
BOOMERANG: Exploiting the Semantic Gap in Trusted Execution Environments

Aravind Machiry1, Eric Gustafson1,2, Chad Spensky1, Chris Salls1, Nick Stephens1,
Ruoyu Wang1, Antonio Bianchi1, Yung Ryn Choe2, Christopher Kruegel1, and Giovanni Vigna1

1University of California, Santa Barbara
{machiry, edg, cspensky, salls, stephens, fish, antoniob, chris, vigna}@cs.ucsb.edu

2Sandia National Laboratories
{edgusta, yrchoe}@sandia.gov

Abstract—In the past decade, we have come to rely on comput-
ers for various safety and security-critical tasks, such as securing
our homes, operating our vehicles, and controlling our finances.
To facilitate these tasks, chip manufacturers have begun including
trusted execution environments (TEEs) in their processors, which
enable critical code (e.g., cryptographic functions) to run in
an isolated hardware environment that is protected from the
traditional operating system (OS) and its applications. While
code in the untrusted environment (e.g., Android or Linux) is
forbidden from accessing any memory or state within the TEE,
the code running in the TEE, by design, has unrestricted access
to the memory of the untrusted OS and its applications. However,
due to the isolation between these two environments, the TEE has
very limited visibility into the untrusted environment’s security
mechanisms (e.g., kernel vs. application memory).

In this paper, we introduce BOOMERANG, a class of vulner-
abilities that arises due to this semantic separation between the
TEE and the untrusted environment. These vulnerabilities permit
untrusted user-level applications to read and write any memory
location in the untrusted environment, including security-sensitive
kernel memory, by leveraging the TEE’s privileged position to
perform the operations on its behalf. BOOMERANG can be used
to steal sensitive data from other applications, bypass security
checks, or even gain full control of the untrusted OS.

To quantify the extent of this vulnerability, we developed an
automated framework for detecting BOOMERANG bugs within
the TEEs of popular mobile phones. Using this framework,
we were able to confirm the existence of BOOMERANG on
four different TEE platforms, affecting hundreds of millions
of devices on the market today. Moreover, we confirmed that,
in at least two instances, BOOMERANG could be leveraged to
completely compromise the untrusted OS (i.e., Android). While
the implications of these vulnerabilities are severe, defenses can be
quickly implemented by vendors, and we are currently in contact
with the affected TEE vendors to deploy adequate fixes. To this
end, we evaluated the two most promising defense proposals
and their inherent trade-offs. This analysis led the proposal of a
novel BOOMERANG defense, addressing the major shortcomings
of the existing defenses with minimal performance overhead. Our
findings have been reported to and verified by the corresponding
vendors, who are currently in the process of creating security
patches.

I. INTRODUCTION

Today’s computer systems, including household appliances,
cars, and mobile phones, are subjected to an increasing range
of attacks. While legacy security mechanisms, including priv-
ilege levels and process isolation, continue to work for the
general case, they are unable to defend against sophisticated
attacks that are capable of compromising the operating system
(OS) itself. The ability to compromise the OS and the lack of
security in the face of compromise both stem, in part, from the
lack of segregation between the normal and security-critical
applications. To thwart these sophisticated attacks, hardware
manufacturers have introduced a new security mechanism,
known as a trusted execution environment (TEE) (e.g., ARM’s
TrustZone [2]). These new architectures permit the existence
of two separate worlds on the same system on a chip (SoC),
called the secure world (i.e., the world inside the TEE) and
the non-secure world (i.e., the sandboxed world containing the
main OS). Each of these worlds contains its own dedicated
OS and applications, and the software on the system is thus
considered to be either trusted (i.e., in the secure world) or
untrusted (i.e., in the non-secure world). The TEE works by
facilitating the creation of a non-secure world for untrusted
software, which is completely isolated from any critical code
within the secure world by hardware-enforced mechanisms.
Thus, by design, the secure world necessarily has access to all
of the non-secure world’s memory.

In practice, these two worlds frequently need to communi-
cate with each other (e.g., to encrypt or decrypt data with keys
stored inside the TEE). This communication is facilitated by
the OSes in both worlds, which leverage specialized memory
regions and central processing unit (CPU) registers to establish
an application programming interface (API) for the exchange
of data. Moreover, most trusted OSes also permit the instal-
lation of trusted applications (TAs) to expand functionality,
and offer services to the untrusted applications in the non-
secure world. In cases where larger volumes of data must be
processed in the secure world (e.g., when signing or encrypting
bulk data), it is convenient to permit the secure world to read
from and write to non-secure world memory directly. While the
secure world can protect itself from disclosing or overwriting
its own memory space, there is no inherent mechanism for the
secure world to guarantee the safety of operations on the non-
secure world’s memory. This lack of information, or semantic
gap, about the non-secure world from within the secure world
places a great deal of responsibility on the untrusted OS to
sanitize any inputs, especially pointers, that are passed into the
secure world. However, the APIs and data formats for each TA
tend to be application-specific, and are unknown to both the

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23227

untrusted and trusted OS.

In this paper, we present BOOMERANG, a class of vulner-
abilities that stem from the semantic gap between the non-
secure and secure worlds. BOOMERANG is a type of confused
deputy attack, wherein a user-level application in the non-
secure world can leverage a TA to read from or write to
non-secure world memory that it does not own, including
the untrusted OS’s. More specifically, a malicious user-level
application can send inputs to the TA, which are not properly
checked, that will trick the TA into manipulating memory
locations that should otherwise be inaccessible to the malicious
application. BOOMERANG vulnerabilities can be used to steal
or corrupt data in other user-level applications, or, in the
worst case, to completely compromise the untrusted OS. We
found exploitable BOOMERANG vulnerabilities in four TEE
implementations. These vulnerabilities were detected using
a combination of manual analysis and an automated static
analysis tool, which is capable of locating potential vectors
for exploiting BOOMERANG in a given TA. We were able
to leverage vulnerabilities in two commercial TEE implemen-
tations to create proof-of-concept exploits: an arbitrary non-
secure world memory read and root-level privilege escalation.
These vulnerabilities, and our corresponding exploits, affect
hundreds of millions of devices that are currently in production
today.

The severity of BOOMERANG is evident, and we have been
working with Google and the affected handset manufacturer
partners (e.g., Qualcomm) to implement adequate defenses. We
will present recommendations for future TEE designs, as well
as immediate fixes for the already-deployed TEE infrastruc-
ture. To this end, we evaluated the effectiveness and the trade-
offs of the two most promising defenses proposals: shared
memory and page table introspection. Additionally, we propose
a novel defense, called Cooperative Semantic Reconstruction
(CSR), which addresses the functionality shortcomings of
existing defenses with minimal performance overhead in the
general case. Our experiments suggest that CSR is the only
solution capable of providing the desired security guarantees,
while balancing both performance and ease-of-implementation.

In summary, our contributions1 are as follows:

• We present BOOMERANG, a new class of vulnerabilities
that arises from the semantic gap present between TEE
and the untrusted OS.

• We developed a static analysis technique capable of
locating BOOMERANG vulnerabilities in TAs.

• We evaluated the extent and severity of BOOMERANG by
examining the most popular TEE implementations and
their accompanying TAs.

• We developed a proof-of-concept memory leak and
privilege-escalation exploit to verify the hypothesized
severity of BOOMERANG.

• We evaluated the two existing BOOMERANG defenses,
and present CSR, a novel defense against BOOMERANG,
which outperforms the other proposals in all of the metrics
that we examined.

1We released our proof-of-concepts, static analysis tool, and defense imple-
mentation at https://github.com/ucsb-seclab/boomerang/

II. BACKGROUND AND RELATED WORK

A TEE is a separate execution environment for code
and its associated data that requires a higher level of trust
than the typical operating system. TEEs can be implemented
as either a physically separated environment (i.e., dedicated
CPU and memory) or on the same SoC as the normal CPU
with specialized hardware-isolation mechanisms (e.g., ARM’s
TrustZone [2]). Because of this strict hardware isolation (e.g.,
separate registers, memory, and peripheral access), the two
execution environments are typically referred to as different
worlds: the secure world (i.e., the world within the TEE) and
the non-secure world. Because the software in the secure world
is assumed to have a higher level of trust than the software
executing in the non-secure world, we refer to all software
in the secure world as trusted and the software in the non-
secure as untrusted. Each world has its own OS, which we
refer to as the untrusted and trusted OSes, and each OS runs
its own respective accompanying applications, which we refer
to as untrusted applications (UAs) and trusted applications
(TAs). Similar to traditional execution environments, both the
secure and non-secure worlds segregate the applications and
their OSes using different execution privileges (i.e., user and
supervisor mode).

In TEE implementations where the secure and non-secure
worlds exist on the same SoC (e.g., TrustZone), the hardware
enforces isolation between the two worlds through the use of
specialized CPU registers and a non-secure (NS) bit. Specifi-
cally, the NS bit is used to restrict access to memory and all
peripherals accessible on the Advanced eXtensible Interface
(AXI) bus. The context switching between the two worlds is
handled by a Secure Monitor that is instantiated when a secure
monitor call (SMC), or a special exception, is issued by either
a privileged (supervisor mode) application in the non-secure
world or any secure world application. To share information,
the worlds can pass a limited amount of information using
either registers or memory regions, which can either be dictated
by the secure world or passed by pointer reference.

The principal idea of the TEE is to minimize the trusted
computing base (TCB), in that the code running in the TEE
is intended to be a small, more easily verified subset of
the overall system that is used for security-sensitive tasks.
However, in practice, there is a strong desire to have the
TEE offer rich functionality to the non-secure world (e.g.,
digital rights management (DRM) [28], Trusted Input [3], or
authentication [23]). All of these applications require that a
communication channel between the two worlds is established
to share data over. This presents a major security risk to the
TEE, as it must accept input from the non-secure world and
its untrusted software. Indeed, numerous TEE implementations
have been exploited in practice [21], [25], [38], [43], which
resulted in a complete compromise of the secure world.
Consequently, there has been significant work to secure this
channel [19] and formalize the APIs [13] to thwart these types
of attacks. Nevertheless, existing implementations still depend
on the non-secure world’s OS to sanitize any inputs before
passing them into the secure world, as sanitization in the secure
world is hindered by the semantic gap.

