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Web-based applications have become a popular means of exposing functionality to large numbers of
users by leveraging the services provided by web servers and databases. The wide proliferation of custom-
developed web-based applications suggests that anomaly detection could be a suitable approach for pro-
viding early warning and real-time blocking of application-level exploits. Therefore, a number of research
prototypes and commercial products that learn the normal usage patterns of web applications have been
developed. Anomaly detection techniques, however, are prone to both false positives and false negatives.
As a result, if anomalous web requests are simply blocked, it is likely that some legitimate requests would
be denied, resulting in decreased availability. On the other hand, if malicious requests are allowed to ac-
cess a web application’s data stored in a back-end database, security-critical information could be leaked
to an attacker.

To ameliorate this situation, we propose a system composed of a web-based anomaly detection system,
a reverse HTTP proxy, and a database anomaly detection system. Serially composing a web-based anom-
aly detector and a SQL query anomaly detector increases the detection rate of our system. To address a
potential increase in the false positive rate, we leverage an anomaly-driven reverse HTTP proxy to serve
anomalous-but-benign requests that do not require access to sensitive information.

We developed a prototype of our approach and evaluated its applicability with respect to several existing
web-based applications, showing that our approach is both feasible and effective in reducing both false
positives and false negatives.
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1. Introduction

Web-based applications provide services to users by leveraging the underlying
web infrastructure. In many cases, web-based applications include client-side com-
ponents, such as JavaScript code, that interact with server-side components, such
as PHP pages. The server-side components, in turn, often access the application’s
data stored in a back-end database. Unfortunately, while the infrastructure compo-
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nents – such as web servers, language interpreters and database engines – are usu-
ally developed by experienced programmers with considerable security awareness,
the application-specific code is often developed under strict time constraints by pro-
grammers with little security training. As a result, vulnerable web-based applications
are often exposed to the entire Internet, creating easily-exploitable entry points for
the compromise of entire networks.

The wide availability of vulnerable web-based applications has attracted the atten-
tion of malicious hackers, who see in web-based applications relatively easy vectors
for exploitation and access to sensitive information, which might lead to a monetary
gain. The same trend can be seen by analyzing the number of web-related vulnera-
bilities published in the Common Vulnerabilities and Exposures (CVE) database [9].
The results, depicted in Table 1, show that the percentage of web-related vulnerabil-
ities increased from 15.1% in 1999 to 49.1% in 2005, and this trend is projected to
increase during 2006. Furthermore, past web-based compromises, such as the inci-
dents involving Tower Records [21] and Victoria’s Secret [29], have incurred con-
siderable costs in terms of settlements paid to users whose private information was
disclosed as a result of these attacks.

Ideally, the security of web-based applications should be addressed by means of
careful design and thorough security testing. Unfortunately, in the real world this
is often not the case. For this reason, security-conscious development methodolo-
gies should be complemented by an intrusion detection infrastructure that is able to
provide early warning of malicious activity.

Web-based attacks can be detected, and possibly blocked, by intrusion detection
systems (IDSs) that use signature-based techniques. For example, Snort 2.3 [22] de-
votes 1006 of its 2564 signatures to detecting web-related attacks. However, many
web-based attacks cannot be easily modeled by signatures because they are specific

Table 1

Percentage of web-related attacks in the Common Vulnerabilities and Exposure
database, per year

Year Total Web-related Percentage

1999 1561 236 15.1%

2000 1229 312 25.4%

2001 1526 419 27.5%

2002 2132 790 37.1%

2003 1204 350 29.1%

2004 2523 927 36.7%

2005 4501 2208 49.1%

2006 4099 2486 60.6%

Total 18,775 7728 41.2%

Note: The data is incomplete for year 2006. The table presents the results for
both accepted entries and candidate entries.
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to particular applications, which are developed in-house to serve the needs of a sin-
gle organization. In addition, many web-based attacks do not contain any common
characterizing feature, such as the “NOP sledge” in a buffer overflow attack.

To detect attacks that are tailored to specific web applications, anomaly detection
systems have been proposed that characterize the “normal” use of a web-based ap-
plication. These systems use machine-learning techniques to determine the normal
usage profiles associated with the applications. These profiles are then used as a ba-
sis to determine if a request is “anomalous” or not [11]. This approach has shown
considerable promise, and a number of research prototypes and commercial products
based on this idea have been developed [7,8,18].

Unfortunately, anomaly detection systems are notoriously prone to both false pos-
itives and false negatives due to reasons such as over-simplified modeling techniques
or insufficient training. This means that an anomaly detection system may flag a be-
nign request as anomalous or, conversely, an attack as normal. If anomalous web
requests are blocked, false positives can lead to legitimate requests being denied, re-
sulting in a degradation of the service. In a complementary fashion, false negatives
represent attacks that are allowed to reach the protected web application, potentially
resulting in the exposure of sensitive information.

To ameliorate this situation, we propose an architecture that serially composes a
web-based anomaly detection system, a reverse HTTP proxy, and a database anom-
aly detection system. The resulting system increases the probability of detection
while simultaneously reducing the negative impact of false positives.

To augment the detection capability of a web-based anomaly detector, we propose
the addition of an anomaly detection system that operates on the queries that a web
application executes against a back-end database. The analysis of these queries al-
lows the system to detect the effects of malicious web requests that were incorrectly
deemed normal and let through by the web-based anomaly detection system. When
an anomalous database query is detected in association with a normal web request,
a characterization of the anomaly is sent over a feedback channel to the web-based
anomaly detection system, so that its models can be updated accordingly. As a re-
sult, similar malicious web requests are classified as anomalous and prevented from
reaching the application.

