our goal is to provide an overview of common practices implemented by the
applications installers, avoiding focusing on particular cases.

4 Repositories Evaluation Results

In this section, we present the results obtained from the evaluation of the pro-
grams distributed by the five selected online software repositories. Our exper-
iment consisted of the following steps: (i) description of the collected dataset;
(ii) evaluation of the content distribution dynamics within the repositories; (iii)
drawing a landscape associating installers interaction with operating system
internals; (iv) comparing the behavior exhibited by installers of the same soft-
ware, but distributed by different repositories; (v) investigation for evidences of
software trojanization.

4.1 Dataset Description

During the 144 days of collection, we successfully downloaded 46,018 files from
the five online software repositories and built a dataset with 2,935 unique files,
related to 1,633 distinct programs (Table 2). From those programs, 13 were soft-
ware intended to remove other applications (uninstallers) and, due to that, they
were evaluated separately from the remainder of the dataset samples (considered
as “installers”).

The number of unique files is greater than that of unique applications because
the distributed files vary over time (among distinct repositories as well as within
the same repository), and the total number of downloaded files does not cor-
respond to the expected sum of each repository downloads. The reason is that

Table 2. Dataset overview. The num-
ber of unique files differs due to changes
in distribution over time.

Repository Programs (#) Unique Files (#)

FileHorse 82 314

Cnet 118 295

FileHippo 433 906

SourceForge 99 631

Softpedia 901 897

Total 1,633 2,935

Table 3. File sharing among reposito-
ries. They usually do not share files for the
same programs.

Repositories Sharing Rate (%)

(Cnet, FileHorse) 48.04

(FileHippo, FileHorse) 17.65

(Cnet, FileHippo) 15.69

(FileHippo, Source Forge) 07.84

(Cnet, Softpedia) 04.90

(Cnet, Source Forge) 03.92

(FileHorse, Softpedia) 00.98

(FileHippo, Softpedia) 00.98
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105 (3.6%) files were shared by two (95% of all shared files) or three (5% of
all shared files) repositories. In Table 3, we show that most repositories do not
share files among themselves even for the same programs, implying that they
distribute distinct program versions or installers.

Programs distributed by the repositories are packaged in multiple formats
(Table 4). Although Trojanization can be implemented via any packaging type,
we focused on binaries with Windows PE file format [25], since they are the
prevalent file format in our dataset, and are also self-contained installers, which
makes Trojanization easier for attackers. Most PE files present in our dataset
are 32-bits, still reflecting the long-term trend of developers that delay the
adoption of new programming techniques to native support 64-bit applications,
as reported in [36]. Interestingly, some installers are packed with UPX (2.6%)
and/or Armadillo (0.6%) so as to compress their payloads. Only 19.3% of the
PE installers were crypto-signed.

Table 4. File types distribution.
Self-contained PE files are the preva-
lent type of program installers.

Type Format Prevalence (%)

Java 0.67
ISO 1.04
Compressed 7-zip 0.37 RAR 0.30
File XZ 0.37 ZIP 20.47
Formats bzip2 0.37 gzip 1.34
Windows DOS 0.45 PE 65.63
Binaries .Net 0.67 PE+ 0.45
Other 7.87

Table 5. Binary file’s size distribution.
Small binaries are associated to download-
ers and large ones to droppers.

Interval (MB) Frequency Binaries (%)

[0.000, 0.400) 93 5.42
[0.400, 1.400) 128 7.46
[1.400, 5.000) 242 14.11
[5.000, 70.000) 619 36.08
[70.000, 150.400) 145 8.45
[150.400, 600.400) 105 6.12
[600.400, 888.000) 16 0.93

The variety of formats distributed by the software repositories affects the
installers’ file sizes, shown in Table 5. The differences in files sizes is impor-
tant due to storage issues and because they may reveal implementation strate-
gies behind the installer: smaller binaries usually only implement a client that
downloads the actual payload from the Internet (Type I installer); larger bina-
ries embed the payload themselves, dropping them at installation time (Type II
installer). Although the first approach enables content creators to keep distribut-
ing up-to-date versions of their software, it makes security checking harder, as
the distributed content changes very often. In terms of Trojanization, an attacker
who controls a Type-I installer might implement a downloader [27], whereas an
attacker who controls a Type-II installer might implement a dropper [16].