When the secure and non-secure worlds are on the same
SoC, as in TrustZone, at boot, the processor will always
start in the secure world. The secure world software is then

2

https://github.com/ucsb-seclab/boomerang/

Supervisor Mode

User Mode

Supervisor Mode

User Mode

TEE Daemon User Application
Library

Rich OS

Driver Interface (ioctl)

TE
E

In
te

rfa
ce

Non-secure World

Trusted OS

Trusted Application

S
ecure

M
onitor

Secure World

1a 1b 1c

2

3

4

Fig. 1: High-level interactions when a user-level untrusted
application exchanges data with a trusted application in a
TrustZone-enabled SoC.

responsible for initializing the sandboxed, non-secure, world
and switching the process state to the non-secure mode. From
the non-secure world’s perspective, the existence of the secure
world is completely hidden, and the hardware architecture
presents itself as if the system had just booted, without any
evidence of the underlying secure world. However, by virtue of
the architecture, the secure world always maintains complete
control over and visibility into the non-secure world (similar
to a hypervisor and its guests). In fact, this feature has been
utilized to implement a variety of interesting systems, such
as: real-time kernel protection [4], transparent memory acqui-
sition [52], kernel-code integrity checking [11], TZ-enforced
Linux containers [42], and memory introspection [57].

Mobile phones have been one of the most prominent
adopters of this technology, and almost every modern smart-
phone comes equipped with a TrustZone-enabled Advanced
RISC Machine (ARM) processor. However, despite efforts to
enforce strict standards (e.g., GlobalPlatform [12]) on TEE
interactions, most of the software running inside these TEEs
is typically custom-built, and the trusted and untrusted software
are commonly developed by completely disjoint entities. For
example, on Android devices, while Google is responsible
for the untrusted OS, the secure world OS is commonly
developed by other parties like Qualcomm [37], Trustonic [53],
Nvidia [34], and the open-source community [34], [51]. How-
ever, it does appear that Google may eventually deploy their
own trusted OS, which they call Trusty [16].

The existence of BOOMERANG is fundamentally due to
the desire to share memory between untrusted and trusted
applications. The lack of well-defined, secure, standards and
mechanisms for secure world applications to verify security
properties of non-secure memory addresses results in scenarios
wherein untrusted applications can convince trusted applica-
tions to read or modify the contents of any physical memory
address within the non-secure world. These BOOMERANG
flaws are specific instantiations of the confused deputy prob-
lem [6], [8], [9], [17], [40]. Nevertheless, BOOMERANG
presents a particularly dangerous manifestation of this problem
as it exploits a fundamental design choice in the security
architecture of TEEs that currently affects hundreds of millions
of devices.

III. THE BOOMERANG VULNERABILITY

BOOMERANG exploits the semantic gap inherent to the
design of all the current TEE implementations, where the
secure world and its associated TAs have the ability to read
and write to non-secure world memory. However, most TAs
have a legitimate need to interact with the non-secure world’s
memory, and this functionality is routinely offered as a feature
of the architecture. While the untrusted OS is able to protect
itself and its applications within the non-secure world, all
of these security mechanisms can be trivially bypassed from
within the secure world. The trusted OS has no inherent ability
to determine the provenance or security properties of any
non-secure memory regions that are passed from untrusted
applications, due to the separation provided by the TrustZone
mechanism. More precisely, while the trusted OS can analyze
secure world pointer values to protect itself and other secure-
world applications, it has no insight into the memory permis-
sions of the non-secure world. Thus, when a TA receives a non-
secure world memory address as a parameter to a command,
it has no choice but to blindly act on that memory.

The untrusted OS is the most obvious place to implement
a defense, as it is already enforcing the non-secure world
security mechanisms, and, in fact, all current implementations
do employ some form of pointer sanitization (PTRSAN)
functions when handling pointers. However, the trusted OSes
and their applications frequently define their own structures
for the exchange of commands and data, making it impractical
for the untrusted OS to determine which values in the data are
pointers and need to be sanitized. This semantic gap forces the
untrusted OS to obliviously pass unknown data structures to
the secure world and similarly forces the secure world to act on
non-secure memory without any verification of whether or not
the untrusted OS has authorized those actions. Thus, in these
scenarios, an untrusted application is able to issue requests to
the secure world for memory that it does not own, which the
secure world will manipulate, permitting unauthorized reading
and writing of another application’s memory, including the
untrusted OS’s kernel. Even when such pointer sanitizations
occur in the untrusted kernel, most of the PTRSAN functions
are implemented incorrectly, making them easy to bypass,
resulting in BOOMERANG vulnerabilities.

We demonstrate this interaction graphically at a high level
in Figure 1 and briefly walk through a specific example in
TrustZone; however, this general data flow holds for all TEE
implementations. Note that there are three distinct security and
semantic boundaries that must be properly handled: user mode
to supervisor mode in the non-secure world 1 , supervisor
mode in the non-secure world to supervisor mode in the
secure world 2 , and supervisor mode to user mode in the
secure world 3 . Since the SMC instruction, which is used
to change between the two worlds, is a protected call, the
untrusted OS must either implement a long-running service
that user applications can use as an arbiter to interact with the
secure world 1a or expose an API to applications and permit
interaction with the TEE driver directly 1b (most vendors
provide a library in this case for convenience, shown as 1c).

All TEE implementations rely on an agreed-upon standard
between the untrusted OS and the trusted OS for passing
information 2 . However, as mentioned previously, there are
various trusted OSes in circulation and there is no global

3

standard, as of yet, that has been agreed upon by these trusted
OS vendors. Thus, each trusted OS is accompanied by a spe-
cialized untrusted kernel driver for interacting with the secure
world, each driver using its own unique calling convention.
What is worse, while the protocol for exchanging information
between the trusted OS and the trusted application 3 is well-
defined, the structure of this information is not standardized.
Therefore, most TA vendors are required to devise their own
unique data structures for sharing data between the untrusted
application and the trusted-world application 4 . Note that
while the untrusted OS can sanitize the memory address of the
structure, it has no insight into its contents unless the untrusted
application explicitly provides it. Similarly, TAs currently have
no way of conferring with the untrusted OS to validate the
authenticity of memory pointers and they have no choice but
to assume that all pointers have been sanitized.

Because of the isolation between secure and non-secure
worlds, the virtual memory addresses that applications use are
incomparable as the worlds utilize separate page tables within
the memory management unit (MMU). Thus, any reference to
memory must be converted to a common entity before being
shared with the other world. While it is possible for both
worlds to simply use a common memory map, this has been
shown to be a major security risk, as it allows the non-secure
world to control the execution of secure world by using page
faults [5]. Therefore, in practice, this commonly agreed-upon
representation is typically either a physical memory address or
a shared identifier (e.g., a virtual address in the secure world),
which permits each world to access the particular memory
region without any insight into the other world’s memory
mapping. We refer to this translation of memory addresses,
and any associated security checks, as PTRSAN and depict its
various implementations in Figure 2.

By virtue of the implementation, any data being passed
between the two worlds 2 must go through a PTRSAN
function, which will convert pointers to this common entity.
This PTRSAN step is typically implemented within a hardened
application 1a or within the kernel (1b and 1c) for two
reasons: 1) the specific pointer translation procedure should
be transparent to the user application, which increases the
modularity of the code; and 2) the PTRSAN function can
perform the appropriate security checks to verify that the
pointer indeed belongs to the corresponding application and is
safe for applications in the secure world to access. PTRSAN
is intended to protect both the untrusted kernel and other
untrusted applications from a malicious application. However,
amongst the data being handled by PTRSAN, there is TA-
specific data, which the PTRSAN application has no insight
into. Any pointers within these TA-specific data structures
must be explicitly annotated so that the PTRSAN can translate
them appropriately. Herein lies the problem, and the core flaw
being exploited by BOOMERANG. Specifically, the PTRSAN
function has no insight into the protocol agreed upon between
user application and the trusted application 4 , and thus it is
possible for the user application to pass pointers directly, which
evade the PTRSAN security checks. This critical semantic
gap is fundamentally what makes it so difficult to prevent
BOOMERANG attacks in practice.

To demonstrate how memory addresses can evade sani-
tization in practice, we will briefly walk through an example

Supervisor Mode

User Mode

Supervisor Mode

User Mode

TEE Daemon
PTRSAN

P
TR

P
TR

P
TR

User Application

P
TR

P
TR

P
TR

P
TRData Data

Rich OS

Non-secure World

PTRSAN

P
TR

P
TR

P
TR

P
TR

P
TR

P
TR

Trusted OS

P
TR

P
TR

P
TR

Trusted Application

P
TR

P
TR

P
TR

P
TRData Data

Secure World

1a 1b 1c

2

2

3

4

P
TR Normal Pointer P
TR Malicious Pointer P
TR Sanitized Pointer Unkown Data

Fig. 2: An example of BOOMERANG, where a malicious
memory pointer is hidden from pointer sanitization, ultimately
tricking a TA to act on that memory address.

from Figure 2. Note that 4 is the boundary that the data must
ultimately cross; however, the architecture does not permit this
particular interaction directly. So, the application prepares a
data packet destined for the TA in memory, using a data struc-
ture that was specified by corresponding TA. When the user
application needs to share a large amount of variable length
data with the trusted application (e.g., encrypted content), it is
desirable to permit the TA to act on this data in place (versus
copying it into a separate memory region). The pointer to the
data to be manipulated is annotated using the specific API
for the TEE, and the PTRSAN function handles the pointer
appropriately. However, in most cases, this annotation can be
trivially omitted, permitting the user application to control
the pointer value that the trusted application will receive. For
example, when physical memory is used as the common entity
between the two worlds, the user application could pass a phys-
ical address in the TA-specific data structure without reporting
this information to PTRSAN (i.e., a malicious pointer). The
TA has no way of validating these pointers, due to the semantic
gap, and thus has no choice but to perform the requested action
resulting in a BOOMERANG vulnerability.

