
COLUMBUS: Android App
Testing Through Systematic Callback Exploration
Priyanka Bose∗, Dipanjan Das∗, Saastha Vasan∗, Sebastiano Mariani†, Ilya Grishchenko∗, Andrea Continella‡,

Antonio Bianchi§, Christopher Kruegel∗, and Giovanni Vigna∗
∗University of California, Santa Barbara {priyanka,dipanjan,saastha,grishchenko,chris,vigna}@cs.ucsb.edu

†VMware, Inc. {smariani}@vmware.com
‡University of Twente {a.continella}@utwente.nl

§Purdue University {antoniob}@purdue.edu

Abstract—With the continuous rise in the popularity of An-
droid mobile devices, automated testing of apps has become more
important than ever. Android apps are event-driven programs.
Unfortunately, generating all possible types of events by interact-
ing with an app’s interface is challenging for an automated testing
approach. Callback-driven testing eliminates the need for event
generation by directly invoking app callbacks. However, existing
callback-driven testing techniques assume prior knowledge of An-
droid callbacks, and they rely on a human expert, who is familiar
with the Android API, to write stub code that prepares callback
arguments before invocation. Since the Android API is very large
and keeps evolving, prior techniques could only support a small
fraction of callbacks present in the Android framework.

In this work, we introduce COLUMBUS, a callback-driven test-
ing technique that employs two strategies to eliminate the need
for human involvement: (i) it automatically identifies callbacks by
simultaneously analyzing both the Android framework and the
app under test; (ii) it uses a combination of under-constrained
symbolic execution (primitive arguments), and type-guided
dynamic heap introspection (object arguments) to generate valid
and effective inputs. Lastly, COLUMBUS integrates two novel
feedback mechanisms—data dependency and crash-guidance—
during testing to increase the likelihood of triggering crashes and
maximizing coverage. In our evaluation, COLUMBUS outperforms
state-of-the-art model-driven, checkpoint-based, and callback-
driven testing tools both in terms of crashes and coverage.

I. INTRODUCTION

Android is the most popular mobile operating system, with
2.8B active users and a global market share of 75% as of 2021 [2].
Android apps cater to diverse users’ needs, such as emailing,
banking, gaming, etc. The Google Play Store, the official An-
droid app market, witnessed enormous growth—it currently hosts
2.9M apps, and more than 100K apps are added every month [1].
In order to provide a smooth user experience, these apps need to
be thoroughly tested before developers push them to the market.
Modern Android apps use rich user interface (UI) and complex
app logic, thus making automated exploration challenging.

Android apps are event-driven programs, i.e., each interaction
with the UI of the app generates an event, which drives the
app through different states. Therefore, synthesizing a correct
sequence of events is essential to efficiently explore the state
space of an app. Many prior techniques rely on UI testing
frameworks [8], [10], [46], [41], [17], [48], [22] to exercise the
app by generating appropriate events. However, a large class
of events is widget-specific, and requires multiple user actions

to be taken in a specific order at specific UI coordinates. As
we explain in Section III, the onDateChanged event of the
DatePickerDialogwidget is one such example. Generating
such events deterministically is challenging for a UI-based test-
ing tool, unless it has been equipped with the knowledge of how
to generate all the correct events. Given the variety of the Android
widgets, and the different types of events they support, this is
non-trivial. To address this, callback-driven approaches [39]
leverage the fact that when a UI event is triggered, the associated
event handler, also known as callback, is executed. Callbacks
are the methods in the app typically invoked by the Android
framework on the occurrence of an event, e.g., click on a
widget. Callback-driven techniques call those callbacks directly—
essentially eliminating the need for event generation altogether.

Existing callback-driven approaches suffer from two main
limitations. (L1) They assume the knowledge of both the An-
droid callbacks and the APIs to determine what to call and how,
respectively. Given an app, the first challenge is to identify its
callbacks. For that, existing tools maintain a fixed and often small
list of supported callbacks. Once a callback is identified, it has to
be invoked with arguments that match the types that the callback
expects. Callbacks accept two types of arguments: primitive, e.g.,
int, and float, or objects. Object arguments are harder to deal
with. Prior techniques depend on a human expert for writing the
necessary driver code, which would leverage widget-specific
Android APIs to retrieve live objects from the app context, so
that those can be supplied as arguments. Since adding support
for a callback requires a non-trivial manual effort, it is hard
to extend the support for all the callbacks in the framework.
Quite understandably, while there are approximately 19,647
callbacks in Android 4.2 [16], the state-of-the-art callback-
driven testing tool EHBDROID [39] supports only 58 of them.
(L2) Apps accept user-supplied data as input, e.g., text. Only
generating event sequences, which existing tools focus on, is not
enough, because certain functionalities may only be reachable
under specific input. For example, a payroll app calculates tax
differently depending on the income of an employee.

This paper presents COLUMBUS, an Android app testing
technique that addresses both the challenges. To address L1,
COLUMBUS adopts a two-phase approach. First, we statically
identify all the callbacks present in the app (what to call).
Specifically, our callback discovery module statically extracts all

����

�����*&&&�"$.���UI�*OUFSOBUJPOBM�$POGFSFODF�PO�4PGUXBSF�&OHJOFFSJOH�	*$4&

��������������������¥�����*&&&
%0*���������*$4&����������������

ϮϬ
Ϯϯ

�/�
��
ͬ�
�D

�ϰ
ϱƚ
Ś�
/Ŷ
ƚĞ
ƌŶ
Ăƚ
ŝŽ
ŶĂ

ů��
ŽŶ

ĨĞ
ƌĞ
ŶĐ
Ğ�
ŽŶ

�^
ŽĨ
ƚǁ

Ăƌ
Ğ�
�Ŷ

Őŝ
ŶĞ

Ğƌ
ŝŶ
Ő�
;/�

^�
Ϳ�ͮ

�ϵ
ϳϴ

Ͳϭ
Ͳϲ
ϲϱ

ϰͲ
ϱϳ

Ϭϭ
Ͳϵ
ͬϮ
ϯͬ
Ψϯ

ϭ͘
ϬϬ

�Ξ
ϮϬ

Ϯϯ
�/�
��
�ͮ
��
K
/͗�
ϭϬ

͘ϭ
ϭϬ

ϵͬ
/�
^�
ϰϴ

ϲϭ
ϵ͘
ϮϬ

Ϯϯ
͘Ϭ
Ϭϭ

Ϯϭ

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

the callback signatures L supported by the Android framework.
Since an app has to override a framework callback to provide its
own implementation, we use L to identify the callback imple-
mentations present in the app. Once callbacks are identified, then
we dynamically prepare arguments (how to call) to invoke them
with. Unlike previous techniques that rely on manually-written,
callback-specific driver code to generate object arguments, we
resort to a hybrid approach. Our exploration module performs a
dynamic introspection of the app’s heap at run-time, followed by
a type-guided object filtering to supply appropriate arguments to
the callback. This callback discovery and argument generation
strategies together insulate COLUMBUS from the complexity of
the Android API and obviate the need for any prior knowledge.
To address L2, we leverage the fact that many user inputs are
of primitive types, and often appear as the arguments to the call-
backs. Therefore, the argument generation module symbolizes
the primitive arguments of a callback, and performs an under-
constrained symbolic execution to generate the possible values of
those arguments to drive the execution along all paths. Symbolic
execution is scoped within a single callback instead of the entire
app to maintain a balance between precision and scalability.

In addition to tackling those two limitations, we integrate
two novel feedback mechanisms into our exploration loop. (i)
The callback dependency module passes on statically-identified
data-dependencies between callbacks as feedback, which enables
COLUMBUS to generate callback sequences that increase the
likelihood of triggering crashes due to uninitialized objects, e.g.,
NullPointerException. (ii) We design a crash-guided
dynamic scoring mechanism that gradually deprioritizes
crash-inducing paths in the app to drive the exploration towards
unexplored code. In effect, COLUMBUS is incentivized to
discover more crashes than rediscovering the already found ones.

We evaluated COLUMBUS on 60 apps of the AndroTest [37]
benchmark, and top 140 real-world apps from the Google
Play Store. Compared to the state-of-the-art model-based tech-
niques STOAT [41] and APE [22], checkpoint-based technique
TIMEMACHINE [19], and callback-driven technique EHB-
DROID [39], COLUMBUS achieves 12%, 5%, 6%, and 31%
more in average coverage, and discovers 4.42, 1.23, 1.57, and
5.48 times more crashes on the AndroTest apps, respectively.
COLUMBUS is also able to find 70 crashes in 54 real-world apps.

In summary, this paper makes the following contributions:

Callback exploration. We propose a callback-driven Android
app testing approach by presenting (i) a generic technique to ex-
tract all the callbacks present in an app (Section IV-A), and (ii) an
analysis based on under-constrained symbolic execution (primi-
tive arguments) (Section IV-B), and type-guided dynamic object
filtering for generating valid arguments to invoke callbacks.