4.2 Repositories Dynamics

The chances that a malicious actor trojanizes a given repository and the impact
that it can cause are strongly tied to the repository’s operation dynamics, since
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more frequent repository updates make it harder to track newly added code.
In addition, if it is easier for newly added software to climb the top ranking
positions, their infection might become even more impacting. To delve into those
dynamics, we evaluated the samples crawled daily from the repositories.

In Fig. 2, we show the number of downloads from each repository along the
experiment’s period. Overall, all datasets grew almost linearly due to our daily
queries to the top-100 ranking positions. Variations were caused due to unreach-
able servers on a given day, or broken links/Web pages.
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Fig. 3. Daily Downloads. FileHippo’s
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week.

In Fig. 3, it is possible to observe that the download of more than 80 unique
files (from the top-100) was only accomplished within FileHippo and CNET.
The daily number of collected programs was mostly constant, if we consider each
repository, with few days presenting peaks or valleys in the crawling process. The
observed variations were related to Website updates or unavailability.

Each repository distinguishes itself regarding the samples successfully down-
loaded, as in the addition of new samples. Figure 4 shows the number of new
unique samples (based on the binaries’ MD5 hash) added to the repositories
daily. We notice that FileHippo has many more new additions each day than
the other repositories (except for particular peaks in Softpedia, Sourceforge, and
CNET). This is caused by the frequent update of the distributed payloads, which
indicates that FileHippo is more volatile about the content of its distributed
installers (therefore may be riskier for users).

The observed strategy of payload replacement led us to hypothesize that
the top-100 programs may also change their ranking positions frequently. To
investigate this hypothesis, we measured the fraction of programs whose ranks
changed each day. Figure 5 shows the change ratio per repository (we did not
show FileHorse’s results due to its incipient rank changes of less than 1% in
most days), which confirms that almost all programs changed their position on
some days. Similar to the aformentioned new hashes’ case, we noticed that each
repository has distinct ranking dynamics.
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The ever-changing operation of software repositories is highlighted when we
limit our analyses to the most downloaded programs. Initially, we believed that
their ranking positions would hardly change, given their popularity. In practice,
we observed that ranking changes affect even the most downloaded programs,
occurring more frequently among the top-5 in all repositories. Understanding the
phenomenon of frequent rank changes is important because it shows how quick
a new (potentially malicious) software can reach the top of the ranking after its
release. It also allows us to evaluate the extent of potential damages according
to the number of affected users based on the popularity of programs. To explore
this possibility, we measured how many programs change their ranking position
at least once within a given repository, and how many positions on average they
scale up the rank. Figure 6 shows that most programs change their position at
least once (on average, only 12% finished the observed period in the same ranking
position). We observed in all repositories’ rankings that most programs scaled
up few positions. We also observed that more programs increased their ranking
instead of having it decreased. It happens due to the repository removing some
programs from the top lists to add newer software, thus creating a gap in the
former individual ranks while naturally allowing the latter to scale up some
positions.

Although most programs does not reach the top of rankings, some of them
scaled from the last pages to the first positions. We also observed that this
growth occurred in a short period of time (only 4 days for Google Chrome and
a month for other programs). The popularity of these programs raise concerns
about the potential harm that might be caused if one of them is Trojanized.
Highly popular programs, such as Google Chrome, were not expected to be low
in the rankings any time. However, in times of Google Chrome version releases,
(72.0.3626 in the period [14]), the ranks have to be updated with a new entry for
this program. The possibility of changes in the binaries distributed for the same
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application over time also raises security concerns, since Trojanized versions
of them could serve as a replacement to the legitimate ones. To evaluate this
hypothesis, we measured how many repositories implement this practice and how
frequent it is deployed by them. The rate of the software in each repository which
had their binaries changed at least once in the observed period indicates that
there is Trojanization opportunities for malicious actors: FileHorse (42.74%);
FileHippo (30.36%), Sourceforge (29.58%); CNET (11.41%); Softpedia (9.43%).
We consider these rates significant as they show that the repositories evolve not
only by adding new software entries over time but also by modifying existing
ones. The update of the distributed binaries is not homogeneous for all programs.
Figure 7 shows the frequency in which each one of the applications have their
distributed binaries updated during the observation period. We notice that while
most programs are updated only few times—probably due to software updates—
the remainder programs are updated very often. Some programs were updated
more than 50 times (considering distinct repositories), an update rate greater
than one time per week during the observation period. This constant updating
routine opens a significant attack opportunity window, since at the time of the
security analysis of previously distributed binaries is complete, the repository is
already distributing a novel, not-yet-analyzed software version.