We observe, however, that the serial composition of anomaly detectors, while po-
tentially increasing the detection capabilities of the system as a whole, may also
increase the probability of false positives. To mitigate this effect, we proposed a
novel solution based on data compartmentalization and anomaly-based reverse prox-
ying [28]. The idea is to replicate a web site on two or more “sibling” web servers
with different levels of privilege (i.e., different levels of access to sensitive informa-
tion). Anomaly scores from the web-based anomaly detection system are then used
to drive a reverse HTTP proxy, which is an application deployed in front of the sib-
ling web servers. The reverse proxy intercepts HTTP requests destined for the web
servers, and based upon an individual request’s anomaly score, forwards requests to
a sibling web server with the appropriate level of privilege. For example, a benign
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web request that is erroneously evaluated to be “anomalous” could be sent to a server
with limited access to the back-end database, instead of being simply dropped. If the
request does not need to access sensitive information, the request will be served cor-
rectly. In this way, the system is able to maintain a reduced level of service in the
presence of false positives.

This paper presents our approach to mitigate the limitations of anomaly detection
systems, describes a prototype implementation of our architecture, and provides a
detailed discussion of its applicability to real-world applications. First, in Section 2,
we motivate the problem and provide a high-level overview of the architecture of our
system. In Section 3, we discuss different high-level design options for the process-
ing of web requests at different levels of privilege, and then we describe the im-
plementation of our reverse HTTP proxy. In Section 4, we present our approach to
detecting anomalous database queries. Section 5 discusses the process of web re-
quest model updating over a feedback channel. Section 6 presents a discussion of the
applicability of our approach with respect to several existing web-based applications.
Finally, Section 7 discusses related work, and Section 8 briefly concludes.

2. Motivation

Figure 1(a) shows a typical web server setup. The web server receives HTTP re-
quests from clients and serves these requests by invoking server-side scripts. These
scripts utilize a database to store application-specific data. In order to improve se-
curity, a web-based intrusion prevention system (IPS) might be deployed as shown
in Fig. 1(b). In this architecture, the web server does not receive requests directly.
Instead, the requests are first examined by the IPS, which chooses to either drop or
forward them to the real web server, based on the characteristics of the requests.

Although web-based IPSs are useful in improving the security of a site, they are
not foolproof and will inevitably let some malicious requests through. To mitigate
this, we propose combining the IPS with an SQL-based anomaly detector as shown in
Fig. 1(c). In this setup, the IPS blocks requests that are found to be anomalous, while
normal-looking malicious requests that generate (anomalous) database queries are
detected by the SQL anomaly detector. The SQL anomaly detector feeds information
about the detected attacks back to the IPS, so that the IPS can update its configuration
and improve its detection capability.

Fig. 1. System architecture.
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We now give a formal analysis of the potential for the composition of anomaly de-
tectors to produce a reduction in the overall false negative rate. Adopting the notation
from [5], we define:

• I to be intrusive behavior, and ¬I to be non-intrusive behavior;
• Aw, Ad to be alarms generated by each anomaly detector, and ¬Aw, ¬Ad to be

the absence of alarms;
• P (Aw |I), P (Ad|I) to be the detection rates of each anomaly detector;
• P (Aw | ¬I), P (Ad| ¬I) to be the false positive rates;
• P (¬Aw |I) = 1 − P (Aw |I), P (¬Ad|I) = 1 − P (Ad|I) to be false negative

rates;
• P (¬Aw | ¬I) = 1−P (Aw | ¬I), P (¬Ad| ¬I) = 1−P (Ad| ¬I) to be true negative

rates.

Given the serial composition of the web and database anomaly detectors in our
architecture, we can describe the probabilities for the resulting system as follows:

True negative True positive
P (¬Aw | ¬I) · P (¬Ad| ¬I) P (Aw |I) + P (¬Aw |I) · P (Ad|I)

False negative False positive
P (¬Aw |I) · P (¬Ad|I) P (Aw | ¬I) + P (¬Aw | ¬I) · P (Ad| ¬I)

From the formulas above, we can draw two conclusions. First, the serial compo-
sition of anomaly detectors with feedback has the potential for increasing the true
positive rate of the system as a whole. Second, unfortunately, the serial composition
of detectors also increases the potential for false positives.

In our system, in order to mitigate this drawback, we do not block anomalous
requests immediately, but we attempt to serve them through a web server with re-
stricted access to sensitive information. This solution can help reducing the impact
of false positives when the requests that have been erroneously identified as mali-
cious do not require any sensitive data to be processed. This approach is described
in more details in the next section.

3. An anomaly-driven reverse proxy

Web-based attacks are aimed at either obtaining control of the host running the
web server application (e.g., through a buffer overflow) or disclosing sensitive infor-
mation (e.g., through an SQL injection attack that dumps the content of a database
table).

The first type of attack is caused by vulnerabilities in the web server software or
in a server-side web-based application that allows one to compromise the security
of the underlying host. The second type of attack is usually made possible by the
fact that a single back-end database is used to store all the persistent information of
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Fig. 2. Web site designs.

a web-based application. Therefore, by exploiting a vulnerability in code that was
intended to have access to a limited portion of the database contents, it is possible to
extend one’s access to the database and retrieve sensitive information. For example,
Fig. 2(a) shows an e-commerce web site implemented with one web server that relies
on a single back-end database (DB) and that also accesses a credit card processing
server (CC Server). All the application functions (i.e., f1, f2 and f3) have the same
level of access to the database, even though they use different tables. For example,
f2 only uses table x, while f1 does not use any table of the database.

A web site could be made more resilient to attacks if it would be possible to design
both the server and the database infrastructure so that different levels of access to the
database and the hosts running the server processes could be clearly enforced. For
example, the e-commerce application could be structured so that: (i) non-sensitive,
static information about the e-commerce company (e.g., company contacts and sup-
port information) is accessible through one server; (ii) the non-sensitive, dynamic
information about product availability is accessible through a second server con-
nected to a product database; and, finally, (iii) the sensitive information about users
is accessible through a third server that relies on a user database, which is separated
from the product database. This last server has also access to the credit card process-
ing server. This is the design shown in Fig. 2(b), where each function is implemented
on a different server and accesses only the needed information.

In this design, the compromise of the server providing product information would
not allow the attacker to access the database containing sensitive user information or
the credit card transaction server. Unfortunately, this type of “compartmentalized”
design cannot be easily applied to existing applications, where the different functions
provided by a web site are closely intertwined.