Feedback mechanism. Further, we make the app exploration
systematic by integrating two novel feedback mechanisms: (i)
a data dependency feedback that increases the probability of
triggering bugs (Section IV-C) due to uninitialized variables, and
(ii) a crash-guided dynamic scoring mechanism that prevents
us from rediscovering the same bugs (Section IV-D).

Tool & evaluation. We implement the proposed technique in
a practical tool called COLUMBUS, and we make it publicly
available [9]. Our evaluation demonstrates that COLUMBUS out-
performs the state-of-the-art tools both in terms of code coverage
and the number of unique crashes that it identifies (Section V).

II. BACKGROUND

Android events. Android apps are event-driven programs. That
is, apps behave as state machines, and events cause a transition
from one state to the other. An event is generated in response to
one or more user actions (UI events), or by Android itself (system
events). Examples of UI events include click, drag, pan,
pinch, zoom, etc. Modern Android devices are equipped with
peripherals, such as, Bluetooth and WiFi, and sensors like motion
sensors and accelerometers. Any change in the state of these
devices is detected by the OS, which then generates a system
event to notify “interested” apps. Examples of system events are
Bluetooth disconnected, phone tilted, and low battery level.

Based on the number of actions needed to generate an event,
we define two types of events: primitive and composite. Primitive
events are either system events or UI events generated due to
a single action. For example, MotionEvent (ME) reports the
movement of an input device like a mouse, pen, finger, trackball,
or KeyEvent reports key and button related actions. A compos-
ite event consists of multiple primitive ones, which are sequenced
with strict spatial and temporal requirements. Say, we want to
drag an object from point p1, and drop it at point pn along the tra-
jectory [p1,p2,p3,...,pn]. In order to programmatically generate
a drag event, the following sequence (temporal) of primitive
events need to be fired at those exact coordinates (spatial):
ME.ACTION_DOWN (p1)→ {ME.ACTION_MOVE (pi) | 2 ≤
i≤ (n−1)}→ME.ACTION_UP (pn). Without the support for
a composite event, it is nearly impossible for a UI testing tool to
generate most of them just ‘by chance’. To make matter worse,
numerous such composite events are widget-specific, e.g., the
DateChanged event recognized by DatePickerDialog.
Therefore, adding support for individual events in a UI testing
tool is nearly impossible.
Android callbacks. An Android callback, also known as an
event handler, is a piece of code that the framework invokes
when a specific event takes place, for example; the onClick
callback is called when a click event occurs. Typically,
the framework only provides empty callbacks, which an app
selectively overrides to respond to the respective events. When
an event is generated, it is broken down into Messages, which
are then put into a MessageQueue managed by the Looper,
the entity that runs the message loop. The Looper processes the
Messages in first-in-first-out order, and calls the associated
callbacks. While invoking a callback, the framework supplies the
appropriate arguments, which can be of two types—primitive,
e.g., int, float, etc., or object, i.e., an instance of a class.
Android activity: An activity is a UI element that acts as a
container of other UI elements. It often presents itself in the
form of a window. Activities are managed by maintaining an
activity stack. When a new activity starts, it is placed on the
top of the stack, while the previous one is paused, and remains

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

below the current one in the stack. A paused activity does not
come to the foreground again until the current activity exits.
An activity transitions through different states of its lifecycle
as a user navigates through an app. Lifecycle callbacks, e.g.,
onCreate, onPause, onResume, are the ones associated
with such lifecycle events.

III. MOTIVATION AND CHALLENGES

This section introduces a motivating example, the challenges
it presents to the state-of-the-art callback-driven app testing
tools, and how we tackle them.

The code in Figure 1 shows three callbacks that an Android
app might implement. The callback functions are executed when
the user interacts with specific UI elements, i.e., clicks on a list
item, clicks on a button, and sets a date using a DatePick-
erDialog (Figure 2), respectively. UI-based testing tools [8]
generate events, e.g., clicks, to interact with the UI of such apps.
However, these tools are not widget-aware, meaning that, they
are unable to systematically generate composite events unless
they already know how to generate them. For example, the
following events need to be generated in an exact sequence, on
specific UI elements, to call the onDateChanged callback—
(i) DatePickerDialog widget is clicked to bring up the
spinner control, (ii) the day/month/year is changed by clicking
on the up/down arrows, and (iii) the Set button is clicked. It is
unlikely for a UI-based testing tool to be able to deterministically
generate this event sequence without any guidance. Moreover,
to set a particular date, the up/down arrows need to be clicked
a specific number of times—which is hard as well. To overcome
this limitation, callback-driven techniques [39] invokes the
callback, e.g., onDateChanged, directly bypassing the UI
layer altogether. While callback-driven testing shows promise,
it still suffers from the following limitations.
Identifying callbacks. The first step of callback-driven testing
is identifying the callbacks. Unfortunately, the set of callbacks
supported by the Android framework is huge. While previous
research [16] identified approximately 19, 647 callbacks in
Android 4.2; EHBDROID, the state-of-the-art callback-driven
testing tool, supports only 58 callbacks. COLUMBUS statically
analyzes the app and the Android framework together to address
this issue (Section IV-A).
Providing callback arguments. Callbacks accept either prim-
itive arguments or objects. The primitive arguments are often in-
volved in path conditions within the callback. Without the correct
value of such primitives, part of the callback may never be exer-
cised. In Figure 1, the Toastmessage appears only on a specific
date. Existing callback-based testing tools use a set of predefined
values to invoke callbacks. Therefore, Line 19 will possibly never
be explored. COLUMBUS symbolizes primitive arguments and
employs under-constrained symbolic execution to infer values to
make larger part of the callback code reachable (Section IV-B).

For object arguments, such as, the ListView and View
arguments of the onListItemClick callback in Figure 1,
callback-driven tools use the Android API (by statically
instrumenting the app) to retrieve correct objects from the app
context, as shown in Figure 3 (Line 2 and Line 7). However,

1 protected void onListItemClick
(ListView l, View v, int position, long id) {

2 File f = (File)(mList.get(id).get(ITEM_KEY_FILE));
3 if (f.isFile()) {
4 mSelectedFile = f;
5 showDialog(DIALOG_IMPORT_FILE);
6 }
7 }
8

9 public void
onClick(DialogInterface dialog, int whichButton) {

10 File f = mSelectedFile;
11 Intent i = new Intent(mContext, myActivity.class);
12 Uri u = Uri.fromFile(f);
13 i.setData(u);
14 startActivity(i);
15 }
16

17 public void onDateChanged
(DatePicker view, int year, int month, int day) {

18 if (day == 15 && month == 6 && year == 2020)
19 Toast.makeText(context, "Success!", ...).show();
20 }

Fig. 1: Code containing three callbacks. Their data dependencies
() and checks on the arguments () are highlighted.

Fig. 2: A DatePick-
erDialog widget

1 void onCreate(Bundle bundle) {
2 ListView lv = getListView();
3 }
4
5 void ehbTest() {
6 for (int i=0; i<lv.size(); i++) {
7 View v = lv.getChildAt(i);
8 long id = lv.getAdapter()
9 .getItemId(i);

10 this.onListItemClick(lv,v,i,id);
11 }
12 }

Fig. 3: EHBDROID instrumenta-
tion for onListItemClick()

this approach is not scalable, as the number of callbacks in
the Android framework is huge, and the tool requires adding
explicit support for all the arguments of all the callbacks. Instead,
COLUMBUS retrieves live objects from the app heap at runtime,
and then applies type-guided object filtering to provide the
correct arguments (Section IV-B). Type information comes from
a one-time, static, pre-processing phase.
Data dependency feedback. Variables are often shared among
multiple callbacks. Shared data introduces data dependencies,
which an app should either enforce by restricting available
UI actions, or handle by placing a sanity check. In Figure 1,
both the onClick and onListItemClick callbacks
use the same variable mSelectedFile. Specifically,
onListItemClick opens a file, and sets the file handle
mSelectedFile (Line 4), which onClick uses in Line 10.
This implies that onListItemClick has to be invoked before
onClick, otherwise the onClick method would generate
a NullPointerException. COLUMBUS statically infers
such data dependencies and passes the same as feedback during
testing. While synthesizing a callback sequence, COLUMBUS
attempts to violate the expected order to increase the likelihood
of inducing crashes (Section IV-C).