Among the programs whose binaries were updated more frequently, we high-
light once again the importance of paying attention to the popular applications.
For instance, Skype changed six times in FileHippo and seven times in FileHorse
from February 13, 2019 to May 15, 2019. Those changes referred to updates either
in the software version or in its distributed installer (discussed next in Sect. 4.3).

4.3 Installers’ Dynamics

Repositories usually provide program installers, which perform numerous inter-
actions with the underlying OS. For instance, they are responsible for copying
contents to the correct directories, setting environment paths, adjusting Registry
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keys, loading drivers, installing additional services, and so on. The implemen-
tation strategies to accomplish those tasks is varied: installers may download
payloads and related configuration files from remote servers, or directly extract
them from embedded resources; their system configuration changes may affect
a single user or the whole system; they may rely on system libraries or install
their own ones; they may require privilege escalation or not. All of these actions
affect system security, thus we present an overview of which of them were found
in the evaluated installers, so as to draw a landscape of installers operations
and the associated security risks. From the 1,633 collected programs, we limited
our evaluation to the 993 unique binary samples packed as Windows executables
(PE file format) that were successfully installed in our sandbox (the unsuccessful
ones failed mostly due to corrupted files and/or missing environment variables).

Installers Modularity. We observed that installers present highly modular
constructions. 52.62% of them created at least one child process during the instal-
lation process (98% of these created only a single process, but we identified one
installer that created up to 15 child processes during its operation). Installers rely
on child processes for multiple tasks: (i) 13.4% of the installers create new pro-
cesses to relaunch the program installer with properly defined parameters, with
the main installer executable being responsible only for displaying the Graph-
ical User Interface (GUI), which allows users to specify what components will
be installed; (ii) 1% of the installers create new processes to launch external
tools to extract compressed objects (e.g., unzip); (iii) another 1% of installers
rely on child processes to launch downloaders; (iv) 1% use children to launch
post-installation procedures, such as opening a browser to display installation
messages; and (v) 1% make child processes execute cmd or powershell scripts
for them. The remaining modules invoked by installers were system processes
intended to perform generic tasks. A major motivation for installers launching
child process is to execute payloads extracted from the main installation binary.
This “dropping” strategy was identified in 25.3% of samples. Code 1.1 shows
two installers writing their payloads in executable files on disk. Their goal is to
distribute multiple components as a single file.

1 C:\ installer.exe|Write|C:\Users\Win7\AppData\Local\Temp
\{907 A1104 -E812 -4b5c -959B-E4DAB37A96AB }\ vsdrinst64.exe

2 C:\ installer.exe|Write|C:\Users\Win7\AppData\Local\Temp
\{907 A1104 -E812 -4b5c -959B-E4DAB37A96AB }\ Install.exe

Code 1.1. Dropper Installer. Some Installers drop embedded payloads to disk and
launch them as new processes.

Installers might also retrieve payloads from the Internet—10.8% of the evalu-
ated ones exhibited this behavior. On the one hand, downloading payloads from
Internet allows installers to retrieve them according to the installation environ-
ment (e.g., distinct OS versions), and to install updated versions of all software
components. On the other hand, it requires a machine connected to the Inter-
net at the moment of the intended program’s install, which makes the installer
less self-contained. Code 1.2 illustrates an installer requesting to download a pay-
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load from the Internet. This request was encoded to not reveal much information
about its content.

1 GET 200.143.247.9:80 (et1.zonealarm.com/V1?
2 TW9kdWxlPWluc3RhbGxlch98U2Vzc2lvbj0wYzNjNDA1OD )

Code 1.2. Downloader Installer. Some Installers perform (encoded) network
requests to retrieve payloads from Internet.

