Distributed Pattern Detection for Intrusion Detection

Christopher Kriigel

Distributed Systems Group
Technical University Vienna
chris@infosys.tuwien.ac.at

Abstract

Evidence of attacks against a network and its resources
is often scattered over several hosts. Intrusion detec-
tion systems therefore have to collect and correlate in-
formation from different sources. For this purpose,
distributed data is forwarded to dedicated hosts where
it is further processed. Such a design renders the whole
ID system wvulnerable to attacks against these special
nodes. As networks and traffic grow, they also become
performance bottlenecks. We propose a completely de-
centralized approach that models an intrusion as a pat-
tern of events that occur at different hosts and which
does not rely on dedicated correlation entities to detect
them. We present a specification language for these
patterns and a distributed algorithm to find events that
satisfy them. The theoretical properties of our solution
are reviewed and experimental data is provided.

1 Introduction

Intrusion detection systems (IDS) are network se-
curity tools that process local audit data or monitor
network traffic to search for specific patterns (misuse
based) or certain deviations from expected behavior
(anomaly based) which indicate malicious activities
against the protected network. The traces of a sim-
ple attack are often visible in a single log-file or can be
monitored at a single network interface card. However,
advanced hackers! do not concentrate on a single host
alone but try to disguise their actions by distributing
them over several machines. Each single activity con-
sidered for itself looks innocent but in their entirety
these actions constitute an attack. This makes it nec-
essary to collect and relate audit data from different
sources (a process called event correlation).

1The term hacker is used to describe a persons with the ma-
licious intend to gain unauthorized access to network resources.

Thomas Toth

Distributed Systems Group
Technical University Vienna
ttoth@infosys.tuwien.ac.at

As Zamboni [1] pointed out, most existing IDSs per-
form their data processing centrally, despite their dis-
tributed data collection [5, 10]. This causes limitations
in their scalability, ease of configuration and fault tol-
erance. The failure of the central unit completely de-
activates the correlation process and effectively blinds
the IDS. The processing capacity of this node also lim-
its the number of events it can handle in a certain
amount of time. When too many sensors are forward-
ing their messages to the central host the resulting
backlog increases the reaction time of the system or
might even cause data loss.

To circumvent such shortcomings, hierarchical de-
signs have been introduced. Systems like Emerald [§],
GrIDS [11], AAFID [2, 1] or NetSTAT [13] have a
layered structure where data is locally preprocessed
and filtered. Only events that might be part of a dis-
tributed attack scenario are forwarded to a higher level
entity. Emerald [8, 7] uses a publish/subscribe system
to disseminate relevant data between nodes. Never-
theless, these systems use dedicated nodes that act as
central points for collecting data from remote sensors.

Although hierarchical structures and filtering at low
levels allow better scalability, the systems are still vul-
nerable to faults and overloading of nodes that are
close to the root of the hierarchy.

We attack the inherent problems of centralized, ded-
icated nodes by proposing a completely decentralized
approach where the detection of an intrusion is re-
stricted to those nodes where parts of the attack are
directly observable. Only a few systems have already
attempted to use a similar approach. The best known
is CSM (Cooperating Security Managers) [14], a design
which distinguishes between a local ID component and
an information forwarding unit at each node. The for-
warding unit allows to exchange information between
nodes along the login chain of users. While this sys-
tem was the first to show the possibility of distributed
cooperation in principal, its applicability is limited by
the fact that cooperation is only done along user’s lo-

gin chains. Another system called Micael [3] proposes
mobile agents to accomplish the task of distributed
event correlation without a central entity but its cur-
rent state is unclear.

We describe an algorithm that is capable of detect-
ing patterns of events that occur at multiple nodes of
a network in a completely decentralized fashion. The
specification language to define distributed patterns is
explained as well. We evaluate our design and compare
the results to traditional intrusion detection systems
that attempt to correlate data in a hierarchical or cen-
tralized fashion.

2 System overview

An intrusion is defined as a pattern of basic events
that can occur at multiple hosts. A basic event is
characterized as the occurrence of something of inter-
est that could be the sign of an intrusion (e.g. the
receipt of a certain IP packet, a failed authentication
or a password file access). Such events could either
stem from a local misuse or an anomaly incident. We
intend to integrate third-party systems to perform the
local detection and feed their event data into our corre-
lation algorithm (currently, Snort [9] is used to obtain
basic events).

By relating events from multiple nodes, one can de-
tect a number of attacks that would remain unnoticed
by only focusing on local activity. One type of attacks
can be found by checking for suspicious signatures
of network connections between hosts as described in
GrIDS [11]. This includes worms spreading in a net-
work and telnet chains (a number of consecutive telnet
logins by an intruder to hide his tracks). A connection
that is established between two computers looks harm-
less when monitored locally at one machine but when
the whole network is considered, suspicious chain or
tree patterns might emerge.

Relating events between different hosts might also
increase the chance for anomaly detection sensors to
catch an attack. Consider a port scan from a certain
machine that is scanning each host on a subnet for an
open port 80 and 8080. Whenever the firewall (or port
scan detector) monitors such an activity, it forwards
this information (including the source of the scan) to
the web server. When the web server itself later re-
ceives abnormal traffic exactly from that source an at-
tack is assumed. The aim of this information flow is
that each local node (or sensor) gets a better under-
standing of what happens inside the whole network.
The combination of local information from different
places leverages the understanding of the network traf-
fic each participating node monitors.