IV. THE COLUMBUS FRAMEWORK

In this work, we propose COLUMBUS, a framework to
test Android apps by directly invoking their callbacks. For a
given Android app, COLUMBUS first identifies its callbacks

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Overview of COLUMBUS with reference to the motivating
example in Figure 1

(Section IV-A). It then obtains the primitive argument values
that correspond to different execution paths in these call-
backs (Section IV-B) and identifies inter-callback dependencies
(Section IV-C). Finally, our tool invokes the identified callbacks—
(i) in orders that initially violate (to increase the chances of
triggering uninitialized data-related bugs), and later respect
their dependencies, (ii) with their expected arguments during
the exploration (Section IV-D). COLUMBUS keeps track of the
callback-defining classes explored during the app execution,
and gives higher priority to exploring classes that have been less
explored. Figure 4 depicts the high-level workflow of our system.

A. Callback discovery

Every Android app defines its own set of callbacks. Though
state-of-the-art approaches [39] resorted to a predefined set of
callbacks, the Android framework contains thousands [16] of
callbacks, and the number is constantly increasing. In order
to facilitate effective app exploration, in this work, we present
an approach to automated callback discovery. COLUMBUS’s
callback identification is presented in Algorithm 1. At a high
level, our callback discovery approach first statically analyzes
the framework (Function AndroidFrameworkAnalysis)
followed by an analysis of the app under test (Function App-
Analysis), and outputs a list of callbacks present in the app.
Android framework analysis. Our analysis is based on two
observations. (i) As discussed in Section II, in order to perform
the intended action once an event is generated, an app needs
to override the respective callback present in the Android
framework. To be overridden, a callback needs to be declared
as either a protected, or a public method within the framework.
(ii) Moreover, at runtime, callbacks are typically invoked within
the framework through a series of internal method calls once
an event is generated—meaning that, callbacks have caller(s)
within the framework.

COLUMBUS first constructs the framework’s callgraph CGf .
To build the call graph, COLUMBUS performs intra-procedural
type inference [35] to determine the possible dynamic types
of the object on which a method is called. When this fails,
COLUMBUS then over-approximates the possible targets as

Algorithm 1: Static callback identification
1 Function AndroidFrameworkAnalysis

Input : Android framework JAR
Output : Classes with callback candidates ∆

2 ∆←{}
3 CGf←GetCallGraph(JAR)
4 CHf←GetClassHierarchy(JAR)
5 foreach class cf ∈GetClassesFromJar(JAR) do
6 Mf←∅
7 foreach method mf ∈GetMethodsFromClass(cf) do
8 if IsPublicOrProtected(mf) then
9 if GetCallers(cf ,mf ,CGf) $=∅ then

10 Mf←Mf∪mf

11 end
12 end
13 end
14 ∆[cf]←∆[cf]∪Mf

15 end
16 foreach (cf ,Mf)∈∆ do
17 foreach subclass c′f ∈GetSubClasses(cf) do
18 M ′

f←∆[c′f]; M
′
f←M ′

f∪Mf ; ∆[c′f]←M ′
f

19 end
20 end
21 return ∆,CHf

22 Function AppAnalysis
Input : App’s APK, Framework classes with

callback candidates ∆, Framework’s class hierarchy CHf

Output : Application callbacks CB
23 CB←∅
24 foreach class ca∈GetClassesFromApk(APK) do
25 ClassAndItsParents←ca∪GetSuperClasses(ca)
26 foreach cpa∈ClassAndItsParents do
27 foreach (cf ,Mf)∈∆ do
28 if cpa extends cf∨cpa implements cf then
29 foreach ma∈GetClassMethods(cpa) do
30 foreach mf ∈Mf do
31 if IsCompatible(mf ,ma) then
32 CB←CB∪ma

33 end
34 end
35 end
36 end
37 end
38 end
39 end
40 return CB

all the subclasses of its static type. Now, for every method
mf in a framework class cf , COLUMBUS considers mf as a
potential callback (Lines 7 − −13) if—(i) mf is declared as
either protected, or public, and (ii) mf has at least one caller
in CGf . At the end, we compute a mapping ∆ that maps each
class cf to their potential callbacks. Each callback mf is a tuple,
which consists of the defining class cf , the method name, and
the types of its arguments. Now, this mapping ∆ is incomplete,
because a class can inherit callbacks from its superclasses as
well. Therefore, COLUMBUS computes the complete list of
potential callbacks for every cf by walking up the class hierarchy
to consolidate superclass callbacks, too (Lines 16−−20). The
updated callback mapping ∆ and the class hierarchy information
CHf are returned as the output. Note that COLUMBUS performs
the framework analysis once per framework.

The above analysis is inspired by EdgeMiner [16]. The main
goal of EdgeMiner is to detect framework callbacks, and using
that to discover the registration methods within the framework.
However, the end goal of Columbus is to detect application level
callbacks by leveraging the framework callbacks.

Android app analysis. The goal of this phase is to find whether
any app class method ma is a valid overriding method of the
framework class callback mf . In order to override a callback

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

within an app, the app class ca needs to either extend or
implement the corresponding callback-defining class cf of the
Android framework. For example, in Figure 1, to override the
onListItemClick callback, the app class needs to extend
the ListActivity framework class. COLUMBUS identifies
such pairs of classes (cf , ca) by statically analyzing the app.
In the next step, it checks whether any app method ma ∈ ca
has the same name and the same number of arguments as any
framework method mf ∈cf , and the arguments of ma are type-
compatible with those of mf (Lines 29−−35). We call a type t1
to be compatible with another type t2, if either t1= t2, or t1 is a
subclass of t2 according to the class hierarchy. To determine type
compatibility, COLUMBUS constructs the full class hierarchy by
unifying (⊕) the framework class hierarchy CHf with the app
class hierarchy CHa. Let A→B denote that A is a superclass of
B. Now, if the relations H1=A→B and H2=B→C appear in
CHa and CHf , respectively, then H1⊕H2=A→B→C. Fi-
nally, we obtain the set of potential callbacks in an app. Our anal-
ysis would discover all three functions onListItemClick,
onClick, and onDateChanged in Figure 1 as callbacks.

Identifying callbacks by analyzing either the app, or the
framework alone is challenging. Since a callback is invoked by
the framework, the callback methods do not have incoming edges
visible from the call graph of the app. However, an analysis
relying only on this fact alone will generate false positives—
because, it could detect a non-callback method as a callback due
to the inherent incompleteness of Java call graphs [36]. Similarly,
our framework analysis is over-approximated in a way that will
definitely contain the callbacks, but non-callbacks methods,
too. Intuitively, therefore we ‘intersect’ the framework callback
candidates and app methods to determine the true callbacks.

During this phase, we can encounter methods of a generic
Android framework class Object, that are declared as public,
and can therefore be overridden by the corresponding application-
level classes inheriting the Object class. The number of such
callbacks appearing as part of the final callback list was negligi-
ble (around 3%). We do not consider such methods as callbacks.

B. Generating arguments for callbacks
In order to invoke a callback, we need to provide argument val-

ues conforming to the correct types. In case of GUI-action-driven
exploration strategies, the framework provides these arguments,
which are derived from the events resulting from the GUI actions.
Therefore, to invoke callbacks without relying on GUI actions,
COLUMBUS needs to tackle the challenge of generating argu-
ments for these callbacks, with a goal to explore the paths within
a callback resulting in faster coverage and better crash discovery.

A callback argument can be one of two types: primitive or
reference. For each type, COLUMBUS uses different strategies
to generate the corresponding arguments.

1) Primitive type arguments.: Primitive type arguments,
e.g., integer, long, string, and boolean, are typically
involved in program paths that can only be explored
with a specific set of values. For instance, Line 19 of the
onDateChange callback in Figure 1 will get executed only
if the integer arguments day, month, and year are equal

to 15, 6, and 2020. Therefore, to effectively explore all the
paths in such a callback without resorting to a computationally
expensive random search, COLUMBUS needs to provide these
specific set of values to the callback during invocation. In this
case, COLUMBUS symbolizes respective callback arguments,
and performs an under-constrained symbolic execution (until
termination, or time-out) to generate concrete values.

Precisely, COLUMBUS starts the symbolic execution at the
entry point of each of the callbacks, and collects constraints on
the arguments corresponding to each of the execution paths. It
then solves these constraints and generates concrete argument
values, which when provided as arguments to the callback during
invocation, result in exercising those paths within the callback.
During symbolic execution, we track constraints on objects that
modify the program state, such as (i) callback arguments, and
(ii) API return values.
Callback arguments. COLUMBUS executes the callback with
symbolic and unconstrained arguments. It then collects the
constraints in each of the execution paths that involve operations
on the symbolic arguments. For example, if one of the arguments
is an object, and during execution, one of its fields is set to 5,
COLUMBUS’s symbolic execution engine will automatically add
a constraint stating that the specific attribute needs to be equal
to 5 (to follow a particular program path of interest).
API calls. COLUMBUS’s symbolic execution engine generates
summaries for common functions, for example, the Java runtime
function exit(). These summaries capture the side effects of
these APIs that modify the program state. For APIs without a
summary, we return a fresh symbolic value conforming to the
return type of the API.