The exhibited behaviors of modularity (many child processes), downloader,
and dropper are also reflected in the installers’ written files (Table 6). The preva-
lent file types are libraries, which allow code reuse. Executables are the second
most popular ones, since they represent the programs being installed. Temporary
files are the third most popular extensions, mostly due to the objects dropped
during installation procedures: installers usually drop small pieces of data to files
to reconstruct global, complex structures, and the temporary files are used to
store binary blobs, raw text, and proprietary structures. We also identified that
VPX files—closed source files used by Avast and AVG antiviruses to store malware
definitions—are very popular within installers, being used to deploy signature
updates. Finally, we observed that some installers write SYS files, which allow
them to load kernel drivers and affect the system as a whole.

Table 6. Top-5 file extensions most written by installers.

Extension DLL EXE TMP VPX SYS

Files (#) 6,949 1,309 1,302 811 790

Network Usage. Payload downloading enables updated software versions
install (e.g., AVs with up-to-date signatures). However, download mechanisms
proper deployment may be challenging, resulting in security issues. For instance,
flawed cryptography (or the lack of support for encrypted connections) may
expose users to payload tampering via Man-In-The-Middle (MITM) attacks [26].
We identified 39 applications that download binaries via HTTP-only connec-
tions, as shown in Code 1.3. The list of installers that retrieve payloads via HTTP
includes popular programs, such as Avast, BitDefender, AVG, and Kaspersky
AVs. The AV’s choice for HTTP-only downloads has already been reported in
the past [22], but it seems to keep its standard practice status over time.

1 GET iavs9x.u.avast.com/iavs9x/
avast_free_antivirus_setup_online_x64.exe

2 GET download.bitdefender.com/windows/bp/all/avfree_64b.exe
3 GET iavs9x.avg.u.avcdn.net/avg/iavs9x/

avg_antivirus_free_setup_x64.exe
4 GET dm.kaspersky -labs.com/en/KAV /19.0.0.1088/ startup.exe
5 GET download.bullguard.com/BullGuard190AV_x64_190411.exe

Code 1.3. Unencrypted Download by Installers. The use of HTTP-only
connections may make users vulnerable.
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To test whether the installers were actually vulnerable to payload tampering,
we performed a MITM against them. Despite the unencrypted payload down-
loads, all popular installers, including AVs, were not vulnerable to payload tam-
pering, since they are able to realize payload changes through certificates and
checksum verification. Other programs, such as the BullGuard backup solution,
are vulnerable to this type of attack1: its installer downloaded our supplied pay-
load and executed it without any checks. This opens a significant infection vector
for the execution of any attacker-supplied code if the installer is executed in a
hostile network.

Installation Tracking. Installers also rely on Internet support to track pro-
grams’ installs. 4% of all installers sent clear tracking data back to their servers
during the installation step (Code 1.4). Additional tracking data might be sent
after the program runs for the first time (e.g., software that require users regis-
tration).

1 GET /v1/offer/campaignFilter /? bundleId=UT006&campaignId =5
b6352b3ce72513ae0a6beef

2 GET sos.adaware.com|/v1/offer/campaignFilter /? bundleId=
UT006&campaignId =5 b6352b3ce72513ae0a6beef

3 GET flow.lavasoft.com|/v1/event -stat?ProductID=IS&Type=
StubBundleStart

Code 1.4. Installation Tracking. Some installers sent back tracking information to
notify providers about the installation.

Application installers collect tracking data for many reasons, such as iden-
tifying software popularity by keeping track of the number of installations, and
displaying targeted ads campaigns. Unfortunately, most installers do not make
this user data collection explicit. For instance, the privacy terms for Code 1.4’s
program installer state that: “We collect some limited information that your
device and browser routinely make available whenever you visit a website or
interact with any online service.” “We collect this data to improve the overall
quality of the online experience, including product monitoring, product improve-
ment, and targeted advertising.” and that “We may also include offers from third
parties as part of the installation process for our Software”. Besides the claims
that the program collects a wide range of data, it is not clear what kind of data
is collected during website visits, software execution, and software installation.
Moreover, the installation step deserved a single line in the whole privacy term,
showing that the impact of software installation is often understated.