Therefore, we propose an alternative design where the web site’s contents are
replicated across servers, instead of being partitioned. In addition, the database used
by the web-based application is extended with user accounts at different levels of
privilege. Each of these accounts is associated with one of the replicated servers.
Then, an anomaly detection system is used to determine the likelihood that a request
represents an attack. This information is used by a reverse HTTP proxy to forward
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the request to the web server that is able to provide the best possible level of service
given the anomaly score of the request. A reverse HTTP proxy is a special proxy
that is installed in front of web servers. Reverse proxies are usually used in order
to improve the site performance by caching web pages or by distributing the load
to several different servers. In our case, its role is to route the incoming requests to
the proper web server, depending on the anomaly value that is set by the anomaly
detector component.

According to this design, the e-commerce application described above would be
implemented as shown in Fig. 2(c). In this case, all the site’s functionality (i.e., f1,
f2 and f3) is replicated on three servers (A, B and C). This step requires no modifi-
cation of the original application. The web server proxy is configured so that queries
that are highly anomalous are sent to server A, queries that are considered moderately
anomalous are sent to server B, and normal queries are sent to server C. Server C is
the only one that is able to access the credit card server. The database is modified to
create two different users u1 and u2, where u1 is only allowed to access table x and
u2 is able to access both table x and table y. User u1 is associated with server B and
user u2 is associated with server C.

In this design, if a request that uses function f2 is sent to server A, the request
will fail because, although f2 uses the database, no connections are allowed to the
database from server A. On the other hand, a highly anomalous request for function
f1 will be correctly executed. If identifying this request as highly anomalous repre-
sents a false positive, then the user will not be denied access. If the request actually
represents an attack, then two cases are possible. In the first case, the attack is in-
tended to gain access to the database, and, in this case, the attack will be foiled since
no database connection are available. In the second case, the attack is intended to
compromise the host. In this case, assuming that the attack is successful, the com-
promised host has no access to the credit card server and the damage is therefore
contained. Also note that this host is likely to serve a small portion of the requests
(only the ones that are flagged as anomalous) and thus, it could be “hardened” to be
more resilient to certain types of attacks at the cost of some performance degradation
(as is done, for example, by Sidiroglou et al. [23]).

Moderately anomalous requests are sent to server B in this design. If a request
of this type uses function f2, it is executed correctly, since server B has access to
the database tables utilized by f2. Note that the request would have failed if it had
been sent to the more restrictive server A. However, a request that requires to access
the database through the function f3 would fail, since this server do not have the
permissions required to access the sensitive information. Finally, all normal requests
are forwarded to server C. Since this machine provides full functionalities, all the
requests can be served correctly.

The effectiveness of this architecture in reducing the impact of false positives de-
pends on the amount of requests that do not require access to the functions f2 and
f3. For example, imagine a web application in which roughly 40% of the requests do
not require access to the database. If we assume that the requests erroneously flagged
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as malicious and forwarded to the A server are equally distributed, 40% of them can
be properly served to the user. Therefore, in this simple example our approach would
have successfully reduced the impact of false positives by 40%.

3.1. Sensitive path coverage

An estimation of the fraction of requests that can be served by a restricted server
can be found by calculating the sensitive path coverage of the application. The con-
cept of path coverage is a well-known metric in software testing that measures the
fraction of execution paths through the program that are covered by test cases. The
key idea is to adapt this metric to represent the fraction of all possible execution
paths through the application that perform sensitive operations on the database. We
call this fraction the sensitive path coverage. Note that the sensitive path coverage
should not be mistaken for a precise estimate of the number of sensitive operations
that can be expected to be performed. We assume here that all paths through an
application occur with equal probability. Therefore, the result is more useful as a
measure of how much code that accesses non-sensitive information is interspersed
with code that performs sensitive database accesses. When sensitive operations are
rare and cleanly separated from the rest of the application code (i.e., the sensitive
path coverage is small), we expect our reverse proxy approach to be more successful
in reducing the impact of false positives.

Unfortunately, the exact calculation of the path coverage is impractical. This is
due to the problem of exponential path explosion that is caused by the fact that a
code fragment with a succession of k decisions (e.g., due to if-statements) contains
up to 2k different execution paths. Also, many of these paths may be infeasible (i.e.,
there is no input to the program that can cause a particular path to be executed).
Therefore, one usually attempts to aggregate paths into clusters or to operate at a
higher level than individual statements. Following this common strategy, we restrict
the calculation of the possible paths to the function level. That is, we do not consider
any intra-procedural control flows.

To calculate the sensitive path coverage for an application, we have to generate
a call graph in which each node of the graph represents an individual function. An
edge is introduced from node v to node w when the function corresponding to node
v calls the function corresponding to w. Based on this graph, we first determine the
number of possible paths through the application. Then, we determine the fraction of
paths that perform sensitive operations. This fraction is our desired metrics, namely
the sensitive path coverage.

Without performing intra-procedural analysis, we lose the information on the con-
ditions that guard each function invocation. Therefore, if a function has k successors
in the call graph, we need to assume that, at runtime, it can invoke any possible com-
bination of them. Unfortunately, this again leads to an exponential explosion on the
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number of paths, as can be seen in Eq. (1). P (S) denotes the powerset of the suc-
cessor nodes of N , and Si represents the number of paths through the ith successor
node,

p(N ) = 1 +
∑

s∈P (S)

∏

i∈s

p(Si). (1)

In order to reduce the influence of nodes with many successor node, we do not
calculate the actual numbers of paths. Instead, we perform path aggregation using
Eq. (2). The equation determines the number of aggregated paths p(N ) through a
node N in the call graph,

p(N ) = 1 + k ∗
k∑

i=1

p(Si). (2)

In this equation, k is the total number of successor nodes of N . Here, we calculate
only the sum of the number of paths through the successor nodes, adjusted by the
factor k. This is in contrast to the actual path number, which is based on multiplying
the path numbers of all possible combinations of successor nodes and summing the
results. Intuitively, our approach to calculate the aggregated path number allows us to
capture the fact that a node (function) with more successor nodes is more likely to be
executed by the application. This is done by using the factor k. However, we prevent
the problem that certain nodes with many successors completely dominate the total
number of aggregated paths (through the multiplications necessary for calculating
precise path numbers). Of course, when a node has one or more successor nodes that
have a high path number, this information is propagated upwards and leads to the
expected result that the node itself also has a large number of paths.