To the best of our knowledge, BOOMERANG was previ-
ously completely unknown. In fact, the most related security
issue that was mentioned in the documentation [12] was a
time-of-check vs. time-of-use bug that exists in TEEs, wherein
the contents of non-secure memory may be changed while
the TEE is operating on the buffer. This limitation could lead
to situations where the data could be changed in malicious
ways to exhibit unintended behavior or permit untrusted world
applications to access each other’s data if the shared memory
region is globally readable. As we show in Section VII-C, our
proposed defense, CSR, can be trivially augmented to address
this security concern as well.

It is worth noting that there is already a mechanism in
place for querying the non-secure world from TAs. In an effort
to decrease the TCB within the secure world, any high-level
operations (e.g., file operations, networking) that the secure
world needs to exercise are typically handled by the non-
secure world on behalf of the secure world. In practice, each
trusted OS is accompanied by a user space service (i.e., a

4

TEE daemon) that is capable of handling these requests. In
some cases, this same daemon is also utilized as the arbiter
between untrusted applications and the untrusted kernel driver
(1c in Figure 1). We show in Section VII-C, how we were able
to leverage this mechanism (i.e., the trusted world requesting
information from the untrusted world) to reconstruct the non-
secure world semantics and prevent BOOMERANG.

IV. BOOMERANG: THREAT MODEL

This work focuses primarily on TrustZone-enabled mo-
bile devices running Android, and thus our threat model
is described in terms of the Android ecosystem for clarity;
however, the same concepts are generally applicable. Android
was chosen because of the variety of TEE implementations
that exist on Android devices, and the sheer number of
devices that could potentially be implicated. Nevertheless, we
note that BOOMERANG bugs are likely to exist in any TEE
implementation where the secure world can access non-secure
world memory.

In the case of Android and TrustZone, we assume that an
attacker can convince a user to install an app on her phone.
We also assume that this app has the ability to interact, using
proper system calls, with TEE applications. Depending on the
implementation, this requires either no permissions or a single
permission to interact with a specific TEE application (e.g.,
the ACCESS_DRM permission to access the DRM application
in the trusted world). No root or system permissions are
required for the attacker application in the untrusted world.

The presented attacks do not leverage arbitrary code exe-
cution bugs in any secure world application nor in the trusted
kernel. For this reason, in the context of this paper, we assume
that the attacker cannot execute arbitrary code inside the
TEE. In fact, the attacker’s goal is not to compromise TEE
computation, but it is to convince the code running within
the TEE to read and write non-secure world memory at the
attacker’s will. In this way, the attacker is able to thwart
security mechanisms of the untrusted OS, and, for instance,
raise the privileges of the controlled malicious app to root.

V. BOOMERANG ON REAL WORLD DEVICES

While BOOMERANG, in general, is applicable across all
TEE implementations, it is useful to examine various flavors
that appear in real-world implementations. To this end, we have
examined the most popular TEE implementations to verify
the existence of BOOMERANG. In this section, we describe
the architecture of each of the examined implementations,
highlighting how their specific design choices affect their
susceptibility to BOOMERANG.

A. Qualcomm Secure Execution Environment (QSEE)

Recent studies indicate that around 60% of all Android
phones in production are running Qualcomm’s QSEE [24],
making it an exceptionally high-impact implementation, as any
vulnerabilities could potentially lead to a complete compro-
mise of these devices [25].

1) Untrusted Application and Untrusted OS: QSEE ex-
poses a kernel driver /dev/qseecom to untrusted applica-
tions (1b and 1c in Figure 2). Interactions with this device
are carried out using the ioctl system call with various
commands, which untrusted applications can use to interact
with the secure world. Qualcomm also provides a user-space li-
brary libQSEEComAPI.so, which conveniently exposes the
different ioctl commands as functions. Data is exchanged
between untrusted and trusted applications using a specialized
data structure (Figure 3). This data structure is then passed
through a PTRSAN function to resolve any pointers to non-
secure world memory regions. In QSEE, physical memory
addresses are used as the common entity between worlds,
and the pointer translation from virtual to physical occurs
directly in the provided kernel driver (1b and 1c in Figure 2).
Sending commands to a TA happens in multiple steps, which
are described hereinafter.

First, the untrusted application requests the allocation of a
shared memory region using a separate shared memory driver
/dev/ion [1]. This region will be used for both requests
and responses. The shared memory driver returns a shared
memory identifier (i.e., shmid), an opaque identifier that is
used to refer to this memory region, independent of its location.
This identifier can then be used to map (i.e., using mmap)
the allocated memory into the untrusted application’s memory
space. The shared memory region is then split into two buffers,
one for sending data into the trusted world (i.e., send_buf)
and one for the response (i.e., resp_buf).

Second, the application prepares the command to be ex-
ecuted, and stores it in send_buf (see Figure 3). Pointers
stored directly in the driver interface structure will always be
validated and translated by the pointer translation function.
However, the untrusted application can also pass pointers
within the body of the request itself that was previously
allocated using /dev/ion (i.e., within the send_buf data).
Since the request body is application-specific, these point-
ers cannot automatically be located or translated. To en-
able this, the application can supply a replacement vector
(i.e., QSEECom_io_fd_info), which is a list of offsets in
send_buf that should contain the pointers together with the
corresponding shmids that should be translated and placed
there. The final command sent will contain the physical ad-
dresses for each shared memory region in the desired locations.

Third, the application either performs an ioctl
directly on the /dev/qseecom device with the
QSEECOM_IOCTL_SEND_MODFD_CMD_REQ command,
or uses the QSEECom_send_modified_cmd command
provided by the libQSEEComAPI.so library to trigger the
execution of the command. This causes QSEECOM to copy
the request buffer into a temporary buffer, and optionally
perform pointer translation.

2) Untrusted OS and Trusted OS: The untrusted OS and
trusted OS interact using Qualcomm’s secure channel manger
(SCM), which defines a set of functions that prepare and
execute SMC calls with the provided data. All SMC calls are
made with four parameters (i.e., send buf, sbuf len, resp buf,
rbuf len), where send_buf and resp_buf are the buffers
passed by the application. All of these parameters are packed
into an scm_command structure, and the physical address of
the packed structure is passed as an argument [36].

5

TEE Driver Interface

struct QSEECom_handle *handle

void *send_buf

uint32_t sbuf_len

void *resp_buf

uint32_t rbuf_len

struct QSEECom_ion_fd_info *ifd_data

unsigned char *ion_sbuffer

void *pointer

TA Input

???
void *pointer

???
void *pointer

???
void *pointer

???

TA Output

int32_t fd

PTRSAN

uint32_t cmd_buf_offset;

int32_t fd

uint32_t cmd_buf_offset;

int32_t fd

uint32_t cmd_buf_offset;

int32_t fd

uint32_t cmd_buf_offset;

TA-specific Semantics

QSEECom_send_cmd

QSEECom_send_modified_cmd

Fig. 3: The data structure used to communicate with the TEE
in QSEE [15].

3) Trusted OS and Trusted Application: TAs are executed
as user mode applications within the trusted world, with no
access to any other secure world memory (e.g., other TAs or
the trusted OS). Consequently, TAs must issue system calls to
the trusted OS kernel for any privileged tasks that they need
to perform. For example, to access non-secure memory (i.e., a
physical address passed from the untrusted world), they must
utilize the qsee_register_shared_buffer() syscall.
In this call, the trusted OS validates that the request mem-
ory region is not inside the secure world (e.g., within the
trusted OS), to protect itself from the untrusted world. If
the physical memory address is indeed within the non-secure
world’s memory, the kernel will map the requested physi-
cal memory region into the TA’s memory space. Note that
qsee_register_shared_buffer() only verifies that
the memory is not in the secure world; it cannot verify that
this physical address indeed belongs to the untrusted world
application that initiated this request [25].

4) BOOMERANG on QSEE: As discussed
above, the untrusted application makes use of the
QSEECom_send_modified_buffer function, which
updates the send_buf with physical addresses before
sending it to the TA using the provided replacement vector
(i.e., QSEECom_io_fd_info). However, this puts the
onus on the untrusted application to supply the necessary
information for the appropriate pointer translation to occur.
A malicious application that wishes to pass arbitrary
physical memory addresses could simply insert them into
send_buf in the proper locations for the victim TA, and
exclude them from the replacement vector. Alternatively, the
malicious application could simply utilize the un-sanitized
QSEECom_send_cmd command, which will send commands
to the TA without any pointer translation (see Figure 3). The
trusted OS only checks to confirm that these physical pointers
are not mapped into the secure world. Thus, any malicious
physical address placed within the send_buf buffer, and
kept hidden from PTRSAN, will be blindly acted upon by
the TA (e.g., decrypted, copied, encoded), resulting in a
BOOMERANG vulnerability. We show in Section VI-B how
we were able to leverage actual BOOMERANG vulnerabilities

to craft an arbitrary physical memory read exploit.

While both QSEECom_send_modified_cmd
and QSEECom_send_cmd are provided in the
libQSEECom.so library, where additional checks could
be implemented, it would still be possible to perform the
same un-sanitized operations on the kernel driver directly.
Therefore, any fool-proof solution will require at least some
coordination with the secure world to ensure that it cannot be
easily bypassed, such as the ones we examine in Section VII.

B. Trustonic

Trustonic [53] is another very popular vendor of TrustZone-
based TEE technology. Their TEE implementation is widely
deployed across consumer hardware (over 400 million de-
vices [7]), with Samsung leveraging it as part of its Knox [41]
platform. Trustonic encrypts and signs all of their trusted
applications and their trusted OS kernel, which makes it more
challenging to audit their functionality, although recent efforts
have made headway in recovering the decrypted code [14].

1) Untrusted Application and Untrusted OS: Trustonic
employs a kernel driver /dev/mobicore, similar to QSEE,
and a service mcDaemon, which user applications must use to
communicate with the secure world. Due to its permissions,
unprivileged user applications cannot communicate with the
driver /dev/mobicore directly, as was possible in the case
of QSEE. In Trustonic’s implementation, communication with
the secure world must go through the mcDaemon service
using a write-and-notify mechanism known as world-shared
memory (WSM). This communication is initiated when an
untrusted application registers a buffer, called a session buffer,
with a TA to open a new session. Commands intended for
the TA are then sent by writing data into the session buffer,
and issuing a notify command through mcDaemon. Once the
data is passed to the secure world, the trusted OS will then
notify the TA that the contents are ready. Similarly, to receive
responses, untrusted applications wait for a notification from
the TA (through mcDaemon).