COLUMBUS’s symbolic execution engine is capable of
generating concrete values of integer, float, boolean,
and constant string types.

2) Reference type arguments: Reference type argument
objects frequently represent UI elements where a user
performs certain actions. In Figure 1, when a user clicks on
AlertDialog (a subclass object of DialogInterface),
the framework invokes the onClick callback with an argument
object of type AlertDialog. Therefore, to invoke the
onClick callback without relying on the Android framework,
we need to provide an object of type DialogInterface, or
a subclass of DialogInterface—as an argument.
App heap search. During the app exploration (Section IV-D), as
and when new Activities are visited, these object instances
are created in the app heap. Therefore, in order to invoke a
callback that requires reference type arguments, COLUMBUS
monitors the app heap by dynamically instrumenting the app
under test. In many cases, the argument type present in the
callback signature is not the one created in the app heap. In
Figure 1, the onClick callback has an argument of type
DialogInterface. However, the object created will be of
type AlertDialog, a subclass of DialogInterface. To
account for this scenario, i.e., if an object instance of a reference
type inferred from the callback signature is not available in the
app heap, COLUMBUS searches for object instance(s) that is a
subclass of the required type.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

Custom object creation. It may still happen that no object
instances of the required type or its subclass are found in the
heap. For example, certain types of objects required as a callback
argument, e.g., KeyEvent, and MotionEvent, that are
created by the Android framework only when it registers touch,
or key-press on UI elements. Therefore, in order to invoke such
callbacks, COLUMBUS leverages Java reflection. Specifically,
for such a reference, COLUMBUS creates the object using its
public constructor. If the constructor expects primitive type
arguments, COLUMBUS uses either a random value, or a value
from a pre-defined set as the argument. For example, to create
KeyEvent, or MotionEvent objects, COLUMBUS uses
pre-defined values as they should be valid screen coordinates
in order to successfully explore the callback. If a constructor
expects reference type objects, COLUMBUS either finds these
objects through app heap search, or creates recursively through
Java reflection. For example, if we were to create an object of
type A which has a constructor that accepts an object of type
B, then we create objects bottom up (i.e., first B, then A). In
case multiple such constructors exist, COLUMBUS picks the one
which requires the least number of reference type arguments.

C. Inter-callback dependency
Callbacks within an app can share variables resulting in
read-write data dependencies. As discussed in Section III, for
onListItemClick and onClick callbacks (Figure 1),
prioritizing dependency-violating order, i.e., invoking onClick
before onListItemClick, brings us faster to a crash
discovery. Whereas invoking the callbacks in the dependency-
respecting order allows for a better code coverage. For example,
the execution of the Lines 13 − −14 in onClick happens
only if the reference mSelectedFile accessed at Line 10 is
defined by a prior execution of onListItemClick.

Based on this observation, COLUMBUS computes callback
pairs having shared variable dependencies by performing a field-
insensitive analysis of the app. The intuition is to first compute
a set of class variables vars that are not initialized through a de-
fault initializer. The default initializers are the methods that get
automatically invoked whenever a class or activity gets created,
e.g., the life cycle methods of an activity, class constructors, etc.
These variables vars are our target candidates, since they are de-
fined and accessed only through callbacks. Next, for every such
variable var ∈ vars, COLUMBUS searches for callback pairs
(cb1,cb2) where one of them reads (R) var, and the other writes
(W) var. The output of this phase will be a set of variables with
their dependent callback pairs. For the example in Figure 1, the
output will be {mSelectedFile, (‘R’,onClick), (‘W’,
onListItemClick)}.

These dependency pairs are used as feedback during the
exploration phase detailed in Section IV-D. In order to accelerate
crash discovery, COLUMBUS implements a weighted-score
based exploration strategy, which initially prioritizes executing
callbacks that write to variables over the callbacks that read from
the same variables—inducing the dependency violating callback
invocation orders. However, during the exploration, COLUMBUS
dynamically adjusts the scores, e.g., penalizes the callbacks

that frequently result in a crash, or prioritizes the callbacks that
are executed less frequently, in order to explore newer or less
explored program paths as well.

D. Callback-guided exploration
To explore an app under test, we first statically obtain its

callbacks (Section IV-A), their dependencies (Section IV-C),
and the primitive argument values (Section IV-B). Then,
COLUMBUS spawns the app, dynamically instruments it to
inspect the app heap, and starts exploring its functionalities.
COLUMBUS invokes a callback whenever an instance of the
activity, or the class defining the callback appears in the
app’s heap. If the callback expects reference type arguments,
COLUMBUS then generates such argument objects using the
strategy detailed in Section IV-B. Algorithm 2 gives an overview
of our app exploration strategy. COLUMBUS’s exploration
strategy is composed of the following components:
Activity monitor. As the app is being explored, two kinds of
entities get created, or destroyed in the heap: (i) activities and
related UI element objects, and (ii) regular class objects, as
the side-effect of calling a callback that instantiates the class.
The activity monitor records such events by monitoring the
invocation of the lifecycle callbacks of the activities, and the
class constructors. For example, invocation of onCreate()
signals an activity creation, and onDestroy() is invoked
when an activity is destroyed. The activity monitor maintains an
activity stack S by pushing an activity to S when a new activity
is created, and popping an activity off S when it is destroyed.
Therefore, the most recently created activity, which we call as
the live activity, always remains at the top of S.

The app is explored in a depth-first manner, and runs in
continuous cycles. For a live activity act, the activity monitor
retrieves all the class objects newClasses created in the app
heap (Line 18), passes it on to the selector for choosing the
next callback cb, which is then executed by the executor. The
function getNewClasses() returns only those classes for
which at least one callback is still unexplored. If a callback
creates a new live activity act′, the activity monitor puts act on
hold, and switches to act′. When all the callbacks of an activity
or its associated classes have been executed, the activity monitor
destroys the activity, removes it from S (Lines 19−−22), and
starts exploring the next live activity. One testing cycle ends, and
the next one begins when S becomes empty.
Selector. The selector module receives the candidate classes
newClasses to be explored from the activity monitor, and
chooses a callback cb to be executed next (Line 24). While
choosing cb, it considers the class weights ClW , callback
weights CbW , inter-callback dependencies Dep, and the visited
status explored of the callbacks. The explored map is cleared
when a testing cycle begins. All the weights are initially set
to zero, and are dynamically adjusted during the exploration
based on how frequently the classes and the callbacks have been
explored. Similarly, when a callback is explored, the explored
map is updated (Line 26).

To choose a callback, the selector employs multiple strategies
in the following order: (i) In the beginning, when none of the

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

callback is explored, the selector uses Dep to choose the callback
cb with the read (R) dependency, and its defining class cl. (ii) The
selector consults the explored map to prioritize unexplored call-
backs over the explored ones. (iii) A class or callback with lower
weight (ClW or CbW) has been explored the least; therefore it is
prioritized next for execution. The tie among multiple unexplored
classes, or callbacks with the same weight is broken randomly.

Algorithm 2: Callback driven exploration
1 Function CallbackExploration

Input : Application callbacks AC, their dependencies Dep,
class hierarchical information CHf and CHa, duration t

Output : Crash dumps crashes
2 crashes←∅, explored←{}, testingCycle←0
3 CbW←∅ // callback weights
4 ClW←∅ // class weights
5 foreach callback cb∈AC do
6 cl←GetclassDefiningMethod(cb)
7 CbW←CbW∪(cl,cb,0.0)
8 ClW←ClW∪(cl,0.0)
9 end

10 while until t is reached do
11 spawnApp ()
12 testingCycle← testingCycle+1
13 foreach callback cb∈AC do
14 explored[cb]←false
15 end
16 while until no new activity left to explore do
17 act←getLiveActivity()
18 newClasses←getNewClasses(act,explored)
19 if newClasses=∅ then
20 RemoveActivity(act)
21 go to Line 16
22 end
23 cl←getNextClass(newClasses∪act,ClW,Dep)
24 cb←getNextCallback(cl,explored,CbW,Dep)
25 if cb=∅ then
26 explored←explored−(cb,false)∪(cb,true)
27 go to Line 16
28 end
29 allargs←generateArguments(cl)
30 foreach args∈allargs do
31 inst←getInstance(cl)
32 newCrash←ExecuteCallback(inst,cb,args)
33 if newCrash $=∅ then
34 crashes←crashes∪newCrash
35 UpdateAndPenalizeWeights(ClW,CbW,cl,cb)
36 restartApp () and go to Line 10
37 end
38 else
39 UpdateWeights(ClW,CbW,cl,cb)
40 end
41 end
42 end
43 end
44 return crashes

Executor. The executor executes the callback selected by the
selector. The executor searches the app heap for an instance of
a class, or an activity that overrides the callback (Line 31). If an
instance is found, the executor generates the arguments for the
callback respecting their types (Section IV-B). However, an argu-
ment can have multiple possible values executing different paths
(primitive), or depending on the availability of objects in the
heap (reference). The executor, therefore, schedules the callback
for execution for each combination of such inferred values. After
each execution, the class weight for a class cl and the callback
weight for a callback cb are updated as shown in Figure 5.