Installer’s Proxies. To access the Internet, some installers end up performing
intrusive system changes. We identified that 5% of all installers changed proxy
settings of the whole system. Code 1.5 shows an installer that enabled a proxy
by writing to a system’s Registry key. While some installers define new proxies,
others only remove previously defined proxy settings. Although it may happen

1 We contacted the vendor and disclosed all vulnerability’s details so the company
could fix it.
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with the solely purpose to ensure that the payloads are downloaded from a
proper source, it affects all further network requests.

1 214|2019 -2 -12 C:\Users\Win7\AppData\Local\Temp\BullGuard
Backup Setup.exe|SetValueKey|HKU\<userid >\ Software\
Microsoft\Windows\CurrentVersion\Internet Settings|
ProxyEnable |1

Code 1.5. Proxy Definition. Some installers change system-wide proxy settings.

Installers Persistence. Installers may change Registry keys to allow binaries
to be invoked upon a system reboot. We identified that 1% of them exhibit this
behavior. One reason for installers implement persistence is to set the installed
program as a background daemon. This task is often performed by security appli-
cations’ installers, such as AVs (Code 1.6). Another reason for the persistence
behavior is because it allows splitting the installation process in multiple steps.
This is required when the installation of some components requires rebooting
(e.g., to load kernel drivers). Whereas daemons are often set by writing to the
AutoRun Registry keys, multi-step installers often implement their own counters,
as exemplified in Code 1.7.

1 C:\Users\Win7\AppData\Local\Temp\7 zS4DEAD364\Stub.exe|
SetValueKey|HKU\<userid >\ Software\Microsoft\Windows\
CurrentVersion\RunOnce|PandaRunOnce|

Code 1.6. Persistence. Some installers set executable paths in the Registry to be
executed after a system reboot.

1 C:\Users\Win7\AppData\Local\Temp\ajAE1E.exe|SetValueKey|
HKLM\SOFTWARE\Wow6432Node\AVAST Software\Browser|
installer_run_count |1

Code 1.7. Multi-Step Installers. They control how many times they will run.

Affected System Scope. Installers may modify several other Registry keys.
In many cases, these modified keys affect the whole system instead of the single
user running the installer process. We identified that 56% of all installers affected
only the single user who is installing the program (HKCU keys), whereas the
remaining 44% also affected machine-wide Registry keys (HKLM).

Application Removal. Most installers do not implement proper cleanup rou-
tines after finishing the installation process. Only 33% of all installers dependent
on temporary files deleted them before ending their process.

Allowing software to be properly removed is as important as to properly
install the application. Unfortunately, not all installers provide adequate mech-
anisms to remove their installed objects: only 1% of them created an uninstaller
object able to be invoked in a standalone fashion, as shown in Code 1.8.
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1 C:\Users\Win7\AppData\Local\Temp \{907 A1104 -E812 -4b5c -959B-
E4DAB37A96AB }\ Install.exe|Create|C:\Users\Win7\AppData
\Local\Temp \{907 A1104 -E812 -4b5c -959B-E4DAB37A96AB }\
Uninst.exe

Code 1.8. Uninstaller Definition. Some Installers set uninstallers for the
applications.

Identifying whether installers defined an uninstalling routine or not has
proven to be a hard task: 1% of the tested programs define uninstalling rou-
tines based on specific parameters, as illustrated in Code 1.9.

1 C:\ Program Files (x86)\GUM5D5C.tmp\fmanUpdate.exe|
SetValueKey ||HKU\<userid >\ Software\fman\Update|
UninstallCmdLine |"C:\ Users\Win7\AppData\Local\fman\
Update\fmanUpdate.exe" /uninstall

Code 1.9. Parameter-Based Uninstallers. They define command line parameters
for software removal (difficult for users), instead of providing a self-contained
uninstaller.

4.4 Comparison of Installers Versions

We identified that distinct binaries have been distributed for the same appli-
cation over time and across repositories. Understanding the modifications that
these binaries underwent might provide important insights to improve installers
development and security.