In the Trustonic implementation, opaque identifiers are
used instead of memory locations (i.e., physical memory
pointers). By examining the source of mcDaemon [56], we
confirmed that the opaque id is actually a virtual address that
has been mapped into the memory space of the TA, within
the secure world. If an untrusted application wants to share
some memory with a TA, it must register the buffer using the
processMapBulkBuf function in the mcDaemon service,
which maps the corresponding physical memory region into
the TA’s memory space and returns an opaque identifier back
to the untrusted application. processMapBulkBuf also
verifies that the pointer being converted is indeed owned by
the requesting application, which thwarts the trivial instance
of BOOMERANG. From this point on, the only method for
the untrusted application to interact with that shared memory
region is using this opaque identifier and the mcDaemon
service (i.e., the untrusted application has no direct control
over the pointers that the TA will receive and operate on).

2) Untrusted OS and Trusted OS: The interaction between
the untrusted OS and the trusted OS is performed using the
standard SMC TrustZone instruction. Unlike QSEE, where the
physical address of a packed structure is passed to the trusted

6

vo id processMapBulkBuf (C o n n e c t i o n ∗ c o n n e c t i o n) {
. . .

/ / T r u s t o n i c ’ s PTRSAN f u n c t i o n
uint64 t pAddrL2 = dev ice−>findWsmL2 (cmd . hand le ,

c o n n e c t i o n−>s o c k e t D e s c r i p t o r) ;
. . .

/ / Map b u l k memory t o s e c u r e wor ld
/ / BOOMERANG i f t h e a t t a c k e r can c o n t r o l pAddrL2
mcResult t mcResu l t = dev i ce−>mapBulk (c o n n e c t i o n ,

cmd . s e s s i o n I d , cmd . hand le , pAddrL2 ,
cmd . o f f s e t P a y l o a d , cmd . lenBulkMem ,
&s e c u r e V i r t u a l A d r) ;

. . .
i f (mcResu l t != MC DRV OK) {

w r i t e R e s u l t (c o n n e c t i o n , mcResul t) ;
r e t u r n ;
}
mcDrvRspMapBulkMem t r s p ;
r s p . h e a d e r . r e s p o n s e I d = MC DRV OK;
r s p . p a y l o a d . s e s s i o n I d = cmd . s e s s i o n I d ;
r s p . p a y l o a d . s e c u r e V i r t u a l A d r = s e c u r e V i r t u a l A d r ;
c o n n e c t i o n−>w r i t e D a t a (& rsp ,

s i z e o f (mcDrvRspMapBulkMem t)) ;
}

Fig. 4: Code snippet from Trustonic’s MobiCore daemon that
exhibits a potential BOOMERANG flaw [55].

OS, Trustonic’s implementation explicitly passes parameters
using values stored in registers (current implementations only
support up to four unique parameters [54]).

3) Trusted OS and Trusted Application: Given that the
secure world binaries are encrypted, we were not able to
completely reverse-engineer the interaction between TAs and
the trusted OS. However, based on our experience with other
implementations, we assume that it follows a similar structure,
where TAs in the trusted world run as normal user-space
applications, with no access to the trusted OS’s memory.
Similarly, all privileged tasks from TAs are likely handled
by system calls to the trusted OS. We hypothesize that they
also implement some checks on the pointers (i.e., opaque
ids, virtual addresses) passed by the untrusted applications to
validate that they indeed belong to the non-secure world, but
currently we have no way to confirm this.

4) BOOMERANG on Trustonic: Although there is no ex-
plicit PTRSAN mechanism in Trustonic’s implementation, the
use of opaque identifiers by mcDaemon for shared memory
inherently ensures that an untrusted user application does not
have control over the resulting pointers. Figure 4 shows the
exact code that is enforcing this within the mcDaemon service.
Note that this construction inherently makes the assumption
that all shared memory requests come from mcDaemon, and
that this daemon is not compromised. However, if an attacker
were able to gain access to /dev/mobicore, or compromise
mcDaemon, pAddrL2 (in Listing 4) could be replaced with
an arbitrary non-secure world physical memory (just as in
QSEE) resulting in a BOOMERANG vulnerability. We have
confirmed this issue with Trustonic, and are working with them
toward an improved design for future releases.

C. Open Source Trusted Execution Environment (OP-TEE)

OP-TEE [33] is an open source TEE implementation,
which can run on a selection of hardware development plat-
forms. OP-TEE adheres to the GlobalPlatform [13] specifi-
cation and provides libraries that ease the development of

optee_to_msg_param Non-secure Memory

common-memory

Secure Memory

struct tee_param *params

size_t num_params

const struct optee_msg_param *msg_params

Non-secure World

Secure World

User Mode

Supervisor Mode

Supervisor Mode

User Mode

tee_ta_verify_param
struct tee_ta_session *sess

struct tee_ta_param *param

Untrusted Application

Trusted Application

Physical Memory

Fig. 5: Outline of interactions with the TEE in OP-TEE’s
implementation using common-memory. [27], [35]

TAs. While OP-TEE has not yet been deployed on consumer
hardware, it was valuable for our research, as it provided us
with an implementation into which we had complete visibility
and a platform for evaluating our defenses.

1) Untrusted Application and Untrusted OS: Similar to
other implementations, the untrusted OS exposes a driver
/dev/tee0 [47], which can be used by applications to
interact with the TAs. A client library libteec.so [49] is
also provided to make it easier for applications to communicate
with this driver. All parameters that are passed to the TA are
strongly typed. There are two broad types: a pointer type and
a value type (either of which can be input to a TA, output from
a TA, or both). Every call to the secure world can only support
up to four parameters, which must conform to the strict typing.

Untrusted applications again use opaque pointers (i.e.,
shmids) to refer to memory that is intended to be shared with
a TA. To pass a pointer argument, the untrusted application
communicates with /dev/tee0 to request memory of a
specific length. The kernel driver then allocates this memory in
a dedicated shared memory region (i.e., common-memory),
pairs it with a shmid, and returns it to the client. Untrusted
applications can use this shmid to map the memory into their
address space, where they can then write commands to and
read responses from the TA. This shared memory region is
accessible by both the non-secure and secure worlds. However,
because it is a dedicated memory region, it greatly reduces the
risk of BOOMERANG vulnerabilities.

2) Untrusted OS and Trusted OS: Upon receiving a com-
mand from the untrusted application, the untrusted OS will
first perform the required pointer translations (i.e., PTRSAN).
Next, it packs all of the parameters into an optee_msg_arg
structure and copies it into a free region in common-memory.
Lastly, it performs a world-switch using the SMC instruc-
tion [48], with the physical address of this region as its
argument.

3) Trusted OS and Trusted Application: TAs in OP-TEE
run as unprivileged applications within the secure world, each
running in its own thread, which are only spawned when a
request is issued from the non-secure world. All privileged
operations must, again, be performed through system calls into

7

the trusted OS (i.e., supervisor call (SVC) instructions). For
each memory parameter passed to a TA from the non-secure
world, the physical address is first checked to ensure that is
contained within the common-memory region, and that this
memory region is mapped to the thread that is handling the
request. More precisely, the trusted OS will take the physical
address that was passed as a parameter and update it with
a corresponding virtual address within the memory space of
the handling thread (i.e., TA). Thus when the TA accesses
any pointer arguments, it can access them as normal pointers
(i.e., without any additional verification calls). However, the
TA must strictly ensure that the types of all of the arguments
are as expected, or else type-confusion attacks could be utilized
to exploit the TA or trusted kernel. For example, if a memory
pointer could be disguised as a value, bypassing PTRSAN,
memory regions outside of the shared memory region could
be passed to a TA, which would result in a BOOMERANG
vulnerability. This process is shown in Figure 5.

4) BOOMERANG on OP-TEE: Although the use of
common-memory prevents all TAs from accessing the un-
trusted OS’s memory, the shared memory ids (shmids) as-
signed to the different untrusted applications are stored in a
global structure. This allows a malicious untrusted applica-
tion to read and write the corresponding common-memory
assigned to another untrusted application resulting in
BOOMERANG vulnerabilities [31], [32]. As described above,
common-memory provides a shared memory communica-
tion channel between untrusted applications and TAs, and,
depending on the TA, this memory region can contain sensitive
information (e.g., DRM decrypted content, passwords, or cryp-
tographic keying material). Moreover, we also found a heap
overflow [29] and an out-of-bounds read [30] in the PTRSAN
function of the untrusted kernel driver. The OP-TEE developers
responded promptly, fixing all of these issues; however, these
various bugs demonstrate just how difficult a shared memory
management implementation can be to deploy in practice.
While shared memory regions can be used to defend against
general BOOMERANG vulnerabilities, they present a significant
degree of complexity and subtlety that must be overcome.
There are also other technical limitations introduced with this
approach (e.g., performance, limited parameters), which we
discuss in detail in Section VI.

D. Huawei

We analyzed the TrustZone implementation from Huawei,
with tens of millions of devices in circulation.

1) Untrusted Application and Untrusted OS: This TEE
implementation, like Trustonic, employs a kernel driver
/dev/tc_ns_client and a service teecd, which all
user-space applications must use to communicate with the
secure world. The permissions are similarly set such that
untrusted user applications cannot communicate with the driver
directly. Similar to OP-TEE, all parameters in the secure-world
interface are one of two broad types: pointers and values, and
all calls to secure world support up to four parameters, which
can take either of those types.

However, in this instance, untrusted applications can di-
rectly pass an address with an offset as a pointer argument
in their commands. The kernel driver attempts to perform

PTRSAN by first checking that the corresponding address is
indeed in the requesting application’s memory before replacing
the address with the corresponding physical address, incre-
mented by the provided offset.