Intuitively, the executor updates the weights to reflect what
percentage of callbacks are executed with respect to the total
number of possible invocations—since a crash, or a creation

CbWcb :− CbWcb+
ext
sch

sch← number of scheduled executions of cb
ext ← number of executions of cb at time t

ClWcl :− avg(CWcb)∀cb∈cl

Fig. 5: New class and callback weights after each execution

of new activity may interrupt the processing of the rest of
the scheduled executions. The class weights are accordingly
adjusted such that the least explored class, and its callbacks are
prioritized to be executed the next time the activity comes live.
Crash detector. After the execution of a callback, the crash
detector monitors whether it results in a crash of the app. We
do not want to rediscover the same crash repeatedly. Therefore,
if a crash happens, the UpdateAndPenalizeWeights()
(Line 35) function updates the class weights to deprioritize
the callback cb, and its defining class cl—the callback weight
CbWcb is increased by δ (an empirically determined constant),
and accordingly the class weight ClWcl is adjusted. The idea
is to gradually increase the callback weight in order to account
for the case when only a specific set of argument values results
in a crash, and all other values should still be able to explore
the callback. Therefore, instead of not choosing the callback at
all, the selector deprioritizes the callback for some time.

V. EVALUATION

In our evaluation, we aim at answering the following research
questions: RQ1. How does COLUMBUS compare with the
state-of-the-art testing tools in terms of both code coverage
and discovered crashes? RQ2. How effective is COLUMBUS in
finding crashes in popular, real-world apps? RQ3. What is the
benefit of leveraging dependency feedback?

A. Experimental setup

Dataset. To answer RQ1 and RQ3, we used AndroTest [37],
a collection of 68 apps. This dataset has become the de facto
standard benchmark for Android app testing, and it has been
used in the evaluation of a large number of tools [37], [41],
[31], [19], [29], [33], [13], [11], [18], [46], [49], [30]. However,
we had to remove 8 apps that were not fully compatible with
Android 9 (which is the environment we used for COLUMBUS).
For example, the ListView in the netcounter app does
not appear in Android 9. Therefore, we used the remaining 60
apps for all our experiments.

For RQ2, we created a dataset of popular, real-world apps.
We will refer to this dataset as the real-world dataset. To build
this dataset, we first compiled a list of Google Play Store [6]
apps with a minimum of 500,000 installs and a user rating of
at least 4.5 stars. Then, we collected first 140 apps compatible
with FRIDA instrumentation. As we show in Table II, these apps
are quite diverse and belong to 14 broad categories.
Environment. Our experiments were conducted on a system
with an Intel(R) Core(TM) i9-10885H @ 2.40GHz processor
(16 cores), 128GB of memory, and 1TB of solid-state drive

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

(relevant for the snapshot save and restore mechanism used
by TIMEMACHINE), running a 64-bit Ubuntu 20.04 operating
system. For testing, we used 8 Google Pixel 3a phones running
Android 9 (Pie, API level 28), with the Internet and Bluetooth
connectivity enabled. We did not create any accounts for those
apps that allow user logins. We ran each tool for 3 hours on each
app, repeated each experiment 5 times, and averaged out the
results to minimize the effect of any inherent randomness. Before
testing each app, we first brought the phones to a clean-slate
state by wiping its sdcard contents, and then pushed the
sdcard files used by STOAT in their experiment to the phones.
All the tools except TIMEMACHINE, which requires a virtual
machine (VM) to operate, were tested on real hardware (phone).
Pre-exploration. Before the dynamic exploration could begin,
COLUMBUS prepares an app by running the first three static
pre-processing phases. We provide relevant results for the 60
apps of the AndroTest dataset: The callback discovery module
identified a total of 30,682 and 4,991 callbacks in the Android
framework and the apps, respectively. Out of 4,991 app callbacks
discovered, 1,566 callbacks had at least one primitive argument,
thus necessitating the invocation of the argument generation
module. With a timeout of 5 minutes, the argument generation
succeeded for 1,332 callbacks, while it timed out for the remain-
ing 234 callbacks. Additionally, 4,147 callbacks have at least
one reference type argument, and in total 4,857 reference type
arguments. Out of them, 4,650 objects were always found on the
heap, and the remaining 207 objects needed to be created. Finally,
the callback dependency module discovered a total of 2,456
dependency relations between 975 variables across all the apps.
Coverage and crash collection. We used EMMA [4] to collect
statement coverage. The coverage data was collected every
minute for all tested tools. EMMA injects its own instrumentation
code into the apps. Unfortunately, its coverage reports do
include coverage data from its own packages, which can either
inflate, or deflate the overall coverage. Therefore, we excluded
EMMA-specific classes from the coverage calculation.

We detect crashes by parsing (i) LOGCAT [7] logs fetched by
the log watcher, a long-running process that streams logs from
the devices (phones) in real-time, and (ii) logs of the crashes
captured by the FRIDA server. We used the widely adopted
practice of computing the stack hash to determine the uniqueness
of crashes. Crashes that do not contain the app’s package
name were filtered out. For FRIDA reports, we occasionally
observed that certain crashes that originate from the dynamic
instrumentation contain an app’s package name. Therefore, we
manually inspected and removed those irrelevant crashes after
the initial package-name-based filtering. Then, we normalized
the stack traces for the remaining crashes by removing irrelevant
and ephemeral information, e.g., timestamp, process id (PID),
etc. Finally, we compute hashes over these sanitized stack traces.
Implementation. We implemented the first three phases of
our analysis, viz., callback identification, callback dependency
discovery, and primitive argument generation using the
ANGR [3] binary analysis framework. All these phases are
performed offline, before the testing begins on the device.

Apps Line coverage Crashes
ST EH AP TM CB CBwd ST EH AP TM CB CBwd

mileage 38 23 58 40 60 57 2 0 15 9 4 4
bomber 61 56 66 97 88 87 0 0 0 0 0 0
mirrored 31 16 38 46 47 47 0 0 0 1 1 1
batterydog 59 5 72 73 72 72 0 0 0 1 0 0
triangle 90 91 90 91 91 91 0 0 0 0 1 1
translate 46 29 48 48 49 49 1 1 1 0 1 1
anymemo 26 18 50 42 52 46 2 1 6 6 7 7
zooborns 18 17 19 25 26 26 3 0 3 3 1 1
qsettings 40 23 50 40 47 46 1 1 1 0 1 0
wchart 57 24 32 51 85 83 2 1 0 0 3 3
addi 17 16 21 19 18 18 1 0 8 1 3 3
LNM 49 3 34 48 50 50 4 0 4 7 2 1
gestures 32 32 32 50 78 78 0 0 0 0 0 0
MNV 35 13 64 42 68 68 2 1 4 4 1 1
wikipedia 24 21 25 31 19 19 0 0 0 0 0 0
dialer 66 53 65 40 73 73 1 1 1 3 2 2
photost 24 9 26 28 12 12 2 1 1 3 3 3
battery 92 55 55 93 88 88 0 0 0 3 0 0
aCal 18 8 28 29 22 19 3 0 5 3 3 1
tomdroid 55 24 57 53 61 59 0 0 4 0 2 2
RMP 82 87 83 65 92 92 1 0 0 1 2 2
SpriteText 62 63 62 63 61 59 0 0 0 0 0 0
LPG 63 37 89 82 0 0 0 0 0 0 0 0
ringdroid 0 40 42 23 47 47 1 2 4 2 2 2
sftp 11 5 15 12 18 18 0 0 0 0 3 1
PWMG 3 6 7 16 6 6 0 1 0 0 2 2
fbubble 49 49 56 82 74 72 0 0 0 0 3 3
myexp 55 1 33 46 65 63 0 0 0 1 7 7
sanity 13 8 26 27 36 35 1 0 2 1 2 1
SMT 87 2 87 63 87 85 0 0 0 0 0 0
alogcat 65 33 73 79 60 53 0 0 0 0 2 2
worldclock 97 90 98 94 95 95 1 1 0 1 2 2
mlife 87 35 86 84 92 92 0 0 0 0 2 2
lbuilder 22 28 28 26 37 35 0 1 0 0 4 4
CDT 63 31 65 85 87 87 0 0 0 0 0 0
bites 26 15 42 36 54 54 2 0 5 8 3 3
multisms 40 26 74 57 78 78 0 1 0 1 1 1
yahtzee 69 3 46 6 51 46 1 0 3 1 3 3
nectroid 40 27 44 38 46 46 0 0 0 2 2 2
anycut 70 12 71 71 66 66 0 2 0 0 3 3
PMM 66 27 62 56 65 62 4 0 11 3 4 4
manpages 40 20 54 77 78 74 0 0 0 1 3 3
zoffcc 18 15 16 20 16 16 3 0 4 1 4 4
amazed 62 64 76 52 84 84 0 0 1 1 1 1
alarmclock 72 15 76 68 71 71 6 0 4 4 5 5
hndroid 13 5 11 8 15 15 0 1 0 2 2 2
sboard 100 58 100 100 100 100 0 0 0 0 0 0
hotdeath 16 63 73 75 80 76 1 3 2 0 5 5
dalvik-exp 23 6 72 70 64 64 1 0 5 3 4 4
jamendo 10 13 28 9 30 30 5 3 0 0 5 5
importcont 57 2 53 42 78 74 0 0 0 0 1 1
blokish 36 35 49 52 45 45 0 0 2 0 2 2
Book-cat 4 4 33 35 38 38 0 1 2 4 4 0
Templaro 55 76 87 60 86 83 0 1 0 2 3 3
DAC 53 48 76 88 94 91 0 0 0 0 0 0
Agrep 37 8 58 63 61 58 0 0 7 2 7 7
Syncmypix 15 18 21 25 26 26 1 1 0 1 3 3
tippytipper 72 9 86 84 89 89 0 0 0 0 2 2
WHAMS 80 0 77 69 79 79 0 0 0 1 1 1
A2dp 29 14 40 45 47 42 6 0 6 0 3 3