The number p(R) of the root node R of the call graph denotes the total number of
possible paths (or aggregated path clusters, to be more precise) through the applica-
tion. Note that the algorithm would not terminate when the call graph contains loops
as a result of direct or indirect recursive function calls. Therefore, such loops are
removed from the call graph prior to processing by using a simple depth-first search.

Consider the example in Fig. 3, which demonstrates the calculation of the aggre-
gated paths for all nodes of a small call graph. Given the recursive definition of p(·),
which calculates the number of paths at a node based on the number of paths through
all its successor nodes, the algorithm evaluates the nodes of the call graph in bottom-
up order. The value of a leaf node is always 1. The total number of aggregated paths
through the application in this example is 31. As expected, the left child of the root
node has a higher path count, because it has more successors.

Once the total number of (aggregated) paths has been calculated, we have to de-
termine the number of aggregated paths that pass through nodes that correspond to
functions that perform sensitive operations. We call such paths sensitive paths. Given
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Fig. 3. Call graph and path calculation.

both the number of sensitive paths and the total number of paths, we can easily cal-
culate the sensitive path coverage.

To find all sensitive paths, we have to first identify sensitive operations. In our
current analysis, sensitive operations are found by checking in the web application
source code for string constants that represent database operations on privileged ta-
bles. Once all sensitive operations are found, each call graph node corresponding to
a function that contains these operations is appropriately marked.

As mentioned previously, the exact types of operations and database tables that
are considered sensitive depend on the application and the environment where it is
deployed. We will discuss examples of different sensitive operations in more detail
when describing the experiments with our three web applications in Section 6.1.

Hereinafter, we assume that all SQL operations can be seen as strings written into
function bodies. This implies that the program neither utilizes global variables to
store SQL statements, nor that they are generated in a completely dynamic fashion
during run-time. Of course, it is possible (and common) that the parameters for the
WHERE clause of a SELECT statement or the values for an INSERT operation de-
pend on variables. However, we assume that the type of the SQL operation and the
tables that the program operates on are statically known. Fortunately, the direct inlin-
ing of SQL statements is a very common programming practice in web application
scripting languages, such as PHP. Indeed, in all the programs we considered for our
experiments, all database access statements were directly embedded as strings that
specified both the type of operation and the accessed tables.

The technique to calculate the number of sensitive paths that run through the
marked nodes is very similar to the previous technique for deriving the total number
of paths. When a node is marked, all paths that run through it are automatically con-
sidered sensitive. If a node contains no sensitive operations itself, but sensitive paths
run through (some of) its successor nodes, the sensitive paths ps(N ) of the current
node N are derived using

ps(N ) = k ∗
k∑

i=1

ps(Si). (3)
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Fig. 4. Call graph and sensitive path calculation.

The previous call graph example has been extended in Fig. 4 by marking a node as
containing sensitive operations (the node that is drawn shaded in the figure). In ad-
dition to the numbers of the total paths at each node, which are given in parenthesis,
the number of sensitive paths for each node is shown.

It is important to note that the sensitive path coverage is just a metric that we
use to support the idea that part of the web requests can be successfully processed
also by a server that do not have access to sensitive information. In other words, the
path coverage is a way to validate our assumption and it is not part of the intrusion
detection tool. For example, if the path coverage of a certain application is 75%,
we can expect that using our reverse HTTP proxy technique the false positives rate
would be reduced by roughly 25%. A path coverage of a 100%, often the result
of a poorly designed application, means that all the HTTP requests require access to
sensitive information. Even though in this case the proxy would not be able to reduce
the impact of false positives, our composition of web and SQL anomaly detectors
would still be effective in reducing the false negative rate.

As part of the system evaluation in Section 6, we compute the sensitive path cov-
erage for the real-world applications that we tested in our experiments.

3.2. Routing web requests

We implemented the proxy-based approach by integrating an existing anomaly
detection system into a reverse web proxy that we developed. The anomaly detection
component of the proxy is based on the WebAnomaly system [11]. The anomaly
detector first extracts from the requested URL the path to the web application being
invoked, along with the arguments passed to it. The anomaly detector then looks up
the profile associated with the web application. A profile is a collection of statistical
models, which is associated with one specific web application.

The anomaly detection models contained in the profile are a set of procedures
used to evaluate a certain feature of a query attribute, and operate in one of two
modes, learning or detection. In the learning phase, models build a profile of the
“normal” characteristics of a given feature of an attribute (e.g., the normal length of
values for an attribute), setting a dynamic detection threshold for the attribute. During



316 G. Vigna et al. / Anomaly-based detection of web-based attacks

the detection phase, models return an anomaly score for each observed example of
an attribute value. This is simply a probability in the interval [0, 1] indicating how
anomalous the observed value is in relation to the established profile for that attribute.
Since there are generally multiple models associated with each attribute of a web
application, a final anomaly score for an observed attribute value during the detection
phase is calculated as the weighted sum of the individual model scores. The overall
anomaly score is then used to decide which web server should process the request.
For more information on the models themselves, as well as the anomaly detector as
a whole and its evaluation on real-world data, please refer to [11].

Each of the back-end web servers has a different privilege level and processes
requests with a different range of anomaly scores. For instance, the requests deter-
mined to be normal are sent to the web server with the highest privilege level, while
anomalous requests are sent to a less privileged server. Depending on the privilege
level of the server, the amount of sensitive information that can be accessed varies,
since each web server connects to the back-end database as a different user with
different privileges.

In order to prevent potential attackers from simply bypassing the proxy by con-
necting directly to the protected web server, efficient firewalling mechanisms must
be deployed. We achieved this by assigning non-routable IP addresses to the web
servers and deploying the servers on a network isolated from the Internet. A separate
interface on the proxy server connects the proxy to the isolated network.