2) Untrusted OS and Trusted OS: The interactions be-
tween the untrusted world OS and the trusted world OS
are, again, done using the standard SMC instruction. All
parameters to be passed are packed into a common structure
(TC_NS_SMC_CMD), and the physical address of this structure
is passed as the argument to the SMC call (similar to QSEE).

3) Trusted OS and Trusted Application: As with other
trusted world implementations, each TA runs in an isolated
process and interacts with the trusted OS through system calls
(using SVC instructions). However, in this instance, the entire
non-secure world memory space is mapped into every TA,
which makes exploiting BOOMERANG vulnerabilities trivial.

4) BOOMERANG on Huawei: BOOMERANG exists on this
implementation for a few reasons. First, PTRSAN fails to
validate the offset value; a malicious untrusted application
can use this to pass an arbitrary physical address to the TA.
Second, almost all the TAs we examined do not validate
the types of parameters, allowing one to bypass PTRSAN
entirely, by misrepresenting the type of an argument to the
kernel driver as a non-pointer, while still being correctly
interpreted as a pointer by the TA. Type-confusion attacks
within the TA are cumbersome to avoid, as each function that
handles the parameter must independently verify that the type
of the argument is correct, since the parent function has no
insight into the ultimate use of each parameter. We found both
instances of BOOMERANG (i.e., PTRSAN bypass and type-
confusion) in different components within this implementation,
as we show in Section VI-A.

E. Sierraware Trusted Execution Environment (SierraTEE)

SierraTEE is a Trusted Execution Environment devel-
oped by Sierraware [46]. They published an open source
version of their implementation under the Open Virtualiza-
tion project [45]. Similar to OP-TEE, this adheres to the
GlobalPlatform specification [13] and provides libraries to
support development. Although SierraTEE is used in academic
projects [39], we were unable to determine whether it is used
in any commercial device.

1) Untrusted Application and Untrusted OS: Simi-
lar to OP-TEE, SierraTEE employs a kernel driver
/dev/otz_client and a client library libotzapi.so
for ease of development. Applications can either use the driver
or library to interact with the TAs. Similar to OP-TEE, all
parameters to the TA are strongly typed, with three possible
types: pointer, 32-bit value, or array. To pass a pointer,
untrusted applications should first use mmap on the driver
to allocate memory of the required size. The kernel driver
then allocates the memory and associates it with the requested
address (i.e., usr_addr), which can be used by the corre-
sponding application as a shared memory id (shmid). Similar
to Huawei, a pointer argument is passed as a tuple of (shmid,
length, offset).

2) Untrusted OS and Trusted OS: First, PTRSAN is per-
formed on all the pointer arguments by computing the physical

8

TABLE I: Summary of the various manifestations of
BOOMERANG across the various TEE implementations.

Vendor Common Entity
Physical Address Shared Memory Unique Identifier

QSEE BPtr

Trustonic B∗
Ptr

OP-TEE bPtr

Huawei BPtr, BType

SierraTEE BPtr

B - Full BOOMERANG (arbitrary non-secure memory access)
B∗ - Full BOOMERANG, but requires an additional exploit

b - Partial BOOMERANG (access to specific regions of non-secure memory)
Ptr - PTRSAN bypass vector present Type - Type-confusion vector present

address corresponding to the provided shmid. The resulting
physical address and its corresponding length are packed as
the new pointer argument. Next, all the arguments are packed
into an otz_smc_cmd structure, and the physical address of
this structure is passed as the argument to the SMC instruction,
and therefore to the trusted OS.

3) Trusted OS and Trusted Application: Similar to
OP-TEE, each TA runs as an unprivileged application within
the secure world, in its own thread. Privileged operations must
be performed through system calls (SVC instructions), and are
handled by the trusted OS. All parameters from the untrusted
OS and applications are directly passed to the destination TA.
As mentioned above, these take the form of physical memory
addresses and region lengths, which must be mapped by the
TA prior to use.

4) BOOMERANG on SierraTEE: Similar to Huawei,
PTRSAN in SierraTEE fails to validate the offset for
pointer arguments. This allows a malicious untrusted appli-
cation to pass an arbitrary physical address to the TA leading
to a BOOMERANG vulnerability. Furthermore, we noticed that
PTRSAN also fails to verify the length parameter, which
increases the exploitability of this flaw.

We notified Sierraware of our findings on multiple oc-
casions, beginning in October 2016, and received no reply.
We suggest that the users of the open source version of the
SierraTEE be aware of this issue, and contact Sierraware to
obtain an appropriate fix.

F. Observed Instances of BOOMERANG

In summary, we have observed two distinct instances of
BOOMERANG in practice: PTRSAN bypass attacks, where
the pointer sanitization function can be bypassed altogether,
and type-confusion attacks, where TAs can be tricked into
treating a non-pointer value as a pointer. This general flaw
(i.e., the secure world’s ability to freely influence non-secure
memory) exists on each system, regardless of the common
entity used for passing memory references between worlds.
Table I demonstrates how the various bugs affect the vendors
that we examined. It is worth noting that every analyzed TEE
implementation is affected by BOOMERANG to some degree.
The table only outlines the bugs that we personally were able
to verify; however, we have reasons to believe Trustonic also
likely contains a pointer-confusion attack, but we are unable
to verify this hypothesis without access to the un-encrypted
TAs.

VI. FINDING BOOMERANG VULNERABILITIES

To evaluate the severity of BOOMERANG, we explored
two very popular commercially available TEE implementations
(i.e., QSEE and Huawei) to see if exploitable BOOMERANG
flaws existed in deployed TAs. We were unable to perform
our analysis on Trustonic’s implementation because all of
their TAs are encrypted. Similarly, we did not evaluate any
TAs developed for the OP-TEE and SierraTEE architectures,
as they have not been deployed on any commercial devices.
We, indeed, found the BOOMERANG vulnerabilities in all of
the evaluated TAs that accepted pointers from the non-secure
world, some of which we used to craft exploits.

A. Detecting Potential Vulnerabilities

As we showed in Section V, all of the TrustZone im-
plementations that we analyzed will, at some point, pass
commands from the untrusted application to the TA through
the untrusted OS and the trusted OS. This data usually contains
an application-dependent structure, and, in malicious instances,
its contents may contain un-sanitized memory pointers. Thus,
the general approach to our detection technique is to perform
data-flow analysis to track all of the data that is passed from
the non-secure world, and annotate any functions that use any
portion of this data as a pointer. By capturing any function that
dereferences non-secure data as a pointer, an analyst could
then trivially use manual analysis to see if that data can be
controlled by an untrusted application in a way that bypasses
PTRSAN, which would result in a BOOMERANG vulnerability.

We created a static analysis technique to locate these
instances using simulated execution, which we implemented
using the angr [44] static analysis and reverse-engineering
framework. Our analysis works in the following way: First, we
analyze the control flow graph and perform function recovery
on a given TA, which identifies function entry points based on
standard ARM calling conventions. This step requires that the
binary is not obfuscated (e.g., encrypted or packed). Next, we
locate the source of any input data, by locating the primary
command dispatcher of the TA. This function is TEE-specific,
but can be found easily through reverse engineering (e.g.,
identifying entry points in the program or using symbols) and
is applicable to every TA for that TEE implementation. In
QSEE’s implementation, we referenced prior work to locate
the command dispatcher [25], which accepts 4 arguments,
consisting of the input and output buffers and their sizes
(i.e., send_buf, send_len, resp_buf, resp_len). On
Huawei, we were able to locate the symbol referring to the
command dispatcher, which takes a list of inputs, and a list of
the associated data types for each argument.

Once the command dispatcher function is located, we then
perform data-flow analysis (similar to static taint tracking) on
the data in the input buffers to detect any instances where any
part of the input is used as a pointer. This pointer dereferencing
may be done explicitly in the code itself, but could also be
delegated to system calls within the trusted OS. Since the
semantics of system calls are TEE-specific, we require that an
analyst annotates those calls that handle the reading or writing
to non-secure memory for each TEE (e.g., cryptographic
operations or secure file-system operations). With the given
system calls identified, our data-flow analysis can detect and
return relevant paths in the TA.

9

COMMAND_DISPATCHER(request_buffer)

command_code = request_buffer->field1;
command_data = (void*) request_buffer->field2;

switch(command_code){
 case ‘1’:
 COMMAND_HANDLER1(command_data);
 break;
 case ‘2’:
 COMMAND_HANDLER2(command_data);
 break;
 case ‘3’:
 COMMAND_HANDLER3(command_data);
 break;
 case ‘4’:
 COMMAND_HANDLER4(command_data);
 break;
}

request_buffer
(from untrusted world)

read_syscall(address,
 length,
 output);

write_syscall(address,
 length,
 content);

COMMAND_HANDLER1(command_data)

read_syscall((void*)command_data->field1, length, output);

COMMAND_HANDLER2(command_data)

write_syscall((void*)command_data->field1, length, content);

COMMAND_HANDLER3(command_data)

address = (int*)command_data->field1;

output_data = *address;

COMMAND_HANDLER4(command_data)

address = (int*)command_data->field1;

*address = data;

Source

Sink

Attacker
Controlled

Fig. 6: Examples of the different types of data flows that our tool would detect as being vulnerable to BOOMERANG.

Our analysis starts with the input buffers or argument lists
as a source and performs a blanket execution [10] of the
program, where all of the basic blocks in the control-flow graph
(CFG) are executed, until the data from the source reaches a
sink (i.e., an annotated system call or memory operation). TAs
usually contains many possible commands, selectable by a TA-
specific command identifier included as part of the request,
which is typically checked by the TA at the beginning of
execution. We can therefore locate a unique “handler” for
the different commands (i.e., cases in the main switch-case
statement of the command dispatcher), by analyzing all of the
call sites in the command dispatcher function. This information
is useful when determining exploitability, as it helps to identify
the major functionality of the TA that is exercised with the
identified vulnerability. Our tool will produce as output the call
chain from the input to the memory operation or system call,
and whether the final operation is a read or a write. Figure 6
provides a high-level overview of our technique.