The detection capability of anomaly detection sen-
sors can usually be raised by lowering the threshold
that separates normal from suspicious behavior. In
case an anomaly sensor gets additional information in-
dicating that a certain host already has taken offensive
actions against different other hosts or the whole net-
work, it can selectively become more sensitive when
analyzing traffic from that machine. We want each
host to be aware of activities that manifest tehmselves
at different parts of the network and influence the net-
work traffic. Following [4] our nodes should develop
an understanding of the complex activities inside the
network, an idea we call Network Awareness.

Our distributed patterns and the detection algo-
rithm can describe and detect situations where a se-
quence of events occurs on multiple hosts (like port
scans followed by abnormal packets). This is used to
modify the reaction of sensors at nodes that get aware
of emerging, hostile patterns.

The decentralized pattern detection process finds
distributed patterns by sending messages between
nodes where interesting events occur. Therefore, each
node of the protected network has to run a process
that executes the distributed pattern detection algo-
rithm. The detailed description of the layout of such
events and patterns as well as the detection algorithm
forms the core of the paper. The renunciation of ded-
icated central components and the effort of designing
a fully distributed system is rewarded by good scala-
bility and fault tolerance properties of our IDS. When
a single node in our system fails (or is compromised),
it stops its local detection and ceases to forward pat-
tern information. This prevents the detection of pat-
tern instances where events occur at the compromised
host, but the rest of the system remains intact. In
addition, messages are not sent to designated nodes
but exchanged between equal peers. This allows to
distribute the complete message traffic over the net-
work without some predefined central bottlenecks. We
are aware of the fact that a distributed system design
might result in tremendous message overhead. This
potential danger is addressed at the levels of pattern
specification and detection.

3 Pattern specification

The design of our pattern specification language is
guided by two conflicting goals. The first goal de-
mands a language that should be as expressive as pos-
sible. It would be desirable to allow the description
of complex relationships between events on different
hosts using regular or tree grammars. As our system
relies on peer-to-peer message passing between hosts

without a central coordination point, arbitrary com-
plex patterns might cause the data that needs to be
exchanged to explode. In the worst case each node has
to send all its data to every other node. This conflicts
with the second goal, which demands that the amount
of data that has to be transferred between hosts should
be as small as possible. Therefore we have to impose
limitations on the expressiveness of our pattern lan-
guage.

As stated above, an event is the smallest entity of
a pattern and defined as the occurrence of something
that might be part of an intrusion. We have designed
a simple language (called Event Definition Language
- EDL) that allows to specify an event as a set of at-
tributes with their types (e.g. string, integer). In or-
der to provide the system with EDL data, we have to
install sensors that watch for the occurrence of inter-
esting events and transform them into EDL objects by
setting the given attributes to the actual values derived
from the observed event instance.

A pattern describes activities on individual hosts
as well as interactions between machines. The basic
building block of a pattern is a sequence of basic events
that happens locally on one machine (called host se-
quence). One can specify a list of events at a local
host by enumerating them and imposing certain con-
straints on their attributes. We distinguish between
constraints which relate single event attributes with
constant values and constraints which relate different
attributes of events using variables. One can use the
standard logical operators for both types and an ex-
tended set of operators (including in and range) to
relate attributes with constant. A connection (con-
text) between event sequences on different hosts is es-
tablished by send events.

Definition: A pattern P, relating events that occur
at n distinct hosts, consists of n sequences of events,
one for each node (an event sequence at a single node
is called host sequence).

A set of events S 4 at host A is linked to a set of events
Sg at host B, iff S4 contains a send event to host Spg.
Any event that refers to a remote host (e.g. the sending
of a packet to a host, the reception of a packet from a
host) might be used as a send event.

The detection of a port scan that attempts to find
open HTTP ports can be used as a send event when
the address of the web server (the referred host in this
example) is known to the host that detects the scan.
It is only required that the target B of the send event
can be determined locally at S4 (from the event data).
The first event of Sg has to be the next event to occur
after the send event in S 4. It is required that the send

event is the last event in S 4.

Definition: Pattern P is valid, iff the following prop-
erties hold.

1. Each set of events is at least linked to one other
set.

2. Every set except one (called the root set) contains
exactly one send event as the last event of the host
sequence. The root set contains no send event.

3. The connection graph contains no cycles. The
connection graph is built by considering each event
set as a vertex and each link between two sets as
an edge between the corresponding vertices.

These definitions allow only tree-like pattern struc-
tures (i.e. the connection graph is a tree), where the
node with the root set is the root of the tree. Although
this restriction seems limiting at first glance, most de-
sirable situations can be described. Usually, activity
at a target host depends on events that have occurred
earlier at several other hosts. This situation can be
easily described by our tree patterns where connection
links from those hosts end at the root set.

The case where events on two different nodes both
depend on the occurrence of a single event at a third
node cannot be directly expressed in our pattern lan-
guage (as the root set would contain two send events).
Nevertheless, a centralized application might split the
original, illegal pattern into subpatterns (each repre-
senting a legal tree like structure) and relate the results
itself.

3.1 Attack Specification Language

This section briefly describes the syntax and seman-
tics of our pattern description language (called Attack
Specification Language - ASL).

A pattern definition is written as follows

ATTACK "Scenario Name" [nodes] pattern

The nodes section is used to assign an identifier to
each node that is later referred in the pattern defini-
tion.

The pattern section specifies the pattern. It consists
of a list of event sets, one for each node that appears in
the node section. The event set is a list of identifiers,
each describing an event. A predefined label called
send is used to identify the target node of send events.