4. Detecting anomalous SQL queries

We have developed an intrusion detection system that utilizes multiple anomaly
detection models to detect attacks against back-end SQL databases [27]. Hereinafter,
we briefly describe the architecture of the system and then discuss how the results of
the detection are used as feedback for the web-based anomaly detection component.
Figure 5 shows an overview of the architecture of the database anomaly detector.
The system taps into the communication channel between web-based applications

Fig. 5. Overview of the database anomaly detection component.
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and the back-end database server. SQL queries performed by the applications are
intercepted and sent to the IDS for analysis.

4.1. Feature extraction

The SQL anomaly detector parses each incoming SQL query in order to generate
a high-level view of the event. The parser outputs this representation as a sequence
of tokens. Each token has a flag that indicates whether the token is a literal or not.
Literals are the only elements of an SQL query that should contain user-supplied
input.

Tokens representing database field names are augmented by a data type attribute.
The data type is found by looking up the field name and its corresponding table
name in a mapping of the database. This mapping is automatically generated by
querying the database for all its tables and fields. Then, the mapping can be updated
by the user, if it is desirable to describe the data type of a field more accurately. For
instance, a field in the database might be of type varchar, which implies arbitrary
string values, but the user could change this type to XML in order to inform the IDS
that the field contains an XML representation of an object. The set of available data
types is user-extensible and the IDS offers a simple interface to specify how new data
types should be processed by the system.

Type inference is also performed on the literals contained in the query using the
following rules:

• A literal that is compared to a field using an SQL operator has its data type set
to the data type of the field it is compared to.

• A literal that is inserted into a table has its data type set to the data type of the
field it is inserted into.

Before detection is performed, the incoming events are processed in order to trans-
form the queries into a form suitable for analysis by the models. First, a feature vector
is created by extracting all tokens marked as literals and inserting them into a list in
the order in which they appear in the query. Then, a skeleton query is generated by re-
placing all occurrences of literals in the query with an empty place holder token. The
skeleton query captures the structure of the SQL query. Since user input should only
appear in literals, different user inputs should result in the same skeleton. An SQL
injection, however, would change the structure of the query and produce a different
skeleton query.

Consider, for example, the following query:

SELECT firstname FROM users WHERE userid="foo"

AND passwd="bar";

The SQL anomaly detector parses the query and extract the sequence of tokens.
In particular, foo and bar are literal tokens, while firstname, userid and
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passwd are identified as field tokens. Analyzing the database schema, the three
fields are automatically associated with their corresponding types (all varchar in
our example). The types are then propagated to the literals, concluding that the user
provided inputs foo and bar are both varchar since they are directly compared
with the field userid and passwd.

Finally, the SQL anomaly creates the feature vector:

(varchar: "foo", varchar: "bar")

and generates the skeleton query by substituting the literal tokens in the original
query with placeholders:

SELECT firstname FROM users WHERE userid=<INPUT>

AND passwd=<INPUT>

4.2. Detection engine

The operation of the detection engine differs depending on the status of the in-
trusion detection system, that is, if the system is in training or detection mode. In
training mode, the name of the script generating the query and the skeleton query
are used as keys to look up a profile. A profile is a collection of statistical models
and a mapping that dictates which features are associated with which models. If a
profile is found for the current script name/skeleton combination, then each element
of the feature vector is fed to its corresponding models in order to update the models’
“sense” of normality.

If no profile is found, a new profile is created and inserted into the profile database.
A profile is created by instantiating a set of models for each element of the feature
vector. The type of models instantiated is dependent on the data type of the element.
For instance, an element of type varchar is associated with models suitable for
modeling strings, while an element of type int would be associated with models
suited to modeling numerical elements. For user-defined types, the user can specify
which models should be instantiated. See [12,15] for a complete description of the
different models.

In detection mode, an anomaly score for an observed value is calculated. If the
anomaly score exceeds a threshold, an alarm is generated. Alarms are also generated
if no profile is found for an event, or if an event contains SQL statements that cause
a parse error. A parse error is an indication of an attempted SQL injection attack or
a broken application.

5. Feedback propagation

As described previously, the architecture of the composed anomaly detection sys-
tem necessitates the existence of a communication channel between the SQL anom-
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aly detection component and web request anomaly detection component. This chan-
nel is utilized when a malicious web request that was let through by the front-end
anomaly detector (i.e., a false negative) results into a malicious database query,
which is then detected by the SQL anomaly detector. In our system, the SQL anom-
aly detector can choose to update the models of the web request anomaly detector to
block further, similar malicious requests. The updating process is performed in three
phases: (i) anomaly characterization, (ii) construction and transmission of model up-
date messages, and (iii) model updating. These phases are described in the following
sections.

5.1. Anomaly characterization

The first step in the model updating process consists in characterizing the nature
of the detected anomaly. In our system, anomaly characterization is a composition of
several features of an anomaly, including the resource invoked by the anomalous web
request, the anomalous value itself, and the model-specific parameters of the models
that detected the anomaly, all of which are output by the SQL anomaly detector.

To illustrate the anomaly characterization process, suppose that the SQL anomaly
detector applies a string length model based on the Chebyshev inequality [10] to
the data field of a query. During the training phase, the detector has learned that
this particular field has an observed mean length µ, a variance σ and a threshold t.
Now, during the detection phase, suppose that a certain query contains a field value
x, whose length is flagged as abnormal because the Chebyshev inequality returns
P (x) < t. The system would characterize this anomaly by extracting the resource
invoked as r. Then, µ, σ and t are extracted from the alerting model, as well as
a model type identifier m, forming the tuple (m, µ, σ, t). The final characterization
of the anomaly is given by the tuple A = (r, x, M ), which is the composition of
the resource r, the anomalous value x, and the set of parameters of all models that
alerted on x, denoted by M . In this case, M = ((m, µ, σ, t)), and the anomaly is
characterized by the tuple A = (r, x, ((m, µ, σ, t))).