Differences in Installers Within the Same Repository. We first evalu-
ated how the binaries available for the same program and distributed by the
same repositories change over time. We initially hypothesized that these bina-
ries could be subject to significant modifications. However, we discovered that
the modifications overall are more structural than behavioral, thus suggesting
that the differences occur more due to installers evolution than due to other code
insertion mechanisms.

In the cases when the installers were effectively modified to embed additional
applications, their most prevalent payloads referred to toolbars and browsers
add-ons. 1% of all binaries were versions of previous installers modified to include
the Google Toolbar, which is often embedded as part of third party extensions
within the main application (Code 1.10).

1 C:\ installer \3 rdPartyApp\GoogleToolBar\
GoogleToolbarInstaller_zh -TW.exe

Code 1.10. Google Toolbar. It is embedded as 3rd-party extensions of the main
app.
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In cases where the installers do not directly perform a toolbar installation,
they managed to change the native Internet Explorer configurations to dis-
play customized settings, which includes adding new bookmarks and cookies
(Code 1.11).

1 HKCU\Software\Microsoft\Internet Explorer\LinksBar\
ItemCache\ToolBar|Add

Code 1.11. IE Settings Modification. New bookmarks, cookies, and configurations
set in the browser.

Another 1% of all binaries were embedded with advertisement applications
instead of toolbars. These applications, known as adware (advertisement soft-
ware), often run in background and keep collecting users information to feed
targeted ads campaigns. Code 1.12 shows an adware running from a temporary
file dropped by the main installer.

1 C:\Users\Win7\AppData\Local\Temp\is -3ACQL.tmp\
Advertising_english .exe

Code 1.12. Adware. The advertisement software is dropped from a file created by
the main installer.

Differences in Installers Among the Repositories. The tracking capabil-
ities present in the installers are clearly revealed when we compare installers
for the same applications downloaded from distinct repositories. While we were
unable to identify any significant difference in the behaviors exhibited by the
binaries, we easily noticed their tracking capabilities. Code 1.13 illustrates an
excerpt of the installation trace for the same program, but using binaries down-
loaded from three distinct repositories. We notice that the UserId values consid-
ered in each installation is different for each binary. We executed many instal-
lation attempts and discovered that this number is not randomly generated,
but seems to be tied to each binary. We considered this an indication that the
installers are able to identify the origin of their installation.

1 C:\Setup.exe|SetValueKey|HKCU\Software\Microsoft\Client|
UserId |{C2CFE0D4 -A3A2 -4458 -A73F -F16F10E4C0D7}

2 C:\Setup.exe|SetValueKey|HKCU\Software\Microsoft\Client|
UserId |{EA0CB74D -DB5D -40EE-A402 -47 A97F23904E}

3 C:\Setup.exe|SetValueKey|HKCU\Software\Microsoft\Client|
UserId |{E81A6607 -9EB3 -49BA-B354 -FA42817594BA}

Code 1.13. Tracking IDs of installers of distinct repositories. Each installer
presents a distinct tracking ID according the repository from which they were
downloaded.

4.5 Trojanization Evidences

The major problem associated with downloading software from third-party
repositories is that the downloaded binary may be a Trojanized version of the
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original software. This type of attack has been becoming popular to the point of
some installers explicitly warning users about this possibility, as shown in Fig. 8.

Fig. 8. Security Warning. Trojaniza-
tion has become popular to the point of
some installers warning users about this
possibility.
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Many samples were considered either as
malicious or as trojanized.

To verify if Trojanization cases occur in practice, we performed AV scans
on all downloaded binaries. We submitted all binaries to VirusTotal [35] and
normalized the retrieved labels using AVClass [30]. We discovered that 31%
of all binaries were detected by at least one AV. We further investigated the
nature of these detection occurrences by inspecting the assigned AV labels, whose
distribution is shown in Fig. 9.

The most prevalent detection label is “Trojan”, which means that malicious
code was inserted into application’s native code. This finding shows that, as
hypothesized, there is a real risk of application Trojanization in online software
repositories. Among the Trojanized programs, we were able to identify 20 dis-
tinct families of the Artemis malware [33], thus showing that the attackers have
been embedding real, harmful malware to the online repositories’ distributed
programs. Some AVs also detected the adware software embedded in part of the
programs as malicious. This type of detection happens because the AV under-
stands that the embodiment of advertising software to the original application
implies on privacy leak risks to the user. A smaller part of the samples was
detected as malicious due to their innate nature—12 installers were detected as
downloaders and two as droppers, since the AVs were unable to distinguish their
“legitimate” operation from the same behavior exhibited by malware classified
as downloaders or droppers.