B. Vulnerabilities in QSEE

While hundreds of millions of devices use QSEE as their
TEE implementation, only a few TAs are actually widely
distributed for the platform. We were able to obtain the binaries
for KeyMaster, WideVine, and PlayReady, which to the best
of knowledge are the only 3 QSEE TAs that accept user input.
KeyMaster is the standard cryptographic application that is
included on all Android-based devices with a TEE. WideVine
is a Google-owned DRM technology, used most prominently in
the Netflix and YouTube applications. PlayReady is a similar
DRM technology provided by Microsoft, which provides DRM
support for Windows Media files, amongst others.

After running our static analysis technique on the three

0x3c6b: COMMAND DISPATCHERUSER INPUT

0x37aa: COMMAND HANDLER
(import_key_pair command)

0x4a02: SYSCALL WRAPPER 1
(prepare_read_buffer) 0x6e80: SYSCALL

Fig. 7: One of the three outputs of our data-flow analysis
described in Section VI-A for the KeyMaster TA on QSEE.

TAs described above, we found that all of them were vul-
nerable to BOOMERANG attacks. KeyMaster contained three
separate call-chains that permit an untrusted application to read
arbitrary physical memory from within the non-secure world,
using functionality within the TA. Similarly, WideVine and
PlayReady both contained call-chains that permit an unprivi-
leged application to decrypt data to arbitrary physical memory
within the non-secure world, which could be leveraged for an
arbitrary physical memory write.

1) Proof-of-Concept (Memory Read): We were able to
easily leverage one of the three call chains located in QSEE’s
KeyMaster to craft a proof-of-concept arbitrary memory leak
exploit. Figure 7 shows a graphical representation of the
discovered path, including the addresses of each function
call instruction between the input and a controllable memory
operation, as well as the type of memory operation (e.g.,
“read,” “write,” or in this case, “syscall”). The tool also
indicates the vulnerable “handler,” which is the start address
of the first unique function seen among the set of all the call
chains.

In this case, the call chain terminates in QSEE system
call number 0x06, which was identified as the system call
that prepares for memory read operations from the non-
secure world. Using manual analysis, we were easily able to
determine the purpose of the handler function on our chosen
path, at 0x5ac, which generates cryptographic signatures of
data from the non-secure world. While the returned value
is signed, the attacker can select the key, cipher, data, and
data length. To recover the original non-secure world data, the
signature is performed on a single byte, with a known key, and
the result checked against a pre-computed table of signatures
for all of 256 possible values of a byte with that key. To control
the data that is to be signed, we can bypass PTRSAN in the
non-secure world using QSEECom_send_cmd (as shown in
Figure 3). The resulting exploit allows a malicious untrusted
application, in the non-secure world, to read any amount of
memory from an arbitrary location in the non-secure world,
including memory of all other applications and the kernel.

We disclosed this vulnerability, and proof-of-concept, to
Qualcomm and Google in June 2016, and received the des-
ignation CVE-2016-5349. We are actively working with both

10

companies on a fix and, as of December 2016, this critical
patch is still in development. Our tool also identified memory
write functionality in the WideVine TA, which could, in theory,
be leveraged into a full exploit; however, we did not invest the
engineering time at this point to verify this exploit.

C. Vulnerabilities in Huawei

For our analysis of Huawei, we were able to obtain a
set of 10 TAs. Using our static-analysis tool, we found out
that only 6 of them accepted commands and all of these
6 TAs were vulnerable to BOOMERANG. We were able to
locate both arbitrary read and write functionality, which allows
us to gain root privileges on any device running this TEE
implementation. We use a technique based on ret2dir [22],
which allows the execution of code as the root user, by
overwriting kernel memory structures to include a malicious
return-oriented programming (ROP) payload. This technique
has been implemented and tested on Android 5.0.1, and works
regardless of Privileged eXecute Never (PXN) protections
deployed by the hardware.

These vulnerabilities were reported to Huawei, as part of
our submission to the GeekPwn 2016 hacking contest [18], and
received the designations CVE-2016-8762, CVE-2016-8763,
and CVE-2016-8764. We were able to develop a full exploit,
which leveraged BOOMERANG and other techniques to obtain
full root privileges, as well as code execution within the TEE
itself2. Huawei has implemented a fix, and as of December
2016, updates to various Huawei devices are available to
address the problem.

VII. DEFENSES

Before discussing the examined defenses, we first outline
the requirements that we set forth to ensure that our proposed
defense would be both practical to implement and usable for
developers. We identify the following minimum requirements
that any solution to BOOMERANG must satisfy to be usable:

• Independence from the untrusted OS: The TEE imple-
mentation should not be dependent on the untrusted OS
(i.e., it should not leverage OS-specific functionality). For
example, the trusted OS should be unaffected if the untrusted
OS is upgraded or changed entirely. This requirement forces
the solution to be generic, rather than depending on a
particular feature within the untrusted OS implementation.

• Minimal or no changes to user applications (untrusted
and trusted): Changes to trusted and untrusted applications
should be minimal or none at all. This requirement eases the
adoption of the solution and ensures that existing applica-
tions will be automatically protected, without burdening the
developers to re-write their applications.

• Minimal changes to the trusted kernel: No major archi-
tectural changes should be required within the secure world.
This ensures that the TCB will remain small and that all
modifications can be sufficiently audited. Since minimal is
subjective, we specify that any modifications to the trusted
OS abide by a soft ceiling of 100 lines of code.

2A video demonstrating the exploit can be found at https://www.youtube.c
om/watch?v=XjbGTZrg9DA

A. Page Table Introspection

An obvious and simple method capable of defending
against BOOMERANG is to leverage the trusted OS’s visibility
into the non-secure world to verify the ownership of the mem-
ory being accessed by simply reading the same page tables
that are used by the untrusted OS. A variant of this approach is
taken by NVIDIA’s Trusted Little Kernel (TLK), the TEE used
by Tegra processors [34]. This defense requires the trusted OS
to have a complete understanding of the page table structure
within the untrusted OS. Thus, when an untrusted application
passes a memory reference, the trusted OS would first verify
that the memory actually belongs to the untrusted application
that made the call by doing a page-table walk, and, only then,
map that memory into the memory space of the requested TA.

This approach has a few notable advantages. It is entirely
invisible to the untrusted OS, as the entire PTRSAN function
is implemented within the secure world. Additionally, it does
not require any extra memory copy operations, which is an
improvement over shared-memory defenses, which we explain
in Section VII-B. However, the Achilles’ heel of this approach
is the amount of work that must be performed by the trusted
OS to interpret the untrusted OS’s page table structure, and
then make security decisions based on that interpretation. Re-
searchers have shown that page table walks can be extremely
dangerous. For example, since the trusted OS is performing
a walk on a page table controlled by the untrusted OS, a
malicious untrusted OS could potentially craft a malicious page
table and obtain arbitrary code execution within the trusted
OS [5], [20].

Furthermore, this defense, while relatively easy to imple-
ment, does not satisfy our first requirement, as the trusted OS
must be aware of the page table structure managed by the
untrusted OS. This approach is not generalizable and would
likely require a customized trusted OS to accompany each
untrusted OS, or at least a different instantiation based on
the page table structure. Finally, this defense is likely not
possible to implement while satisfying our third requirement
of a minimal TCB, as an elegant and correct page table walk
requires a considerable amount of code, likely far more than
100 lines.

This approach works well for TLK, where the trusted OS
is a derivative of Linux and is therefore able to manage Linux
page tables using the same code as the untrusted OS. However,
we do not consider it a viable generic approach since it violates
two of our requirements. Thus, we did not evaluate its efficacy
in practice in Section VIII; however, we do not discredit its
viability as a defense against BOOMERANG, and we believe
that it could be a reasonable defense in specific instances.

B. Dedicated Shared Memory Region

The heart of the BOOMERANG flaw stems from the fact
that the secure world can read from and write to any non-
secure memory it wishes. In the dedicated shared mem-
ory region defense, a special physical memory region (e.g.,
common-memory in the case of OP-TEE) is defined, which
is the only region of memory that is readable and writable
by both worlds. To verify any pointers that are passed from
the non-secure world, the secure world then needs only to
verify that the memory is within the common-memory, which

11

https://www.youtube.com/watch?v=XjbGTZrg9DA
https://www.youtube.com/watch?v=XjbGTZrg9DA

will protect both worlds. Note that this is the exact method
employed by OP-TEE (see Figure 5).

This defense is easy to implement in the secure world. In
fact, this defense actually makes the secure world’s PTRSAN
function extremely simple, as it needs only to confirm that the
memory is within the shared region. Nevertheless, this defense
has numerous drawbacks in the non-secure world:

• The untrusted OS is burdened with handling all of the
shared memory regions (i.e., sections of common-memory)
amongst the various untrusted user applications. This mem-
ory management can be exceptionally complicated, and,
indeed, we found at least 4 bugs [29]–[32] in different
components of this mechanism in OP-TEE.

• For high-throughput applications (e.g., DRM video decryp-
tion), this defense adds an undesirable overhead, since it
requires all of the data to be copied into a special buffer,
which is not in the requesting application’s memory space.
This global memory region also requires a global lock on
memory, which can become a serious bottleneck in multi-
threaded applications. In our tests (Section VIII-A), this
global locking mechanism alone consumed approximately
36% of the total overhead.

• Shared memory makes it extremely difficult, and in some
cases impossible, to implement certain types of applications.
For example, a popular use of TrustZone is memory integrity
checking [11], where an untrusted application requests that
a TA monitors its memory, which does not work with shared
memory.

• This defense only thwarts the general BOOMERANG attack,
but can still permit applications to leverage BOOMERANG
to read from and write to arbitrary regions within the shared
memory, which may contain sensitive data.

We show in Section VIII-C how this currently advocated
defense compares against our proposed solution.