Each event can optionally be defined more precisely
by constraints on the event’s attribute values. These
attribute values can be related to constant values or
to variables by a number of operators (=, !'=, <, >,
>= and <=) or to constant values by a range or an in
operator as defined below.

x range (zo,z1) <> 2o <z <1
xin (zo,%1,...,%n) <> 3 (0 <i<n)and x = z;

A variable is defined the first time it is used. One
must assign a value (bind an attribute value) to each
defined variable exactly once while it may be used ar-
bitrarily often as a right argument in constraint defi-
nitions. The scope of variables is global and its type
is inherited from the defining attribute.

With these explanations, we introduce the (incom-
plete) syntax (in BNF) of the pattern section (all iden-
tifiers represent strings).

pattern : {event setl}+

event set : node-id ’{’ {event}+ ’}’

event : [’send(’target-id’):’] event-id
’[» {constraint ’;’ }* ’]°

constraint : assignment | [label] relation

assignment : ’$’variable-id ’=’

(attribute | constant)

relation : attribute operator

[’C] {value ’,’ }* value [’)’]
value : constant | ’$’variable-id
attribute : event-attribute-id
operator == 0> 0= k=0 |

’in’ | ’range’

The following example shows a classic telnet chain
scenario.

ATTACK "Telnet Chain" [Nodel, Node2]
Nodel {
send (Node2): tcp_connect [DstPort == 23;]
}
Node2 {
tcp_connect [DstPort == 23;]
}

It describes a connection from Nodel to port 23 at
Node2 and from there to port 23 of another remote
machine. Node2 describes the root set (i.e. has no
outgoing send event). The target of the send event
can easily be extracted from the tcp_connect event
as the destination IP address. This fact is specified in
its EDL definition.

4 Pattern detection

The purpose of the pattern detection process is to
identify actual events that satisfy an attack scenario
(written in ASL). When a set of events fulfills the tem-
poral and content based constraints of a scenario an
alert is raised. Notice that instead of simply sending
a message to a central system administration console
(that yields again a single point of failure), more so-
phisticated responses can be implemented. The node
itself can issue commands to reconfigure the firewall or

to terminate offending network connections, thereby
elimination the single point of failure introduced by
the central console of a human operator.

4.1 Basic data structures

In order to be able to process an attack description,
it has to be translated from ASL into a data structure
suitable for our system.

4.1.1 Pattern graph: This is done by transform-
ing a scenario into an acyclic, directed graph (called
pattern graph). An attack scenario describes sequences
of events located at different hosts that are connected
by send events. Each single event specified by an ASL
scenario is represented as a node of the resulting graph.
The nodes of each host sequence are connected by di-
rected edges. An edge leads from a node represent-
ing a certain event to the node which represents the
immediate successor of that event in the ASL pattern
description. Send events require a little different treat-
ment as they are the last event in their host sequence
and therefore do not have an immediate successor. In
this case a directed edge leads to the first node of the
host sequence where the send event points to.

The resulting graph shows a tree shape and all paths
through the graph end at the last event of the root
set’s sequence (called root node). Each node receives
a unique identification number that consists of a part
that identifies the attack scenario itself and a part that
identifies each node within the scenario. The following
example (see Figure 1 below) shows the result of such
a transformation, which is actually straightforward as
ASL only allows tree shaped patterns. The attack sce-
nario describes a pattern of a potential attack against
a web server by a hypothetical variant of the CodeRed
worm. Our variant does not only scan for an open port
80 but also attempts to retrieve the type of operating
system the web server runs by asking the DNS server
for the web server’s HINFO (hardware and OS info
entry) entry. This allows to target Microsoft machines
more accurately. Whenever a port scan detector no-
tices a scan against port 80 from a certain IP address
and the DNS server gets HINFO queries from the same
address and finally the web server receives an HTTP
request from that machine, an alarm is raised as such
behavior is presumably suspect.

4.1.2 Messages: The detection algorithm does not
deal with events itself, instead it operates on messages.
A message is a compact, more suitable representation
of an event. Most attack descriptions rely only on a
small subset of the event’s attributes for correlation
(e.g. only IP addresses instead of the complete IP

ATTACK “CodeRed X”

[detector, dns, www] Send Node Send Node
detector { (detector.PortScan) (dns.HardwareQuery)
send(www): PortScan [$x = SrcAddr;
Port == 80;]
}
dns {
send(www): HardwareQuery [SrcAddr == $x;] Root Node
} (www.HTTPGetRequest)
www {
} HTTPGetRequest [SrcAddr == $x; | Pattern Graph

(Scenario-ID 0)

Figure 1: Pattern Graph Transformation

header). In ASL, only attributes that are assigned or
compared to variables are of interest to the further de-
tection process. Therefore there is no need to operate
on the complete event objects.

It is easy to see that a single event can match the
description of multiple event patterns in an attack sce-
nario. Thus, if more than one description is matched
several message instances (one for each matching pat-
tern) are created. Whenever a message is created all
relevant attributes (i.e. the attributes that are as-
signed or compared to variables in the ASL descrip-
tion) are copied into it. Then it is forwarded to the
node representing the matching event description for
further processing.

Each message can be written as a triple <id, times-
tamp, list of (attribute,value)>. The id of the message
is set to the identification of the node. The timestamp
denotes the occurrence of the original event and the at-
tribute/value list holds the values of the relevant event
attributes (which have been copied from the original
event attributes). The id of a message defines its type.
Different actual message instances with identical ids
are considered to be of the same message type.