The detection of Trojanized apps is not uniform among the AVs, as shown
in Fig. 10. Whereas some AVs detected only 3% of all samples reported as Tro-
janized by at least one AV, other AVs detected more than 60% of all reported
samples. This shows that the AVs employ very distinct criteria for detecting
Trojanization (e.g., adware inclusion is considered malicious for some but not
for others). This highlights the need of checking multiple AVs in addition to the
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ones considered in the repository pages, as this AV might have a very lax detec-
tion criteria. The detection is also not uniform among the repositories, as shown
in Fig. 11. Whereas some repositories accounted for less than 10% of all detected
malicious files in the period, CNET accounted for 50% of all samples. Despite
that, we cannot claim that the CNET repository is more insecure than the oth-
ers, as most detection occurrences are due to the repeated upload of the same
flagged file. This shows that the evaluation of software repositories should also
consider the frequency of upload of malicious files in addition to their occurrence.

5 Discussion

In this section, we revisit and discuss our findings to pinpoint existing gaps
in the security of online software repositories and some possible and concrete
improvement actions.

Paying Attention to Popular Applications. Although the software reposi-
tories may contain thousands of distinct applications, some of them gather more
attention than others. Popular applications may be downloaded million times
each month, thus presenting a huge potential of damage if they have been Tro-
janized. Our study showed that some programs are really popular, being present
in the top download application rankings of multiple repositories simultaneously.
In addition, in some cases, popular applications might quickly achieve the top
ranking positions after a short period of time, which shows that the hypothesized
popularity and usage broadness occurs in practice. In this scenario, it is essen-
tial for the repository administrators (and all security-related players) to pay
attention to these programs to prevent trojanization cases, and counter them
when they happen. In this sense, we consider that the recent decision of Google
of extending its bug bounty program from its own applications to all other ones
present in Google Play that have more than 100M installs [6] as a correct and
very necessary move. Moreover, we consider that all other good security prac-
tices, such as fuzzy testing and audits, should be extended as well. Unfortunately,
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we are not aware of any kind of similar action regarding the samples provided
by popular online Windows application repositories.

Reproducibility of Studies Leveraging Software Repositories. Many
studies rely on software repositories as a source of binaries for their evaluation,
either to measure bug prevalence in the software engineering context [15,40], or
as a direct source of goodware for balancing malware analysis datasets and/or
machine learning training. These studies may be strongly impacted by our find-
ings, since we showed that software repositories are very dynamic. In this sce-
nario, a study conducted with the top applications of one repository might result
in completely different conclusions when applied to other repositories. The same
effect may happen even within the same repository if the software is collected on
different days, as ranks and binary versions change over time. Therefore, repro-
ducibility should be a concern for all researchers whose works rely on software
repositories. Researchers need to find ways to make samples and other informa-
tion available and reproducible, as only stating that the most popular samples
from a given repositories were used in their study is not enough information to
reproduce their experiments and obtained results in this ever-changing context.

Repositories as Source of Goodware. Binaries downloaded from software
repositories are often used for malware classification and/or ground-truth [39].
Our findings also present strong implications to these cases. We showed that
Trojanization might affect all repositories, thus even programs downloaded from
“official” or popular repositories must be checked by antivirus solutions before
being considered clean. Otherwise, the researcher could wrongly consider existing
malicious behaviors embedded in the Trojanized application as ground-truth for
benign applications. Even worse, one could mistakenly make a machine learn-
ing algorithm to learn a set of malicious behaviors as legitimate. Therefore,
researchers should not blindly trust software repositories.