Avg/Sum 46 27 53 52 58 57 58 25 111 87 137 126

TABLE I: Coverage and the number of crashes reported by all
the tools in the AndroTest dataset. ST: STOAT, EH: EHBDROID,
AP: APE, TM: TIMEMACHINE, CB: COLUMBUS, CBwd:
COLUMBUS without dependency feedback

For exploration, the final phase, we leveraged the FRIDA [5]
dynamic instrumentation toolkit.

B. Experimental results

1) Performance on benchmark apps: To investigate how
our technique performs with respect to prior work, we use
the AndroTest benchmark apps. Specifically, we compared
the achieved code coverage and the number of crashes
found by COLUMBUS with the state-of-the-art model-based
techniques STOAT [41] and APE [22], checkpoint-based
technique TIMEMACHINE [19], and callback-driven technique
EHBDROID [39]. Unfortunately, we could not make the
publicly available version of EHBDROID work on our test apps
due to the incompatibility of their instrumentation module with
our test subjects. Instead, we implemented their testing strategies
by modifying COLUMBUS in three ways: (i) we consider only
those 58 callbacks supported by EHBDROID, (ii) we disabled
dependency and crash guidance, and (iii) we restricted primitive

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

(a) <1K (30) (b) [1K,3K) (17) (c) ≥3K (13) (d) all (60)

Fig. 6: Coverage (Y-axis) achieved on AndroTest, grouped by
app size (Lines of Code). Number of apps in a size group is
indicated in parentheses. ‘x’ denotes the mean of a boxplot

argument values to those used by EHBDROID instead of the
values computed by our argument generation module.

In Table I, we present the statement coverage achieved as
well as the crashes triggered by all tools on the benchmark apps.
Coverage. We find that COLUMBUS achieves higher code
coverage than STOAT, EHBDROID, APE and TIMEMACHINE
for 45, 55, 41, and 41 apps, respectively. Moreover,
COLUMBUS achieves the best coverage in 36 apps, followed
by TIMEMACHINE (16 apps), APE (10 apps), STOAT (5 apps),
and EHBDROID (2 apps). To gain an overall view of the tools’
performances, we report the average code coverage, achieved
by each tool across all apps, in the last row of Table I. As
can be seen, COLUMBUS attains the highest (58%) coverage
on average, followed by APE (53%), TIMEMACHINE (52%),
STOAT (46%), and EHBDROID (27%). Figure 8 shows the
progression of coverage over time for all the tools averaged
across all the benchmark apps. Starting from the 5th minute,
the coverage achieved by COLUMBUS exceeds other tools. Until
approximately the 20th minute, the coverage increases at a fairly
fast rate, after that, it starts to slow down. Further, the boxplot
in Figure 6 shows the spread of the coverage achieved by all
the tools grouped by the size of the apps. We use group sizes
identical to the ones used in previous work [19]. As the figure
shows, COLUMBUS exhibits significant improvement over other
tools in terms of coverage for all size groups.

The improvement in coverage for COLUMBUS can be
attributed to its systematic exploration of the callbacks. While
UI-based techniques struggle to generate complex events and
appropriate user input, COLUMBUS sidesteps this problem
by directly calling the callbacks and supplying argument
values (computed by the argument generation module) that
are likely to explore additional code paths. In addition, the
crash-guidance feedback helps COLUMBUS to make the best use
of the time-budget by preventing the exploration from getting
stuck at individual crashes for a long time.

Figure 7 shows a code snippet from the RandomMu-
sicPlayer app from AndroTest. This example shows an
interesting case where COLUMBUS naturally enjoys clear
benefits over previous, more “heavyweight” techniques that use
symbolic execution [13], and other UI-testing tools. To explore
all the branches (if conditions), a UI-based tool would need
to click on all corresponding buttons, which is challenging.

1 p u b l i c vo id o n C l i c k (View t a r g e t) {
2 / / Send i n t e n t a c c o r d i n g t o t h e b u t t o n c l i c k e d
3 i f (t a r g e t == mPlayBut ton) {
4 s t a r t S e r v i c e (new I n t e n t (M u s i c S e r v i c e . ACTION PLAY)) ;
5 } e l s e i f (t a r g e t == mPauseBut ton) {
6 s t a r t S e r v i c e (new I n t e n t (M u s i c S e r v i c e . ACTION PAUSE)) ;
7 } e l s e i f (t a r g e t == mSkipBut ton) {
8 s t a r t S e r v i c e (new I n t e n t (M u s i c S e r v i c e . ACTION SKIP)) ;
9 } e l s e i f (t a r g e t == mRewindButton) {

10 s t a r t S e r v i c e (new I n t e n t (M u s i c S e r v i c e . ACTION REWIND)) ;
11 } e l s e i f (t a r g e t == mStopBut ton) {
12 s t a r t S e r v i c e (new I n t e n t (M u s i c S e r v i c e . ACTION STOP)) ;
13 } e l s e i f (t a r g e t == m E j e c t B u t t o n) {
14 showUr lDia log () ;
15 }
16 }

Fig. 7: Code snippet (redacted) from RandomMusicPlayer

ACTEVE [13] solves this problem by concolically executing
the app together with an instrumented version of the Android
framework. Since, in our case, COLUMBUS introspects the app
heap to retrieve live objects, we observed the coverage of this app
quickly going up, because COLUMBUS invokes the onClick
callback with all the button Views already present in the heap.

To better understand the challenges COLUMBUS faces during
exploration, we manually examined 10 of those apps where
COLUMBUS did not achieve the best coverage. We summarize
our findings next: (i) For callbacks where the symbolic execution
timed out, the argument generation module could not return
any useful value. As a result, COLUMBUS fell back to its default
strategy of trying out random argument values, which negatively
affected the coverage. (ii) There exist callbacks that are
stateful. That is, the application logic is conditioned on class
variables. Note that COLUMBUS is not state-aware, therefore this
challenge is orthogonal to what COLUMBUS aims to solve. (iii)
For unconstrained callback arguments, we use random values
from a predefined list, which might be ineffective. For instance,
the yahtzee app lists the game moves in a drop-down list.
A move can be chosen by the arg2 argument (unconstrained)
of the onItemSelected(_,_,arg2,_) callback, which
then looks up the appropriate UI object using that argument.
Many such values of arg2 that we supply could be invalid,
while UI-based techniques can “blindly” click on the list item
without being aware of the valid values of that argument.
Crashes. COLUMBUS found a total of 153 crashes. After
excluding the potential false positives, the total number of
crashes become 137 (Table I). As presented in Table III,
COLUMBUS found crashes of 16 different types in 49
out of 60 apps in the AndroTest dataset. Compared to
STOAT, EHBDROID, APE, and TIMEMACHINE, COLUMBUS
discovered 4.42, 5.48, 1.23, and 1.57 times more crashes,
respectively. To acquire a better understanding of how the tools
perform on individual apps, we calculated the number of apps
for which each tool discovers the most number of crashes. While
STOAT, EHBDROID, APE, and TIMEMACHINE finds the most
crashes in 14, 10, 25 , and 21 apps, respectively, COLUMBUS
performs the best for the highest (45) number of apps.
False positive analysis. Our strategy of invoking callbacks
directly, sometimes with artificially-prepared arguments, can
potentially lead to false positives (FP), i.e., generate spurious
crashes that cannot be triggered when the app is normally
exercised from the UI. Since STOAT, APE, and TIMEMACHINE
are UI-driven testing tools, they always generate legitimate

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Progression of coverage over time by all the tools on the
AndroTest dataset. Tool codes are similar to Table I

crashes. For COLUMBUS, we identify two potential reasons for
FPs and quantify their prevalence.