C. Cooperative Semantic Reconstruction

Due to the limitations of existing BOOMERANG defenses,
we propose a novel defense (CSR), which is capable of bridg-
ing the semantic gap between the two worlds with minimal
modification and minimal overhead. In this defense, the trusted
OS and the untrusted OS both cooperate to verify memory
pointers that are passed into the secure world to ensure that
the untrusted application indeed has permission to access the
referenced memory region. This implementation was based
on one key insight: the untrusted OS already adequately
implements memory protection mechanisms; however, this
information is not currently easily accessible to the trusted
OS. Thus, to implement this defense, the untrusted OS needs
only to expose a simple callback to the secure world that
permits the trusted OS to query the untrusted OS’s PTRSAN
function, where the memory address can be trivially verified.
This callback can be used from within the secure world any
time that non-secure memory is to be accessed, thus thwarting
any unintended BOOMERANG vulnerabilities. Fundamentally,
this defense bridges the semantic gap by allowing the secure
world, which has no insight into the layout of non-secure
memory, to query the untrusted OS as a security oracle, which
is able to correctly respond. An overview of the approach can
be seen in Figure 8

Non-secure Memory

Secure Memory

Non-secure World

Secure World

User Mode

Supervisor Mode

Supervisor Mode

User Mode

Untrusted Application

Trusted Application

Untrusted App. Memory

Shared Buffer

Trusted App. Memory

Virtual Memory

Physical Memory

TEE Daemon/Driver

Trusted OS

PTRSAN

PTRSAN

Append
PID

1

2

3

6

Shared Buffer

75

4 9

8

Fig. 8: Cooperative Semantic Reconstruction data-flow and
pointer resolution technique.

In this defense, the untrusted applications prepare requests
to TAs exactly as they would without it. The call to the
TA would similarly be handled by an exposed kernel driver
or TEE 1 , which would handle the world switching. Note
the there is no proactive PTRSAN necessary by either the
daemon or the kernel driver. In fact, the buffer is passed
directly into the secure world with the non-secure world virtual
memory address intact. The only addition is that the process
identification number (PID) of the requesting process (we refer
to this as the req_pid) is now appended to the request
structure by the untrusted OS during the SMC call 2 . Now,
in the secure world, when a TA needs to access a pointer that
was passed as an argument, which is a virtual address that
belongs to the untrusted application that initiated the call, the
TA must first query the trusted OS to resolve the physical
address 4 . This query is implemented as a callback to the
untrusted kernel with the pointer value (virtual address), the
length of the buffer, and the corresponding req_pid 5 .
The untrusted OS kernel can trivially handle the callback by
checking that the buffer indeed belongs to the address space
of req_pid 6 . If the verification is successful, the untrusted
OS then locks the corresponding pages (to avoid them being
paged out) and sends the physical addresses back to the secure
world 7 . At this point, the trusted OS will then implement
its own PTRSAN function to verify that the physical address
from the untrusted OS is, in fact, in the non-secure world 8 .
Then, the trusted OS will map it into the TA’s memory space
or allow the TA to access the physical address directly 9 . If
verification fails, a corresponding error code is returned.

Given that every TEE implementation already has callback
support for high-level operations (e.g., file operations, network
communication), this exact same channel can be leveraged to
implement CSR. Note that CSR provides a generic mechanism
to bridge the semantic gap between the two worlds, and that
it can also be extended to verify access to files, or other
peripherals by the secure world.

At first glance, it may appear that this defense would
require modifications to all of the components (i.e., the
untrusted application, the untrusted kernel, the trusted ker-
nel, and the trusted application). However, since all of the
trusted applications that we observed use a client library,
we believe that simply updating this client library would
be enough in practice. Similar to untrusted applications, ex-

12

isting TAs would not require any modification, as this de-
fense could be implemented in the trusted kernel functions
(e.g., qsee_register_shared_buffer() in the case
of QSEE) that are already used to access non-secure world
memory. The only real modifications that would have to be
deployed would be the modifications to the untrusted and
trusted kernels, which would add the functionality to handle
and perform the required callback, respectively.

The main overhead introduced by CSR is the addi-
tional verification path (i.e., 4 - 9). However, we show in
Section VIII-B that this overhead is minimal and comparable
to other defenses.

VIII. EVALUATION OF DEFENSES

We evaluated the two most promising proposed defenses:
Dedicated Shared Memory Region (DSMR) and CSR. We
decided not to include Page Table Introspection (PTI) in
our analysis, as it does not satisfy our requirements as a
general BOOMERANG defense. Similarly, we did not explicitly
compare our defenses against a vanilla TEE implementation,
as we do not see no defense as an option. We performed our
evaluation on the OP-TEE platform [51], with Linux as our
untrusted OS. OP-TEE was chosen because it is completely
open source, has a very well-maintained code base with clear
documentation, and includes an exhaustive test suite, which we
used to evaluate the performance overhead of our defenses.

We chose the HiKey development board (Lemaker Version)
as the hardware platform for testing, which is one of the
boards recommended by the OP-TEE developers [51]. This
board includes a traditional ARM processor and associated
hardware, which are almost identical to what would be found
on a consumer Android handset [26]. OP-TEE has an extensive
test suite with 63 tests called xtest [50]. These tests cover
both sanity and functionality check of various TAs, TEE
benchmarking, and Global Platform compliance. We modified
the test driver to record timings for each of the tests as well
as profiling information for the different phases of DSMR and
CSR. All reported timing data are averaged across 30 runs of
xtest on the HiKey board, where the system was rebooted
between runs to avoid caching-related inconsistencies.

A. Dedicated Shared Memory Region

As explained in Section V-C, OP-TEE’s default configura-
tion uses the DSMR method as the only mechanism for passing
memory arguments. In this implementation, the untrusted OS’s
client library handles the allocation of the shared memory
region, which consists of assigning an identifier (shmid),
copying of data to and from the corresponding shared buffer,
and ultimately releasing it. Recall that this shared memory
management within the untrusted OS is the main overhead
in this implementation. There is virtually no overhead in the
trusted OS, as it just needs to check that the pointer argument
is contained within the common-memory region. On average,
allocating shared memory took 13.795 µs, releasing memory
took 7.982 µs, and the time it took to copy memory contents
was negligible. Thus, the total incurred overhead was 21.777
µs per secure-world query. This low overhead is partially
attributed to the fact that the maximum size being copied in the
tests was only 4,097 bytes; however, we would expect these
numbers to rise significantly with larger memory regions.

TABLE II: Total modifications required to implement CSR in
OP-TEE, measured in LOC.

Component Added LOC Modified LOC Total LOC

Trusted OS 88 3 91

Untrusted OS 273 2 275

Client Library 39 0 39

TABLE III: Summary of benchmark results, showing the
overhead of CSR over DSMR.

Category Overhead

Avg. % Avg. Time (ms)

Basic Functionality -0.58% -7.168
Trusted-Untrusted Communication 4.45% 0.510
Crypto operations -1.72% -901.548
Secure File Storage 0.03% 0.694
Total for all Tests -0.0344 -189.919

B. Cooperative Semantic Reconstruction

As we previously explained in Section V-C, in OP-TEE
all arguments to TA are typed (i.e., pointer or value), and all
pointers are already checked to ensure that they are within
the common-memory region. Thus, we were able to im-
plement our CSR defense by simply adding a new pointer
parameter type, RAW_PTR, and modifying the trusted OS to
perform the required callback to the untrusted OS for every
RAW_PTR. We also changed the untrusted OS’s client library
(i.e., libteec.so) to use the RAW_PTR as the default type
for all pointers. The untrusted kernel driver was similarly
modified to handle the callback function. We implemented
our PTRSAN function in the callback, which verifies that
the argument is a valid virtual address within the appropriate
untrusted application (referenced by its PID). Upon verifi-
cation, we then resolve the corresponding physical memory
pages, set them to be non-pageable, and return the physical
addresses back to the secure world. All of our modifications
to OP-TEE are backward-compatible and can easily co-exist
with the existing DSMR defense. These modifications resulted
in only 91 modified lines of code in the OP-TEE trusted OS
(see Table II to see the modifications per component).

As explained in Section VII-C, most of the additional
overhead introduced by CSR is caused by the callbacks from
the trusted OS to the untrusted OS for every RAW_PTR
argument type. In OP-TEE, all of the pointer arguments are
first sanitized by the trusted OS before invoking the TA. Hence,
all of our results for CSR do not include the calls between
the TA and the trusted OS (i.e., 4 and 9 in Figure 8).
Nevertheless, we similarly measured the incurred overhead
of CSR by running the xtest suite, which made a total of
3,885 callbacks throughout its tests. The average time taken
for the trusted OS to confer with the untrusted OS to sanitize
pointers (5 - 6 - 7 - 8) over all 3,885 callbacks was 26.891
µs, 21.909 µs of which were spent within the untrusted OS
doing validation and memory page pinning (6). This is almost
identical to the 21.777 µs overhead incurred by the DSMR
defense.

C. Comparative Evaluation

To get an idea of the specific performance of memory
management operations with the two defenses, we analyzed

13

the profiling data for the various operations performed by both
approaches and found that performance for a single memory
access with DSMR is slightly better, 5.113 µs faster, than CSR.
However, the performance across the entire range of tests is
much more interesting.

A summary of the testing data, in terms of the average
overhead of CSR over DSMR for each test category, is shown
in Table III. Note that a negative value indicates CSR was
faster than DSMR for the corresponding category. The Trusted-
Untrusted Communication category represents CSR’s worst
performance in terms of the percentage of overhead. There
are 14 tests in this category and all of them primarily perform
a lot of SMC operations (approximately 200) to test inter-
world communication. CSR allocates and deallocates memory-
tracking structures during each SMC, as it cannot know ahead
of time when memory arguments are to be used. This con-
tributes a very small overhead for each SMC, which is reflected
as a larger percentage in these particular tests, although even
here, this net overhead in terms of time is still low.

In the context of the other 49 tests performed, the percent-
age of overhead contributed by CSR versus DSMR is very
small. CSR introduces no more than 0.03% overhead in the
worst case and improves performance by up to 1.72% in others.

For those tests with non-secure memory operations, we
observed that the DSMR overhead varied significantly, whereas
the overhead of CSR remained constant for a given number of
memory operations. The main reasons for variance in DSMR
overhead are:

• Synchronized access: The allocation and release of shared
memory involves acquiring a global lock. For a multi-
threaded application making simultaneous shared memory
requests and releases will result in idle tasks as they wait
for the global lock, increasing the overhead of DSMR. We
observed this in one of the tests of the Basic Functionality
category, which creates several threads, all of which make
requests to a TA. During this subtest, the overhead for a
shared memory allocation went up to 80 microseconds and
in total CSR beat DSMR by 11.72 seconds of execution
time.