5.2. Model update messages

Given a tuple A that characterizes the nature of the anomaly detected by the SQL-
based IDS, the next steps are the construction of a message that encapsulates this
information and the forwarding of the message to the web-based anomaly detection
system. In our system, the tuple A is translated into an XML-based representation
and then sent to the web request anomaly detector through an encrypted socket con-
nection.

5.3. Model updating

Upon receipt of a model update message, the web request anomaly detector is
faced with the task of selecting the correct model or set of models to update. Since
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multiple models are typically associated with each parameter of a resource, the spec-
ification of r as the resource that generated the anomalous SQL query is insufficient
to determine the correct set of models. Thus, an algorithm to correlate the anom-
alous value to one or more resource parameter model sets is required. This process
is complicated by the fact that, at least in theory, parameters learned by the web re-
quest anomaly detector may have arbitrary transformations applied to them by the re-
quest handler before the actual SQL query is constructed. In practice, however, such
transformations are often very simple and many resource parameters are one-to-one
mappings onto fields of a table in the database (e.g., user names, email addresses,
etc.).

According with these considerations, in our prototype implementation we adopt
a model selection algorithm that works as follows. For each parameter model set
for resource r, the models corresponding to the members of M are selected; this set
is denoted by M ′. Then, for each model M ′

i ∈ M ′, the anomaly score PM ′
i
(x) is

computed. If the resulting probability of x denoted the fact that x is anomalous, the
model is not updated. Otherwise, the model is updated to reflect the fact that PM ′

i
(x)

must be anomalous.
For example, given the tuple A, the web request anomaly detector constructs the

set M ′ of string length models attached to the parameters of resource r as described
above. Then, for each model M ′

i ∈ M ′, its variance σM ′
i

is reduced such that the x
is no longer considered normal when the Chebyshev inequality is applied to strings
of that length. The algorithm terminates once all models in M ′ have been updated to
reflect the abnormality of x.

6. Evaluation

The purpose of this section is to provide some evidence about the general applica-
bility of our technique, demonstrating how our approach is capable of reducing both
the number of false negatives and the impact of false positives in real web applica-
tions.

For our experiments, we selected three web applications that satisfy three require-
ments: (i) they implement substantial program logic, (ii) they require a back-end
database, and (iii) they had to perform sensitive operations during normal usage. We
chose phPay 2.0 [20], myBloggie 2.1.2 [16] and punbb 1.2.5 [4]. phPay
is a typical shopping cart application that supports products in different categories,
search functionality, user management, and on-line payment. myBloggie is a blog
script that allows users to maintain an on-line diary and to comment on other people’s
public entries. punbb is a discussion board that supports different forums, rich text
formatting, as well as user management and subscription for message notifications.
All three programs are written in PHP [19] and use the MySQL database [17] to store
information. However, the three applications provide different set of functionalities,
they use completely different database schemata, and they perform different kind of
sensitive operations. Table 2 provides more information on the selected applications.
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Table 2

Applications used for the experiments

Name Source files Lines of code Database tables

phPay 2.0 43 3023 29

myBloggie 2.1.2 41 5277 4

punbb 1.2.5 56 15,993 17

6.1. Analysis of the sensitive paths

To support our partitioning technique, we have to provide evidence that a consid-
erable fraction of web requests can be handled by an application without relying on
access to sensitive information stored in the database. Unfortunately, providing such
evidence in a general fashion is difficult for the following reasons:

1. The fraction of requests that access sensitive information depends on the type
of application. For example, a news portal that uses a read-only database will
probably never require access to sensitive tables since all information should
be publicly available. An application that is used by a company to keep track of
the working hours of its employees, on the other hand, will most likely require
a significant amount of access to sensitive data.

2. Even when only a single application is analyzed, its site-specific usage might
dramatically influence the number of sensitive operations performed. For ex-
ample, in a shopping cart application, the ratio between users who anony-
mously browse through the catalogs and users who actually login and purchase
goods will determine how many of the requests need full access.

3. Finally, it is not always clear which database tables and operations should be
classified as sensitive. While most people would agree that modifications to a
table with user data should be treated as a privileged operation, it is not always
that obvious. In a discussion board application, for example, the sensitiveness
of the list of subscriptions to topics of interest of a user might vary depending
on the class of topics. For example, when the topics are related to sport events,
then the sensitivity is likely to be low. When the discussions are on incurable
diseases, however, this information might be highly sensitive.

In our experiments, we started by calculating the sensitive path coverage for the
three web-based applications. This operation requires analyzing the source code to
generate the call graph in order to identify the SQL statements that represent sensi-
tive database operations. To this end, we have developed a static analysis tool that
can process PHP code, implementing the complete PHP 4 standard. We used our
tool to determine the sensitive path coverage for the three sample applications under
different assumptions of what constitutes a sensitive database access.

It is important to note the it is not necessary to have familiarity with the applica-
tion code in order to understand which information is sensitive. It depends on the
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schemata (and the corresponding data) of the database and it is usually very easy to
identify which are the sensitive table in a specific application.

In the following paragraphs, the results are presented for each program. phPay:
We considered an access to the database as critical when it can modify the stored
data. Under this assumption, the sensitive path coverage was 8.92%. If we also con-
sidered read operations from the user table (that contains the user passwords), or
read from the table that stores the pending orders and the cart data, the path coverage
raised to 100%. Closer analysis revealed that a SELECT query to the user table was
included in the program’s main method to be able to display the user names of people
currently logged in. However, a simple refactoring of the program to either remove
this non-critical functionality or mirror the user name in the session information re-
duced the coverage to 78.84%.
myBloggie: Similar to the previous application, we checked the fraction of sen-

sitive paths that perform (potential) write operations to the database. However, since
the application is a blog, we did not consider as sensitive the table that contains the
public comments to the blog entries. In this case, the sensitive path coverage was
only 2.37%.