(i) Disabled UI elements. Since COLUMBUS does not access
the UI state of the app, it may (incorrectly) invoke a callback cbd
associated with a widget W , which is disabled at the time of in-
vocation. If such a callback cbd exists in an app, then there exists
another callback cbe that calls W.setEnabled() to enable the
widget. We found that only 71 (cbe) out of 4,991 callbacks in our
benchmark apps contain such calls. Now, setEnabled calls
from inside the lifecycle callbacks are not problematic. Because,
the latter is called by the Android framework, which enables the
respective UI elements as part of the initialization of the app.
Among those 71, only 4 callbacks are non-lifecycle ones, which
is negligible with respect to the total number of callbacks.

(ii) Uninitialized nested object argument. If a callback
expects an object argument of classA that we do not find in the
heap, we create an instance a by invoking the class constructor
C. However, instances created in this way may be partially
uninitialized. Suppose, A contains a field A.b of classB,
which C leaves uninitialized. If the callback attempts to access
A.b, then it will result in a NullPointerException. This
is a spurious crash, because when the app is exercised from the
UI, the framework would invoke the callback with a correctly
constructed object. In case of the benchmark apps, we needed
to create object arguments for only 207 (4.15%) out of 4,991
callbacks. Unfortunately, there is no straightforward way to
estimate further how many of these callbacks require nested
object arguments. Even then, since we already invoke object
creation for a reasonably small number of callbacks, that makes
the probability of such FPs minimal.

To investigate into our potential sources of FPs, we first
collected all 55 crashes that are found only by COLUMBUS, but
not by any of those tools. Then, we manually verified those
reports to determine potential FPs. We call a report legitimate, if
we can reproduce a crash with the same stack trace by exercising
the app from the UI. To do that, we collected a sequence of
callback invoked immediately before the crash from our tool’s
output log, and also reviewed the relevant part of the source
code to seek further guidance. If we failed to reproduce the crash
within a reasonable number of tries, we flagged the report as FP.
Note that, this estimate is conservative and best-effort, because it

Category Count

Education 27
Games 26
Personalization 18
Tools 17
Multimedia 11
Photography 4
Lifestyle 7
Health & Fitness 4
Food & Drink 4
Entertainment 6
Travel & Local 6
Business 2
Productivity 4
Others 4

Total 140

TABLE II:
Real-world
app categories

ID Exception type A R

1 NullPointerException 52 22
2 IllegalStateException 16 26
3 ArrayIndexOutOfBoundsException 7 4
4 IndexOutOfBoundsException 10 2
6 CursorIndexOutOfBoundsException 10 -
7 UnsatisfiedLinkError 6 -
8 RuntimeException 1 2
9 IllegalArgumentException 15 4

10 ClassCastException 1 2
12 StaleDataException 3 -
13 ActivityNotFoundException 8 6
14 SQLiteDoneException 1 -
15 NumberFormatException 1 -
16 App Exceptions 6 2

Total 137 70

TABLE III: Crashes found by COLUM-
BUS. A: AndroTest, R: Real-world dataset

includes true crash reports that we could not reproduce because
of Android apps’ inherent statefulness. At the end, we failed to
reproduce 16 crashes out of total 153 crashes, which, even in the
worst case, translates to a mere 10.46% FP rate. We argue that
this amount of FPs is acceptable in practice, given the benefits
(extra crashes, coverage) that our approach brings.

RQ1: Compared to the state-of-the-art tools, COLUMBUS
attains the highest coverage on average (58%), and
discovers the most number of crashes (137) on the
AndroTest dataset.

2) Performance on real-world apps: To understand the
practicality of our approach, we tested COLUMBUS on the
real-world dataset. In line with the previous approaches [31],
[41], [19], we only considered the number of crashes discovered
by our tool for this evaluation.
Crashes. As shown in Table III, we discovered a total of
70 crashes of 9 different types in 54 out of 140 apps, where
IllegalStateException (37.14%) and NullPoint-
erException (31.43%) are the most prevalent ones.

RQ2: COLUMBUS is able to find 70 crashes in 54 out of
140 real-world Play Store apps, belonging to 14 categories.

3) Effectiveness of dependency feedback: To show the
effectiveness of the dependency feedback, we performed an
ablation study by comparing COLUMBUS with COLUMBUS wd,
a modified version of our tool that runs without the dependency
feedback. Table I presents the results of this experiment on the
AndroTest dataset.

While the coverage attained by both COLUMBUS and
COLUMBUS wd are comparable, the latter finds − 3 fewer
crashes than the former in 5 apps. By manually inspecting those
apps—Book-cat, qsettings, sanity, sftp, and aCal,
we can confirm that the additional crashes are correlated with
the number of dependency relations discovered. In other words,
due to higher than average (41 dependencies/app) number of
dependencies being present in those apps, the dependency
feedback could indeed help COLUMBUS in triggering more
crashes. In addition, COLUMBUS achieved better coverage than
any other tool for the first four apps.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

RQ3: The dependency feedback used by COLUMBUS is
useful for triggering crashes in apps, particularly for those
ones with large amount of inter-callback dependencies.

VI. LIMITATIONS

Inferring correct value of the object fields. Currently, our
argument generation module can only infer the correct values of
the primitive arguments. However, it can be extended to support
object arguments as well. Consider the callback: onKeyDown
(intkeyCode,KeyEventevent), which gets called when
a key down event occurs. Now, event.getUnicodeChar()
API returns the Unicode character c generated by that key event.
If a callback has paths conditioned on c, we can infer its correct
values by symbolizing the return value of the API. The inferred
values can be used during testing to either dynamically set the
correct value of the appropriate field of the event argument,
or ‘hook’ the getUnicodeChar() API to alter its return
value—exercising more paths in effect.
Creating values for login. There are Android apps which
requires a userid and password to login first before one can
explore its functionality. COLUMBUS in its current shape can
not detect such a login prompt, and enter the username and
password automatically to explore such an app. However, this is
a limitation that we share with the existing state-of-the art tools,
and an interesting direction for future work.

VII. RELATED WORK

Random. Random testing based techniques such as MON-
KEY [8] delivers random events. DYNODROID [29], in addition,
considers system-level events, and monitors which events
have registered listeners in the app to prioritize certain events
depending on the context. PUMA [24] presents an automation
framework that has support for custom dynamic exploration
strategies. However, random testing strategies, though popular,
often get stuck in a “local optima,” making no further progress.
Model-based. Model-based testing approaches guide the
exploration of the app by deriving a model of the app’s UI.
Though some techniques require this model to be provided
manually [44], [51], [42], others reconstruct the UI model
using dynamic app exploration [28], [40], [41], [26], [12], [32].
Other techniques also perform model abstraction via identifying
the structural similarities between different layouts [20],
model refinement by merging several UI interaction [22], and
state recovery using snapshotting [19]. Model based testing
techniques oftentimes suffer from state explosion if there are too
many states in the app. Therefore, they need to strike a balance
between model completeness and scalability.
Symbolic execution-based. Anand et. al. [13] concolically
executes both the Android framework and the entire app, which is
precise, but not scalable. In contrast, COLUMBUS does symbolic
execution only within a callback to strike a balance between pre-
cision, and scalability. Another approach [25] starts the symbolic
exploration in reversed order from the target blocks, and obtains
the sequences of events to reach these targets. Additionally,

several other techniques were introduced for the symbolic
execution of the apps that include libraries as well [34], [21].
Hybrid. Similar to COLUMBUS, several approaches also employ
hybrid techniques, i.e., combination of static and dynamic
strategies, for app exploration. In particular, [15], [27], [50], [47],
[23] reconstruct the app model statically, followed by dynamic
exploration. Other techniques use static analysis to discover
dependencies between different application components, and
use it during the dynamic exploration [15], [43], [25], [38], [23],
[14]. Another guided exploration technique CAR [45] uses a
static constraint analysis to keep the symbolic execution scalable
and obviate the need for whole program symbolic execution. In
contrast, COLUMBUS aims to maximize coverage similar to other
app testing tools limiting the scope of the symbolic execution
only within the callback and sets up the environment in an under-
constrained manner. Moreover, during the dynamic exploration,
COLUMBUS uses a type-guided object matching to supply an ex-
isting, well-formed object to the callback. Whereas, CAR resorts
to a refinement-based construction of heap objects, guided by a
crash-oracle. A crash resulting from a malformed object acts as a
‘hint’ to fix the shape of the object. EHBDROID [39] instruments
the app statically to include callback invocations within the app
code in order to invoke them directly. However, their technique
is not generic, and suffers from limitations as discussed before.