It is possible that messages of different types re-
ceive different attributes from a single event - depend-
ing on which ones are actually used in the attack de-
scription. In addition, the attribute/value list can
be empty when the corresponding ASL event pattern
does not reference any variables at all. In Figure 1
a port scan event that targets port 80 from IP ad-
dress 128.131.0.1 would cause the creation of the mes-
sage instance <0/0, time_of_occurrence, (SourceAddr,
128.131.0.1)> of type 0/0.

4.2 Constraints

An attack description in ASL imposes a number of
different constraints on the events that must be taken
into account by the detection algorithm. The set of
constraints can be divided into a static, a dynamic

and a temporal subset.

4.2.1 Temporal constraints: The paths through
the pattern graph reflect the temporal relationships
of events. Event A has to happen before event B if
and only if B is on the path which leads from A to
the root node. The events of a host sequence have
to occur in the same order as they are defined in the
ASL description. When a host sequence is linked to
another host sequence by a send event, all events of
the destination sequence have to occur after the send
event in the source sequence.

4.2.2 Static constraints: An event pattern that
relates an event attribute to a constant value imposes
a static constraint onto events (e.g. the equality rela-
tion between the Port attribute and the value 80 in
the PortScan event in Figure 1). Static constraints
are easy to evaluate immediately as soon as a new
event of the appropriate type has been received. When
an event satisfies all static constraints of a certain
node (respectively its corresponding event pattern) a
new message instance is created and forwarded to that
node. Static constraints are used to decide which mes-
sages need to be created from a certain event but are
not used later during the actual detection process.

4.2.3 Dynamic constraints: A dynamic con-
straint is introduced by the use of variables in an at-
tack description. The definition of a variable in an
event pattern and the subsequent use of this variable in
other event patterns introduces relationships between
attributes of different events. Although it is possible
to define and use the same variable within a single
event pattern such a variant can be trivially handled
by the more general approach.

The definition of a variable by a certain event at-
tribute and its subsequent use as an operand in a re-
lation with another attribute creates a direct relation
between these two attributes. In Figure 1 above, the

definition of variable x as the the value of attribute
SrcAddr in the PortScan event description and its
use in the equality operations with the attributes of
the HardwareQuery and HTTPGetRequest events cre-
ate the following two dynamic constraints.

[PortScan.SrcAddr == HardwareQuery.SrcAddr]
[PortScan.SrcAddr == HTTPGetRequest.SrcAddr]

Attributes that define or are related to variables are
copied into messages. Therefore, it is possible to ex-
press the relationship between event attributes as (dy-
namic) constraints on the values of their correspond-
ing message types. It is obvious that it cannot always
be immediately determined whether an event satisfies
its dynamic constraints, hence events that satisfy all
static constraints of a certain event pattern cause a
message to be created and passed to the appropriate
node (the one which is associated with the pattern).
It is the task of the actual detection process to resolve
all dynamic and temporal constraints.

4.3 Detection process

The basic detection process can be explained as
follows. We have already mentioned that events
cause messages to be forwarded to their corresponding
nodes (to the nodes that are associated with patterns
matched by the event). The messages may then be
moved along the directed edge of the graph to other
nodes according to certain rules. The idea is that
each node can be considered as the root of a sub-
tree of the complete tree pattern. There are node
constraints assigned to each node of the graph such
that if there are messages which satisfy the node con-
straints, there are events that fulfill the dynamic and
temporal constraints of the complete subtree above
that node. Whenever the node constraints of a node
are satisfied certain messages may be moved one step
closer to the root node, hence they are pushed over
the node’s outgoing edge to its neighbor node below
(as we have a tree shaped graph, there is at most one
outgoing edge for each node). Then these messages are
processed at the destination node. This allows to suc-
cessively satisfy subtrees of the complete pattern and
move messages closer to the root node of the pattern
graph. Whenever messages at the root node fulfill the
constraints there, the pattern has been detected (i.e.
there exist events that fulfill all constraints of the at-
tack scenario).

The advantage of this approach is the fact that only
local information is necessary to decide which mes-
sages should be forwarded. This allows to actually dis-
tribute nodes of the pattern graph over several hosts

and have each node make local decisions without a
central coordination point. Different host sequences
may potentially occur at different hosts.

4.3.1 Node constraints: The node constraints
have to make sure that all events described by the sub-
tree pattern have occurred, that their temporal order
is correct and that all dynamic constraints (which can
be resolved up to this point) are met. The messages
that are important for a certain node to satisfy its
node constraints belong to one of the following three
groups.

e Messages that are created from events that match
the event description of the node itself (i.e. that
have the same id as the node). It is obvious that
in order to satisfy a pattern, one event for each
node of that pattern is needed. In order to fulfill
a subpattern originating at a node it is necessary
to receive one message created from an event that
matches the local event description itself (such a
message is called a local message for that node).

e Messages that are created from events that match
the event description of the node’s immediate pre-
decessors. Usually each node has only one pre-
decessor but this number can vary for the first
node of each host sequence. These nodes may
have more than one predecessor or non at all.

e Messages whose value(s) are used in at least one
dynamic constraint at that node.

The node constraints consist of

1. the set of temporal constraints between the lo-
cal message and the predecessor nodes’ local mes-
sages and

2. all dynamic constraints that can be resolved at
this node

The set of the temporal constraints between the lo-
cal message and its predecessor messages guarantees
that events described by the local node and by all
its immediate predecessors have occurred. As mes-
sages from predecessor nodes may only be forwarded
by them when the events at their predecessor nodes
have occurred as well, it is assured that all events spec-
ified by a subtree pattern have taken place in the cor-
rect temporal order. The node constraints have to be
modified for nodes without predecessors. For those it
is only necessary that a local message exists.