In the next step, we extended the set of sensitive operations with read access to
the user table (which stores the user passwords in an encrypted field). Again, a path
coverage of 100% was determined. This time, the reason was an SQL statement in
the code that adds the user names to all log entries and comments that are displayed.
If the application is modified to directly store the user names with the log entries and
the comments, the sensitive path coverage decreases to 29.11%.
punbb: Analyzing the path coverage under the assumption that only write oper-

ations are sensitive, we obtained sensitive path coverage of 1.17% for the message
and discussion board applications. When including the user table into the set of crit-
ical tables, the path coverage reaches 100%. For this application, the culprit is an
SQL statement in the main function that generates the statistics of all people that are
currently logged in. When this statement is removed, the sensitive path coverage is
reduced back to 1.17%. Alternatively, the statistics could be generated from a ded-
icated table that stored only the names of the currently logged-in users, separately
from the passwords.

For all three applications, our analysis indicates that the sensitive path coverage is
quite small when classifying only database write operations as sensitive. In our tests
it was always below 9% (and in two applications out of three it was below 3%). That
means that using our reverse proxy approach we can expect over 90% of reduction
in the impact of false positives.

With regards to read operations of sensitive tables (e.g., the user table with pass-
words), all programs initially showed 100% sensitive path coverage. However, by
applying simple modifications to non-critical functionality of the applications, this
value was significantly reduced. phPay showed the worst value, with a coverage
considering also the read operations that was close to 80%. However, this is not a
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terrible result, since also in this case we can expect that more than 20% of false
positive requests could be successfully served by our system.

Finally, it is important to remember that these figures are only an approximate way
to estimate the effectiveness of our solution. The actual results of the experiments we
performed on the three applications are reported in the next section.

6.2. Experimental results

To demonstrate the effectiveness of our approach in preventing novel web-based
attacks from accessing sensitive information, we performed a number of tests in a
live setting with the three different web applications.1

For the experiments, we installed phPay, myBloggie and punbb on a 2 GHz
Pentium 4 machine with 1 gigabyte of RAM running Linux and the Apache web
server. The web server was configured to run two name-based virtual hosts: smart
and dumb. In this configuration, Apache determines the actual host to be used to
serve an incoming request looking at the value of the Host field in the HTTP header
section. To further improve the compartmentalization, we installed the suPhp mod-
ule, which extends Apache to execute PHP pages with different user privileges in the
two virtual hosts.

The web server was protected by our anomaly-driven reverse proxy, which was
able to parse the incoming requests and rewrite the Host header on the fly to prop-
erly forward the traffic to the correct host. The reverse proxy was installed on a
separate double 2.0 GHz Xeon server.

The two virtual hosts were connected to the same back-end MySQL database,
but smart was able to access all of the application-specific content, while dumb
was only able to access non-sensitive information. Moreover, the communication
between the PHP code on smart and the database was filtered by our database
anomaly detection component. The testbed architecture is shown in Fig. 6.

To generate the traffic required to train the anomaly detection algorithms, we de-
veloped a number of Python scripts. For each application, we identified the list of
available atomic operations (e.g., post a new message, browse the product catalog,
search for a specific keyword in the text) and then aggregated these operations to
model typical user behaviors. For instance, a common behavior of a blog application
user consists in going to the home page, reading some recent messages, and finally
posting a comment for one of them. Each behavior was then executed with a random
probability in order to generate a traffic that mimics the navigation of different users
at the time.

The traffic generation scripts relied on a set of libraries we developed to increase
the realism of the outgoing traffic. In particular, one library was responsible for ma-
nipulating the HTTP headers in order to mimic the characteristics of different web

1The code used in our experiments can be downloaded from http://www.cs.ucsb.edu/~seclab/
projects/revproxy/index.html
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Fig. 6. Testbed architecture.

browsers. A second library was responsible for creating random user identities to be
used in registration forms. In this case, we relied on a database containing a very
large number of real common names, surnames, zip codes and cities. Using this in-
formation, the library was able to generate names, addresses, company names, user
IDs, passwords, and credit card numbers.

Table 3 shows the results of the first set of experiments. The anomaly detection
components were trained in a fully automated way until all models completed the
learning phase and automatically switched to detection. The SQL anomaly detec-
tor does not have this feature and can be trained with an arbitrary number of SQL
queries.

Once the training phase was completed, we switched the IDS components to de-
tection mode and ran them again on clean traffic generated by our scripts in order to
test their false positives rates. The anomalous column in Table 3 shows the number
of either HTTP or SQL requests identified as anomalous by the two components. For
the myBloggie application, the SQL anomaly detector did not generate any false
positives, while the reverse proxy marked 19 benign requests as anomalous, result-
ing in a somewhat high 0.32% false positive rate. Even though these requests were
forwarded to the dumb virtual host, all of them were correctly served since none of
them required access to sensitive information. This demonstrates that our technique
is indeed effective in reducing the negative impact of false positives. In fact, all of
the requests were actually served by one or the other virtual host, preventing the end
user from experiencing any service interruption due to the presence of the anomaly
detectors.

For phPay and punbb, the web proxy was much more accurate. The SQL anom-
aly system, however, marked four legitimate queries as anomalous (corresponding to
a false positive rate of 0.00215%). These four requests were two different queries,
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Table 3

Live experiment results (training and false positives)

Program Training set Clean test Anomalous Failed benign

set requests

myBloggie web requests 55K 6K 19
0

SQL queries 550K 190K 0

phPay web requests 272K 5K 0
0

SQL queries 10.4M 186K 2

Punbb web requests 360K 9K 2
1

SQL queries 2.1M 51K 2

Table 4

Live experiment results (malicious traffic)

Program Test set Malicious Anomalous Anomalous Successful

requests (web) (SQL) attacks

myBloggie web requests 400
100 99 0 1

SQL queries 8K

phPay web requests 1.1K
100 90 10 0

SQL queries 61K

Punbb web requests 560
100 67 32 1

SQL queries 3.5K

each executed twice and. Given the high number of requests, we claim that this is an
acceptable false positive rate.