Other Repositories Issues. This work investigated the overall impact of using
software repositories. Our results can be applied to both end-users downloading
applications from these repositories as well as for researchers leveraging these
applications as ground-truth for their experiments. However, software reposito-
ries present a myriad of applications that deserve special attention. Our goal in
this work was not to exhaust the subject, but to give a first step towards a better
understanding of characteristics of online repositories. We pinpoint that other
repositories aspects might be addressed as future work. In particular, we under-
stand that uninstallers might also be studied, in addition to the installers, since
traces of previous applications can also significantly affect systems operations,
either regarding continuous privacy leaks or performance degradation.

Limitations and Future Work. Software Repositories are very diverse and
popular. Therefore, other repositories than the ones presented here should be
studied to present a broader overview of security issues. This additional investi-
gation might raise new hypothesis, such as if less popular repositories are more
prone to be Trojanized than the ones here presented. The data collected in our
experiments was not enough to cluster the tools used to trojanize the apps in
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classes. We expect that this task could be done via larger-scale experiments using
multiple repositories.

6 Related Work

We here present related work to better position our contributions.

Trojanization is an effective and efficient approach to deliver malicious pay-
loads, and its occurrence in practice presents large-scale implications. Code Tro-
janization has already been reported in practice in the repository of the Arch
Linux distribution [9], in the Asus update platform [38], and even in the Android
platform [20]. In the context of this research, we investigate occurrences simi-
lar to ones reported for SourceForge, accused of distributing malware among
other applications [18]. We believe that Trojanization might become a prevalent
problem in future years. Currently, Trojanization occurrence has been already
reported even for hardware devices [8].

Software Repositories are very popular among many users as they allow gath-
ering new software pieces in an easy way. Thus, they were studied by many
researchers in the software engineering literature [15,40]. These work, however,
are more focused on source-code analysis rather than on the binaries distributed
to end-users. This type of research was only made popular in recent years due
the emergence of application stores for mobile devices, as observed in the rise of
many studies targeting the Android platform [1,4,37]. These research work iden-
tified phenomena such as the same app being distributed in different packages
according the repository [3]. In this work, we extend this type of phenomenon
observation to the scenario of online repositories for Windows binaries, whose
few existing research work are still limited in coverage (e.g., evaluating less than
thousand samples collected on a single day [13]).

Installers & Uninstallers are critical pieces of software for system operation
as they perform extensive changes on the system’s state. For instance, remaining
registry entries after a software removal may cause systems to slowdown [19].
Unfortunately, there are currently a limited number of research work in the
literature dedicated to investigate their impact, with most developments focusing
on how to perform remote apps installation [41]. The closest work to ours are
related to the investigation of the application installation logs on the Android
platform [23] and the detection of piracy signs on application installers [21].
We extend these initiatives to investigate the occurrence of Trojanization on
application installers.

7 Conclusions

In this paper, we investigated the occurrence of application Trojanization in the
binaries distributed by popular Internet software repositories. We crawled the
top-100 most downloaded Windows applications of five repositories for 144 days,



212 M. Botacin et al.

which allowed us to characterize the dynamic of these repositories’ operations.
We also investigated the characteristics of the downloaded installers by running
them in a sandbox solution instrumented with a clicker for automatic applica-
tion installation, which allowed us to characterize installer’s interactions with the
operating systems. Our results show that: (i) the repositories are very dynamic,
presenting frequent rank changes, thus allowing applications to fast climb to the
first rank positions; (ii) the repositories often update their payloads, with distinct
binaries being distributed for the same applications. There are also differences
in the binaries for the same applications distributed by distinct repositories;
(iii) the installers are very dynamic, presenting modular constructions and often
downloading payloads from the Internet to complement their installation steps.
Whereas enabling flexibility, this also poses new risks if security measures are
not taken. We demonstrate that some installers are vulnerable to content tam-
pering via man-in-the-middle attacks; and (iv) all this dynamic characteristic
of installers and repositories open space for abuse, with 30% of all applications
being reported as compromised by at least one AV solution. Our results shed
light on some drawbacks of relying on software repositories, both by end-users
installing these programs in their computers, as well for researchers leveraging
these software repositories as ground-truth for their experiments. We also hope
that our analysis could motivate other researchers to investigate other software
repositories issues and help the community to understand their impact.
Reproducibility. all code developed to support this research work is available
at https://github.com/marcusbotacin/Application.Installers.Overview.
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