A dynamic constraint between attributes of two
events can be resolved as soon as both operands are
available. When messages representing the two events

are on-hand, their relation can be evaluated and one
can determine whether the dynamic constraint is sat-
isfied or not. Therefore, every dynamic constraint (i.e.
a variable definition at one node and its use at another
one) is inserted into the pattern graph at the earliest
node possible. The earliest possible node is determined
by finding the first common node in the paths from
each of the constraint operands to the pattern graph’s
root node. When one node is on the path of the other
one, the constraint is inserted directly there, otherwise
it is inserted at the node where both paths merge. A
pattern graph with dynamic constraints is shown in
the lower half of Figure 2 (the table will be explained
later).

A problem arises when transitive relations are in-
troduced by relating a single message to several other
messages. The attributes of events that are indepen-
dent at first glance become linked by being related to a
common, third event. In such a case, it is not enough
to insert the constraints at the earliest possible node.

Consider the pattern graph in Figure 3 and suppose
that the messages <0, t1, (al,0)>, <0, t2, (al,1)>,
<1, t3, (a2,0)>, <1, t4, (a2,1)> and <3, t5, (a3,0)>
are received in that order. The first four messages
(the first two from node 0, the next two from node
1) are eventually passed to node 3 as the value of the
first and the third message (which is 0) as well as the
value of the second and fourth message (which is 1)
are equal (dynamic constraint evaluated at node 2).
As the attributes of messages with id 1 and 2 are not
compared again at node 3 the value of the final (fifth)
message is equal to the value of the first message and
smaller than the value of the forth one. This results
in an illegal report of a successful match.

To prevent this problem, all dynamic constraints
that are connected by having common messages as
their operands are combined in a subset of the sce-
nario constraints called a cluster. When a dynamic
constraint operates on messages that are used in no
other dynamic constraints the message itself becomes
a cluster. In Figure 3 all three dynamic constraints
are part of a single cluster.

In addition to the insertion of each constraint at the
earliest possible node, all constraints of a cluster are
additionally inserted at the cluster root node (but ob-
viously no duplicate constraints are inserted). Similar
to the situation with a single constraint, the cluster
root node is the first common node of all the paths
that lead from each operand of every cluster constraint
to the root node of the pattern graph. With these ad-
ditional constraints the messages shown above do not
result in a false detect.

4.3.2 Message and bypass pool: Each node has
a message pool and a bypass pool. The message pool is
a place that stores message instances that can poten-
tially be used to satisfy the local node constraints. The
bypass pool holds message instances that can poten-
tially satisfy node constraints of nodes that are closer
to the root of the pattern graph (but which are not
used for the current node constraints). Messages in
the bypass pool are forwarded as soon as their tempo-
ral constraints are met.

After the node constraints have been determined, it
is easy to calculate the types of the messages for the
message and the bypass pool. Obviously, the message
pool for each node consists of all message types that
are used in at least one of its node constraints.

The message types needed for the bypass pools are
determined next. For each message type, every node
on the path between the first and the last use of mes-
sages of that type is examined. When the message
type is not contained in the message pool of a node on
that path, it is added to the bypass pool there. This
assures that messages which are needed to determine
node constraints at nodes closer to the root are cor-
rectly forwarded there.

The table in the upper half of Figure 2 shows the
node constraints and the types of messages that must
be inserted into the message and bypass pools for the
given pattern graph.

4.3.3 Detection algorithm: Having determined
the node constraints for each node (which make sure
that the subtree pattern above this node is satisfied)
as well as the message and bypass pools, the algorithm
to actually move messages between nodes can be ex-
plained. The id of a newly arrived message is checked
to determine whether it should go to the message or
to the bypass pool. When it belongs to neither group,
it is simply discarded. This prevents messages that
are not needed anymore from being moved further to-
ward the root node. When the message belongs to the
bypass pool it is put there and no immediate further
actions are necessary, otherwise it is added to the mes-
sage pool. Whenever a new message is inserted into
the message pool the node constraints are checked.
The algorithm attempts to find a tuple of messages
of different type (i.e. all with distinct identifications)
that match all the node constraints. The tuple has
to include one actual message instance of each mes-
sage type (i.e. message id) of the message pool and
the new message has to be part of the tuple as well.
Consider a potential tuple for node 3 in Figure 2 with
its message pool {ml, m2, m3}. It must consist of a
message instance with ids 1, 2 and 3. When such a

Nodes 0 1 2 3 4

Node Constraints | 3m(0) Jm(l) m(2).time > m(0).time m(3).time > m(1).time m(4).time > m(3).time
m(3).time > m(2).time

Dynamic Cons. m(2).al == m(1).a2 m(4).a3 == m(0).a0
Message Pool {m(0)} {m(1)} {m(0), m(2)} {m(1), m(2), m(3)} {m(0), m(3), m(4)}
Bypass Pool {m(0)}

ATTACK "Sample"
[n1,n2,n3]

n1{
el [$x=a0;] n2.e1 a a n1.e2

send(n3): e2 [$y = a1;]

Dynamic Constraints

n2{ m(2).a1 == m(1).a2
send(n3): e1 [a2 == $y; |

}

n?’e{1 [] n3.e2 @ Dynamic Constraints
e2[a3 ==9%x;] ' m(4).a3 == m(0).a0

}

The occurrence of event n1.e2 results in the creation of message
<2, time of occurrence, (a1, value of a1)>