For the second set of experiments, which is summarized in Table 4, we used a
smaller test set containing a large amount of malicious requests generated using
publicly available exploits (Bugtraq ID 14195/a, Bugtraq ID 13507, Bugtraq ID
14195/b) and ad hoc fuzzing techniques. These attacks included SQL injections,
command injections, information tampering, and cross-site scripting attacks. The re-
sults we obtained from this test strongly support the effectiveness of our approach
based on the combination of anomaly detectors. In fact, the impact of the SQL com-
ponent is almost negligible when the web request IDS detects most of the attacks, as
it is the case for the myBloggie application. However, when the number of false
negatives increases and the reverse proxy starts forwarding malicious requests to the
smart host, the database IDS plays a key role in preventing the attacks from ac-
cessing sensitive information. For example, in punBB the database IDS was able to
reduce the false negative rate by 33% to 1%. Moreover, anomaly characterizations
for these attacks were propagated back to the web-based IDS to automatically deflect
future instances of similar attacks to the restricted virtual host dumb. Consequently,
considering all the three applications, only two malicious requests were able to avoid
the composition of anomaly detectors.
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These experiments demonstrate that our approach is able to effectively reduce both
the impact of false positives and the number of false negatives for a representative
class of real-world web-based applications.

6.3. Performance overhead

The prototype implementation of our approach consisted of two components: the
reverse HTTP proxy that integrates the web-based anomaly detector and the SQL
anomaly detector installed on the machine that runs the web applications.

To quantify the performance of the reverse proxy, we run a stress test involving
1000 concurrent clients performing a total of 10,000 requests on a set of various
pages. In the experiment, the system was able to process 874 requests per seconds,
resulting in an overhead of about 1.2 milliseconds per request.

The SQL anomaly components was instead tested on a set of more than 100,000
queries extracted from a real word application (see [27] for more details on the ex-
periment). In average, the SQL anomaly component spent 0.39 ms of CPU time
per query. Unfortunately, it is hard to combine the two performance values together,
since the overhead of the web-based IDS is measured for each request, while the
overhead of the SQL anomaly component depends on the actual number of queries
performed by the page.

However, the overall performance of the system are quite satisfying, confirming
the idea that this approach can be successfully applied in a real world scenario.

7. Related work

The detection of web-based attacks has recently received considerable attention
because of the increasingly critical role that web-based services are playing. For
example, Almgren et al. [2] present a system that analyzes web logs looking for
patterns of known attacks. A different type of analysis is performed in [3] where the
detection process is integrated with the web server application itself. Vigna et al. [30]
present a misuse-based system that operates on multiple event streams (i.e., network
traffic, system call logs, and web server logs) is proposed. The system demonstrates
that it is possible to achieve better detection results when taking advantage of the
specificity of a particular application domain.

The identification of web attacks is a critical component of our architecture, and
we use two anomaly-based intrusion detection systems that have been previously
presented by Kruegel et al. [11] and by Valeur et al. [27] to perform this task. Anom-
aly detection systems can detect novel attacks, but they are also prone to making
mistakes and incorrectly classifying legitimate requests as malicious. Thus, it is im-
portant to develop strategies that can deal with false positives.

For example, different techniques have been presented that help an intrusion de-
tection system to choose the most adequate response, given a number of choices [6,
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26]. These techniques rely on cost models [14] that evaluate the impact of a (possi-
ble incorrect) decision of the IDS on the current state of the network and the mission
goals. A different approach to mitigate the false positive problem is presented by
Tombini et al. [24] where an anomaly detection system is used to filter out normal
events so that signature-based detection is applied to anomalous requests only. This
technique reduces the false positives generated by a misuse detection system and, in
a way, is complementary to our approach.

In the approaches described above, each individual action (e.g., an HTTP request)
must be either allowed or denied. In contrast to that, we aim to serve all requests as
completely as possible. Of course, it might not always be possible to satisfy anom-
alous requests because they are executed in a more limited environment.

Our approach is closely related to the use of hardened systems [23]. The sys-
tem presented there is composed of an anomaly detection system that uses abstract
payload execution [25] and payload sifting [1] techniques to identify web requests
that might contain attacks that exploit memory violations (e.g., buffer overflows and
heap overflows). The requests that are identified as anomalous are then marked ap-
propriately and processed by a hardened, “shadow” version of the web server. To
implement this approach, the Apache web server was modified to allow for the de-
tection of memory violation attacks and the roll-back of modifications performed by
malicious requests. While there are similarities between the approach proposed by
Sidiroglou et al. [23] and ours, there are several major differences, the most signifi-
cant of which is their system’s limitation to a single class of attacks, namely that of
control flow data corruption.

Prior work by Lee et al. has considered the application of learning techniques to
the problem of identifying web-based attacks on databases [13]. Lee primarily fo-
cuses on recognizing SQL injection attacks as queries that are structurally dissimilar
from normal queries observed during a training period. SQL injection vulnerabilities
appear in server-side executables (e.g., applications invoked through the Common
Gateway Interface) when values supplied by the client are used directly to assem-
ble SQL queries issued by the executable, with little or no input validation checks.
The structure matching approach proposed by Lee addresses this particular problem;
however, we note that a form of mimicry attack is possible against such a detection
mechanism, while our system is significantly more resistant to this class of attack.

8. Conclusions

This paper presents a novel technique to increase the detection rate of web-based
intrusion detection systems by serially composing a web request anomaly detector
and a SQL query anomaly detector. To address the system’s capacity for producing
false positives, we additionally present an approach to provide differentiated access
to a web site based on the anomaly score associated with web requests. This design
allows one to route anomalous requests to servers that have limited access to sensitive
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information. In this way, it is possible to contain the potential damage in the case of
an attack, and, at the same time, maintain some level of service to anomalous queries
that do not require access to sensitive information.

We implemented a prototype that composes an existing web-based anomaly de-
tection system, a reverse HTTP proxy, and a database anomaly detection system and
performed an extensive evaluation of the prototype to analyze the feasibility of our
approach. To evaluate the impact that false positives would have on the accessibility
of the system, we built a PHP analyzer and developed a metric that characterizes
the percentage of execution paths invoking critical database accesses. We then ana-
lyzed several existing web-based applications. The results show that our approach is
practical and applicable to real-world web applications.
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