VIII. CONCLUSION

This paper proposed COLUMBUS, a callback-driven Android
app testing technique that improves over the state-of-the-art
in three aspects: (i) systematically identifying the callbacks
present in an app, (ii) inferring coverage maximizing primitive
arguments, while generating object arguments in an Android
API-agnostic manner, and (iii) providing data dependency and
crash-guidance as ‘feedback’ to increase the probability of
triggering uninitialized data related crashes, and preventing
the tool from rediscovering same bugs, respectively. In our
evaluation, COLUMBUS outperformed state-of-the-art model-
driven, checkpoint-based, and callback-driven testing tools both
in terms of crashes and coverage.

IX. ACKNOWLEDGMENTS

We want to thank our anonymous reviewers for their valuable
comments and feedback to improve our paper. This research
is supported in part by DARPA under the agreement number
N66001-22-2-4037, by the NSF under award 2107101, Google
ASPIRE Award, and by the Dutch Ministry of Economic Affairs
and Climate Policy (EZK) through the AVR project. The U.S.
Government is authorized to reproduce, and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors, and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

REFERENCES

[1] Android app release statistics. https://www.statista.com/statistics/
1020956/android-app-releases-worldwide/.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

[2] Android statistics. https://www.businessofapps.com/data/android-
statistics.

[3] angr, binary analysis framework. https://angr.io.
[4] Emma, a java code coverage tool. http://emma.sourceforge.net.
[5] Frida, dynamic instrumentation toolkit. https://frida.re.
[6] Google play store. https://play.google.com/.
[7] Logcat. https://developer.android.com/studio/command-line/logcat.
[8] Monkey. http://developer.android.com/tools/help/monkey.html.
[9] Source code of columbus. https://github.com/ucsb-seclab/columbus.

[10] Uiautomator. https://developer.android.com/training/testing/other-
components/ui-automator.

[11] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salva-
tore De Carmine, and Atif M. Memon. Using gui ripping for automated
testing of android applications. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, 2012.

[12] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana,
Bryan Dzung Ta, and Atif M. Memon. Mobiguitar: Automated
model-based testing of mobile apps. IEEE Softw., pages 53–59, 2015.

[13] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang.
Automated concolic testing of smartphone apps. In 20th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-20),
SIGSOFT/FSE’12, page 59, 2012.

[14] Stephan Arlt, Andreas Podelski, Cristiano Bertolini, Martin Schäf,
Ishan Banerjee, and Atif M. Memon. Lightweight static analysis for
GUI testing. In 23rd IEEE International Symposium on Software
Reliability Engineering, ISSRE 2012, pages 301–310, 2012.

[15] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, 2013.

[16] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele,
Christopher Kruegel, Giovanni Vigna, and Yan Chen. Edgeminer:
Automatically detecting implicit control flow transitions through the
android framework. In NDSS, 2015.

[17] Wontae Choi, G. Necula, and K. Sen. Guided gui testing of android
apps with minimal restart and approximate learning. In Proc. of
OOPSLA, volume 2013, 2013.

[18] Wontae Choi, George Necula, and Koushik Sen. Guided gui testing
of android apps with minimal restart and approximate learning. In Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, 2013.

[19] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury.
Time-travel testing of android apps. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pages
481–492. IEEE, 2020.

[20] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin
Kirda, Christopher Kruegel, and Giovanni Vigna. Triggerscope:
Towards detecting logic bombs in android applications. In 2016 IEEE
symposium on security and privacy (SP), pages 377–396. IEEE, 2016.

[21] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury.
Android testing via synthetic symbolic execution. In ASE 2018, 2018.

[22] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan
Yao, Qirun Zhang, Jian Lu, and Zhendong Su. Practical gui testing of an-
droid applications via model abstraction and refinement. In Proceedings
of the 41st International Conference on Software Engineering, 2019.

[23] Wunan Guo, Liwei Shen, Ting Su, Xin Peng, and Weiyang Xie.
Improving automated GUI exploration of android apps via static
dependency analysis. In ICSME, 2020.

[24] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh
Govindan. Puma: Programmable ui-automation for large-scale dynamic
analysis of mobile apps. In Proceedings of the annual international
conference on Mobile systems, applications, and services, 2014.

[25] Casper Svenning Jensen, Mukul R. Prasad, and Anders Møller. Auto-
mated testing with targeted event sequence generation. In International
Symposium on Software Testing and Analysis, ISSTA ’13, 2013.

[26] Nataniel P. Borges Jr., Jenny Hotzkow, and Andreas Zeller. Droidmate-2:
a platform for android test generation. In ASE, 2018.

[27] Duling Lai and Julia Rubin. Goal-driven exploration for android
applications. In ASE, 2019.

[28] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a
lightweight ui-guided test input generator for android. In ICSE 2017.

[29] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An
input generation system for android apps. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, 2013.

[30] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid:
segmented evolutionary testing of android apps. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, (FSE-22), 2014.

[31] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective
automated testing for android applications. In Proceedings of the
International Symposium on Software Testing and Analysis, 2016.

[32] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing. In WCRE
2003.

[33] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi,
and Sam Malek. Reducing combinatorics in gui testing of android
applications. In Proceedings of the 38th International Conference on
Software Engineering, 2016.

[34] Nariman Mirzaei, Sam Malek, Corina S. Pasareanu, Naeem Esfahani,
and Riyadh Mahmood. Testing android apps through symbolic
execution. ACM SIGSOFT Softw. Eng. Notes, pages 1–5, 2012.

[35] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type
inference. In Conference on Object-Oriented Programming Systems,
Languages, and Applications, 1991.

[36] Michael Reif, Florian Kübler, Michael Eichberg, and Mira Mezini.
Systematic evaluation of the unsoundness of call graph construction
algorithms for java. In Companion Proceedings for the ISSTA/ECOOP
2018 Workshops, 2018.

[37] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Auto-
mated test input generation for android: Are we there yet? (e). 11 2015.

[38] Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. Patdroid:
permission-aware GUI testing of android. In ESEC/FSE, 2017.

[39] Wei Song, Xiangxing Qian, and Jeff Huang. Ehbdroid: Beyond gui
testing for android applications. In Proceedings of the International
Conference on Automated Software Engineering (ASE), 2017.

[40] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang
Pu, and Zhendong Su. Why my app crashes? understanding and
benchmarking framework-specific exceptions of android apps. IEEE
Trans. Software Eng., pages 1115–1137, 2022.

[41] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao
Yao, Geguang Pu, Yang Liu, and Zhendong Su. Guided, stochastic
model-based GUI testing of android apps. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, 2017.

[42] Heila van der Merwe, Brink van der Merwe, and Willem Visser.
Verifying android applications using java pathfinder. ACM SIGSOFT
Softw. Eng. Notes, pages 1–5, 2012.

[43] Jue Wang, Yanyan Jiang, Chang Xu, Chun Cao, Xiaoxing Ma, and Jian
Lu. Combodroid: generating high-quality test inputs for android apps
via use case combinations. In ICSE, 2020.

[44] Lee J. White and Husain Almezen. Generating test cases for GUI respon-
sibilities using complete interaction sequences. In 11th International
Symposium on Software Reliability Engineering (ISSRE 2000), 2000.

[45] Michelle Y. Wong and David Lie. Driving execution of target paths
in android applications with (a) car. In Proceedings of the ACM Asia
Conference on Computer and Communications Security, 2022.

[46] Baek Y and Bae D. Automated model-based android gui testing using
multi-level gui comparison criteria. In 2016 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2016.

[47] Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang.
Multiple-entry testing of android applications by constructing activity
launching contexts. In ICSE, 2020.

[48] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for
automated gui-model generation of mobile applications. In Proceedings
of the 16th International Conference on Fundamental Approaches to
Software Engineering, 2013.

[49] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for
automated gui-model generation of mobile applications. In Vittorio
Cortellessa and Dániel Varró, editors, Fundamental Approaches to
Software Engineering, 2013.

[50] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for
automated gui-model generation of mobile applications. In Fundamental
Approaches to Software Engineering (FASE) 2013, 2013.

[51] Xun Yuan and Atif M. Memon. Generating event sequence-based test
cases using GUI runtime state feedback. IEEE Trans. Software Eng.,
2010.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:04:13 UTC from IEEE Xplore. Restrictions apply.