Figure 2: Complete Pattern Graph

ATTACK “Cluster”
[n1,n2,n3]
n1{

send(n3): e1 [$x =a1;]

Dynamic Constraints Dynamic Constraints

112{ m(0).a1 == m(1).a2 m(0).a1 == m(1).a2
send(n3): e2[a2 == $x;))))
$y=a2;] Dynamic Constraints Dynamic Constraints
} m(3).a3 == m(0).a1 m(3).a3 == m(0).a1
n3{ m(3).a3 <m(1).a2 m(3).a3 <m(1).a2
e3[] m(0).a1 == m(1).a2
ed [a3 == $x; No Clustering With Clustering

a3 <$y;]
m(x).y indicates the value of attribute y of a message with id x

Figure 3: Constraint Clustering

tuple (or tuples, when more than one set of messages
match the node constraints) can be identified, the de-
tection process has found a number of messages that
match the subtree pattern starting at the local node.
The tuple’s messages have to be moved over the out-
going link to the next node. Because messages in the
message pool might be needed later to satisfy the node
constraints together with newly arriving messages, the
original messages remain in the pool and only copies
are forwarded. In order to prevent the system from be-
ing flooded by duplicate messages, each message pool
entry is only copied and forwarded to the next node
once. For each tuple that matches the local constraints
the bypass pool is inspected. The temporal constraints
between each message in the bypass pool and all mes-
sages of the matching tuple are checked. When a by-
pass pool message satisfies all temporal constraints be-
tween itself and each tuple message, it is removed from
the pool and moved to the next node. This is needed
to make sure that only messages which do not violate
any temporal constraints are passed on.

The situation is slightly different for send nodes. As
a send node can have different next neighbor nodes at
different hosts (depending on the target of the send
event) the copying of message pool entries and the
deletion of bypass pool elements must be handled dif-
ferently. The send node has to keep track which mes-
sage pool entries have already been copied and which
bypass pool elements have already been removed and
forwarded to the destinations of the send events for
each different destination. This implies that bypass
pool elements can never be deleted because they might
have to be sent to a completely new destination host.
It is obvious that elements cannot be kept infinitely
long because memory is a limited resource. We use
timers to remove elements from the message and the
bypass pools after a certain, configurable time span.
This means that patterns which evolve over a long time
might remain undetected. Note that this is not a lim-
itation of our approach but a problem that affects all
systems that operate online and have to keep state.
Such systems need a policy that decides which events
to delete when the available memory is exhausted.

The following example in Figure 4 shows a step-
by-step detection of the distributed pattern which is
described by the scenario in Figure 2. The node con-
straints of Figure 2 are used and each tuple is under-
lined in the figure. Dotted arrows indicate the copying
of messages to the next neighbor. Associated with each
node are two sets enclosed in brackets. The first holds
the node’s current message pool entries, the second its
bypass pool elements.

5 System evaluation

The aim of this section is to show that the proposed
detection process operates as efficient as current solu-
tions while providing superior fault tolerance and scal-
ability properties. This makes it necessary to define
the evaluation criteria that we use to measure these
properties.

We measure fault tolerance as the percentage of
nodes of the complete network which have their events
correlated after a single machine running parts of the
IDS (sensor or correlator) fails or is taken out. This
indicates the percentage of distributed patterns that
can still be detected. When a node failure partitions
the set of hosts into several subsets where events are
still related within each of these subsets, the highest
percentage among all of them is chosen. When a cor-
relator that is responsible only for a subset of all nodes
fails, the remaining system may still perform event cor-
relation on a reduced set of hosts. The fault tolerance
measures exactly that fraction of nodes.

The scalability of distributed intrusion detection
systems is characterized by two values. One indicates
the total network traffic between all nodes (total traf-
fic) while the other measures the maximum network
traffic at a single node (peak traffic).

We compare our completely decentralized system
(distributed approach) to a design that deploys sensors
at every host and centrally collects their data (central-
ized approach) and to one that introduces several lay-
ers of processing nodes (hierarchical approach) on top
of the sensors which forward data that might be part
of a larger attack scenario to upper level sensors. An
example of a centralized system is NSTAT [6], while
Emerald [8] or AAFID [2, 1] follow a hierarchical ap-
proach.

For our theoretical discussion, we assume a network
with n hosts and the occurrence of n*e interesting
events during a time interval of length A. The interval
A also specifies when messages 'time out’ and are re-
moved from the detection process. While the number
of events in the whole system is assumed to be propor-
tional to the number of nodes, the number of events
at each single host may not exceed a certain threshold
7. This is reasonable as it allows a certain variance
of the distribution of events within the system (i.e.
modelling local hotspots like WWW or NFS servers
in very large networks) without allowing a single node
from having to deal with arbitrary many events as the
number of nodes grows larger.

The coverage of a network (in %) after a single
node failure is given below for the different systems.
We assume that the hierarchical system uses 1 =

@ (<002} {)

00 @ (<002} {}

{3{} {<2,1,1>}{<0,0,2>}

@{}(} @{}{}

Step 2: insert <2,1,1>

Step 1: insert <0,0,2>

Q {0,025} {}

a {<0,0,2>,<2,1,1>} { }
/

{<2,1,1>,<1,4,1>,<3,6,->}
{<0,0,2>}

@ {<0,b,2>,<3,é,->} {}

Step 4: insert <3,6,->

{<1.4,1>}{}

(<0025} {}
(<1415} {}
0o @ (<0,02>,<2,1,15} {}
/

@ {<0,0,2>} {}

{<0,0,2>,<2,1,1>}{}

N} IS

{<2,1,1>,<1,4,1>} {<0,0,2>}

@{}{}

Step 3: insert <1,4,1>

Q {<0,0,2}{}
a (<0,0,2>,<2,1,15} {}
/

{<2,1,1>,<1,4,1>,<3,6,->}
{<0,0,2>}

{<1,4,1>}{}

{<0,0,2>,<3,6,->,<4,7,2>} { }
Pattern Detected
Step 5: insert <4,7,2>

Figure 4: Sample Pattern Detection

|log,, ((m — 1) * n)| layers with m* nodes (k ... 0
to I-1) in each layer, where m specifies the number of
children for each node.

System Type of Node Coverage
Centralized Sensor a=l
Correlator 0
Hierarchical Sensor "T_l
Correlator
(at layer k) n— m;:’l
Root (layer 0) 1=t
n—1

Decentralized | Node

n

The loss of a node at layer k in the hierarchical model
m!~k—1
m—1

nodes. When the root is lost, each subtree with %
nodes can still do correlation. Not surprisingly, this
shows that centralized and hierarchical system are
more vulnerable especially to the loss of important
nodes (i.e. nodes in top layers positions or the root)
than our completely distributed design. We do cor-
relation only at nodes where the relevant events are
actually observable, therefore a loss of some hosts can-
not influence the detection capability of the remaining
system.

The theoretical scalability values of our system de-
pend on assumptions about the used patterns and the

stops correlation of the complete subtree with

number of send events to different targets during the
time interval A.

As explained in Section 4.3.3, all messages at the
send node have to be copied to each new target of a
send event. This results in message traffic which is
proportional to the number of send events with dif-
ferent targets during A. The average number of send
events at a single node during A is indicated as w.
Depending on the used patterns, different amounts of
messages have to be copied over send event links. In
the optimal case, only one message instance represent-
ing the send event itself has to be transmitted. When
the attack scenario contains dynamic constraints be-
tween events that are separated by one or more send
event link, additional messages have to be moved to
the target host as well. The situation worsens when
a message has to move over several consecutive send
links as it gets copied to each target at every step
(vielding potential exponential growth of the number
of messages). Therefore the depth ¢ of a pattern (de-
fined as the maximal number of consecutive send links
a message has to traverse) is an important factor to
determine scalability of our system. Usually, not all
event patterns define or use variables and messages
created from those events do not need to be forwarded.
v denotes the fraction of pattern descriptions of an at-
tack scenario that actually do define or use variables
and result in messages that might need to be trans-
ferred over the net. When e events occur at a single

node, only e*v of them might need to be sent over send
links.

As each message only contains part of the data of
the complete event object we save bandwidth in com-
parison to systems that have to send the whole event
itself (because they do not know which information is
important at the higher levels). The ratio between the
event object size and the message size (including id
and timestamp) is written as r.

The explanation (and notation) given above allows
to formulate the estimate of the total network traffic
as

nx(exv)*xwd
r
As each node equally participates in the detection pro-
cess, the peak traffic is equal to the traffic at a single
node which results in

[[

nx(exv)xw’ _ (exv)xw

nxr r

Although the formula shows the potential for an ex-
ponential explosion of the needed network traffic, the
next section will show that ¢ which only depends on
the used patterns is usually very small for our area of
application (e.g. none of our attack scenarios had a
d greater than 2). It is interesting to notice that the
peak traffic does not depend on the total number of
nodes in the system which indicates good scalability
properties. Additionally, the factors v and r help to
keep the total bandwidth utilization reasonably low.

The following table shows the total and peak traffic
values for a centralized and a hierarchical solution. We
assume that each hierarchy layer is capable of reduc-
ing the events it forwards to a higher level node by a
constant factor c.

System ‘ Total Traffic ‘ Peak Traffic
Centralized exn exn
Hierarchical €% n Z:ill | exnxcd!
Decentralized M M

The total and peak traffic values for the centralized
solution reflect the fact that all event data is sent to a
single location. The traffic in the hierarchical system
is created by data that is forwarded by nodes to their
higher layer parents. As a fraction (determined by c)
of the event data is forwarded over several levels the
total traffic consists of the sum of the traffic volumes
between each layer. The peak traffic occurs at the root
node (i = 1-1). Although it is significantly smaller than
in the centralized case, it still depends on the number
of nodes in the system.

In both the decentralized and the hierarchical sys-
tem, the total traffic volume increases when compared

to a centralized design. Nevertheless, the peak traffic
indicates that they scale much better than a central-
ized one.

5.1 Experimental results

Our system is designed to provide a scalable solu-
tion for enterprise sized networks. Unfortunately, we
do not have the resources to perform scalability tests
on such a scale. A simple simulation does not seem
reasonable because it would, based on our assump-
tions, exactly deliver the results we have derived the-
oretically. Therefore, we decided to perform an actual
experiment but had to restrict ourselves to our depart-
ment’s network. We ran processes executing our de-
tection algorithm on the web server, the DNS server,
our firewall and 6 additional hosts. These machines
are running Linux 2.2.14 and SunOS 5.5.1 on differ-
ent Pentium II, Athlon and Sparc hosts. The idea is
to gather experimental data that can be compared to
values that we would expect from the theoretical con-
siderations.

We use tcpdump [12] and Snort [9] to collect data
from the network and have an EDL (Event Definition
Language) definition for common network packets (i.e.
TCP, UDP, IP and Ethernet) as well as Snort alerts.
These are the basic building blocks for attack scenarios
written in ASL (Attack Specification Language). We
use 16 different distributed patterns that aim to detect
distributed signatures and anomalies (as explained in
Section 1) with the following properties.

Property | Avg | Max | Min
Pattern depth (9) 1.19 | 2.00 | 1.00
Fraction of events with

variables (v) 0.83 | 1.00 | 0.50

The given numbers are based on a week of real data
collected in our network during which we processed
16374 events. We used a time interval (A) of 24 hours.

Property Avg | Max | Min
Events per A 2340 | 3818 | 1732
Send event targets for
single node (during A) | 1.62 5 0
Total traffic

(in messages) 3922 | 7536 | 3159
Peak traffic
(in messages) 1011 | 2722 | 744

An analysis of the traffic showed that our system
has been exposed to a number of real intrusion at-
tempts where one has even been successful (exploited
a hole in our ftp-server). This supports our assump-
tion that we used real traffic including actual attacks
for our evaluation. As expected our used patterns

did not result in a message explosion and the total
number of messages never exceeded twice the num-
ber of actual events. When one also considers that
only relevant attributes (mainly 2 or 4 bytes) instead
of the whole event have to be transmitted the used
bandwidth can be compared with a centralized sys-
tem. The unexpected high peak traffic values resulted
from many scans for port 80 that the firewall reported
to the web server. In our setup, a high fraction of
the messages concentrated on a few machines (web
server, DNS server) while regular nodes transmitted
fewer messages. However, an increase of nodes in our
local network would not raise the load at these ma-
chines significantly (as the port scan messages were
caused by machines on the Internet anyway) while pro-
ducing more total traffic inside the network. In such a
case (as with large intranets) we expect that the ratio
between the messages at these servers and messages at
regular nodes decreases.

6 Conclusion

We present a distributed pattern detection scheme
to relate events that occur at different hosts. This
can be used to detect distributed signatures (like tel-
net chains) and anomalies to support our concept of
network awareness. In order to prevent a message ex-
plosion the pattern specification language has to be
restricted. The consequential decentralized algorithm
to find events that satisfy such patterns has been im-
plemented and exhibits good scalability and fault tol-
erance properties.

References

[1] Jai Sundar Balasubramaniyan, Jose Omar Garcia-
Fernandez, David Isacoff, Eugene Spafford, and Diego
Zamboni. An Architecture for Intrusion Detection us-
ing Autonomous Agents. In 14th IEEE Computer Se-
curity Applications Conference, December 1998.

[2] Marc Crosbie and Eugene Spafford. Defending a com-
puter system using autonomous agents. In Proceed-
ings of the 18th National Information Systems Secu-
rity Conference, October 1995.

[3] Jose Duarte de Queiroz, Luiz Fernando Rust
da Costa Carmo, and Luci Pirmez. Micael: An au-
tonomous mobile agent system to protect new genera-
tion networked applications. In 2nd Annual Workshop

[14]

on Recent Advances in Intrusion Detection, Septem-
ber 1999.

Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji,
and Thomas A. Longstaff. A sense of self for Unix pro-
cesses. In Proceedinges of the 1996 IEEE Symposium
on Research in Security and Privacy, pages 120-128.
IEEE Computer Society Press, 1996.

Judith Hochberg, Kathleen Jackson, Cathy Stallins,
J. F. McClary, David DuBois, and Josephine Ford.
NADIR: An automated system for detecting net-
work intrusion and misuse. Computer and Security,
12(3):235—248, May 1993.

Richard A. Kemmerer. NSTAT: A model-based real-
time Network Intrusion Detection System. Technical
Report TRCS97-18, Computer Science Dep., Univer-
sity of California Santa Barbara, November 1997.

Peter G. Neumann and Phillip A. Porras. Experi-
ence with EMERALD to date. In 1st USENIX Work-
shop on Intrusion Detection and Network Monitor-
ing, pages 73-80, Santa Clara, California, USA, April
1999.

Phillip A. Porras and Peter G. Neumann. EMERALD:
Event Monitoring Enabling Responses to Anomalous
Live Disturbances. In Proceedings of the 20th NIS
Security Conference, October 1997.

Martin Roesch. Snort - lightweight intrusion detection
for networks. In USENIX Lisa 99, 1999.

S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan,
L. T. Heberlein, C. Ho, K. N. Levitt, B. Mukherjee,
S. E. Smaha, T. Grance, D. M. Teal, and D. Mansur.
DIDS (Distributed Intrusion Detection system) - Mo-
tivation, Architecture and an early Prototype. In 14th
National Security Conference, pages 167-176, 1991.

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dil-
ger, J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip,
and D. Zerkle. GrIDS - A Graph Based Intrusion De-
tection System for large networks. In Proceedings of
the 20th National Information Systems Security Con-
ference, volume 1, pages 361-370, October 1996.
tcpdump/libpcap. http://www.tcpdump.org.

G. Vigna and R. Kemmerer. NetSTAT: A network-
based intrusion detection system. In Proceedings of the
14th Annual Computer Security Applications Confer-
ence, December 1998.

Gregory B. White, Eric A. Fisch, and Udo W. Pooch.
Cooperating Security Managers: A peer-based intru-
sion detection system. IEEE Network, pages 20-23,
January/February 1996.