• Additional copying: In DSMR, untrusted applications need
to copy data to or from shared memory to communicate with
the TA. This copying time can be an overhead, if a large
amount of data is being exchanged between the untrusted
application and the corresponding TA. For example, one of
the tests in the Trusted-Untrusted Communication category,
which passes a large amount of data, suffered a 26%
overhead because of this memory copying.

• Memory Fragmentation: Depending on how shared memory
is allocated and released, it could get severely fragmented.
As DSMR in OP-TEE uses a best-fit algorithm to find free
regions of shared memory, fragmentation increases the time
to find a free chunk, thus increasing the overhead of DSMR.

Although CSR is slightly outperformed by DSMR in some
tests, in practice CSR is the best candidate for an all-around
defense. CSR offers the best security properties, requires min-
imal modification for implementation, incurs minimal overall
performance overhead, and actually boosts performance for
multi-threaded applications. Thus, per our evaluation, CSR
appears to be the ideal defense against BOOMERANG.

IX. CONCLUSION

In this work, we identified a previously unknown class of
vulnerabilities, BOOMERANG, that affects systems where the
secure world (i.e., the TEEs) and the non-secure world (i.e.,
the traditional OS) share resources. The vulnerability arises
from the critical semantic gap when passing data between
the two worlds, specifically memory pointers, and flaws in
sanitizing these pointers. We identified BOOMERANG vulner-
abilities in four of the most popular commercial TEE platforms
(affecting hundreds of millions of devices world-wide). In
order to explore the generality and severity of BOOMERANG,
we developed a static-analysis tool to automatically identify
BOOMERANG bugs in real-world TEE applications. These
findings have resulted in major efforts from the respective
parties (e.g., Google and Qualcomm) to fix their implemen-
tations, as the identified vulnerabilities could be leveraged to
completely compromise the untrusted OS (e.g., Android) of
the affected devices. We similarly analyzed three potential
BOOMERANG defenses, comparing the trade-offs and design
considerations of each. Due to the limitations of the existing
defenses (i.e., shared memory and page table introspection),
we devised a novel solution, Cooperative Semantic Recon-
struction, which addresses the shortcomings of the previous
proposals, while still offering an efficient and easy-to-use
interface.

ACKNOWLEDGEMENTS

This material is based on research sponsored by the Office
of Naval Research under grant number N00014-15-1-2948 and
by DARPA under agreement number N66001-13-2-4039. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon.

This work is also sponsored by a gift from Google’s Anti-
Abuse group.

Sandia National Laboratories is a multi-mission laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of DARPA, Sandia National Laboratories, or the
U.S. Government.

REFERENCES

[1] AOSP, “/dev/ion driver!” https://lwn.net/Articles/480055/, 2006.
[2] ARM, “ARM TrustZone,” http://www.arm.com/products/processors/tec

hnologies/trustzone/index.php, 2015.
[3] ARM, “Securing the Future of Authentication with ARM TrustZone-

based Trusted Execution Environment and Fast Identity Online
(FIDO),” https://www.arm.com/files/pdf/TrustZone-and-FIDO-white-
paper.pdf, 2015.

[4] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision Across Worlds: Real-time Kernel Protection
from the ARM TrustZone Secure World,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2014.

14

https://lwn.net/Articles/480055/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
https://www.arm.com/files/pdf/TrustZone-and-FIDO-white-paper.pdf
https://www.arm.com/files/pdf/TrustZone-and-FIDO-white-paper.pdf

[5] J. Bangert, S. Bratus, R. Shapiro, and S. W. Smith, “The Page-
Fault Weird Machine: Lessons in Instruction-less Computation,” in
Proceedings of the 7th USENIX Workshop on Offensive Technologies
(WOOT), 2013.

[6] A. Barth, C. Jackson, and J. C. Mitchell, “Robust Defenses for Cross-
Site Request Forgery,” in Proceedings of the 15th ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2008.

[7] J. Bennett, “Devices with Trustonic TEE,” https://www.trustonic.com/n
ews-events/blog/devices-trustonic-tee, 2015.

[8] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards Taming Privilege-Escalation Attacks on Android,”
in Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS), 2012.

[9] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight Provenance for Smart Phone Operating Systems,” in Pro-
ceedings of the 20th USENIX Security Symposium, 2011.

[10] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket Execution:
Dynamic Similarity Testing for Program Binaries and Components,” in
Proceedings of the 23rd USENIX Security Symposium, 2014.

[11] X. Ge and T. Jaeger, “Sprobes: Enforcing Kernel Code Integrity on
the TrustZone Architecture,” in Proceedings of the Mobile Security
Technologies 2014 Workshop (MoST), 2014.

[12] GlobalPlatform, TEE System Architecture, 2011.

[13] ——, TEE Internal Core API Specification v.1.1.1, 2016.

[14] N. Golde and D. Komaromy, “Breaking Band: reverse engineering and
exploiting the shannon baseband,” in REcon, 2016.

[15] Google, “QSEEComAPI.h,” https://android.googlesource.com/platfor
m/hardware/qcom/keymaster/+/master/QSEEComAPI.h, 2012.

[16] ——, “Trusty TEE,” http://source.android.com/security/trusty/, 2016.

[17] N. Hardy, “The Confused Deputy: (or why capabilities might have been
invented),” ACM SIGOPS Operating Systems Review, 1988.

[18] Huawei, “Security Advisory - Multiple Security Vulnerabilities in
Huawei Smart Phone Products,” http://www.huawei.com/en/psirt/secu
rity-advisories/huawei-sa-20161123-01-smartphone-en, 2016.

[19] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “SeCReT:
Secure Channel between Rich Execution Environment and Trusted
Execution Environment,” in Proceedings of the 22nd Annual Network
and Distributed System Security Symposium (NDSS), 2015.

[20] Y. Jang, S. Lee, and T. Kim, “DrK: BreakingKernel Address Space
Layout Randomization with Intel TSX,” in BlackHat USA, 2016.

[21] N. Keltner, “Here Be Dragons: Vulnerabilities in TrustZone,”
https://atredispartners.blogspot.com/2014/08/here-be-dragons-vulnerab
ilities-in.html, 2014.

[22] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking Kernel Isolation,” in Proceedings of the 23rd USENIX
Security Symposium, 2014.

[23] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, “On-board
Credentials with Open Provisioning,” in Proceedings of the 4th Inter-
national Symposium on Information, Computer, and Communications
Security (Asia CCS), 2009.

[24] K. Lady, “Sixty Percent of Enterprise Android Phones Affected by
Critical QSEE Vulnerability,” https://duo.com/blog/sixty-percent-of-ent
erprise-android-phones-affected-by-critical-qsee-vulnerability, 2016.

[25] laginimaineb, “Bits, Please!” https://bits-please.blogspot.com/, 2016.

[26] Lenovator, “HiKey (LeMaker version) 2GB RAM,” http://www.lenovat
or.com/product/90.html.

[27] Linaro Security Working Group, “Linux Kernel, OP-TEE driver,”
https://github.com/linaro-swg/linux/blob/optee/drivers/tee/optee/core.c,
2016.

[28] M. Lu, “TrustZone, TEE and Trusted Video Path Implementation
Considerations,” http://www.arm.com/files/event/Developer Track 6
TrustZone TEEs and Trusted Video Path implementation considera
tions.pdf, 2013.

[29] A. Machiry, “Potential Heap Buffer overflow in tee supp com.c,” https:
//github.com/OP-TEE/optee linuxdriver/issues/52/, 2016.

[30] ——, “Potential invalid MEMREF translation, this could be used for
bad,” https://github.com/OP-TEE/optee linuxdriver/issues/53/, 2016.

[31] ——, “Shared memory allocated by tee linux kernel driver is not zeroed
out,” https://github.com/linaro-swg/linux/issues/13/, 2016.

[32] ——, “Shared Memory IDs are stored globally,” https://github.com/lin
aro-swg/linux/issues/14/, 2016.

[33] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-TEE–
An Open Virtual Trusted Execution Environment,” in Proceedings of
the 14th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications, 2015.

[34] H. Nahari, “TLK: A FOSS Stack for Secure Hardware To-
kens,” http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/
papers/webcrypto2014 submission 25.pdf, 2012.

[35] OP-TEE, “optee os,” https://github.com/OP-TEE/optee os/blob/maste
r/core/arch/arm/kernel/tee ta manager.c, May 2016.

[36] Qualcomm, “Msm scm communicator,” https://android.googlesource.c
om/kernel/msm/+/android-5.1.0 r0.6/arch/arm/mach-msm/scm.c.

[37] ——, “Qualcomm Secure Execution Environment Communicator
(QSEECOM) driver,” https://android.googlesource.com/kernel/msm.g
it/+/77cac325253126dd9e6c480d885aa51f1abf3c40/drivers/misc/qseec
om.c.

[38] D. Rosenberg, “Reflections on Trusting TrustZone,” in BlackHat USA,
2014.

[39] K. Rubinov, L. Rosculete, T. Mitra, and A. Roychoudhury, “Automated
Partitioning of Android Applications for Trusted Execution Environ-
ments,” in Proceedings of the 38th International Conference on Software
Engineering (ICSE), 2016.

[40] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting frame
busting: a study of clickjacking vulnerabilities at popular sites,” IEEE
Oakland Web 2.0 Security and Privacy (W2SP), 2010.

[41] Samsung, “Knox Technology,” https://www.samsungknox.com/en/knox
-technology, 2015.

[42] Samsung Knox News, “Real-time Kernel Protection (RKP),” https://ww
w2.samsungknox.com/en/blog/real-time-kernel-protection-rkp, 2016.

[43] D. Shen, “Attacking your “Trusted Core,” Exploiting TrustZone on
Android,” in BlackHat USA, 2015.

[44] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in Proceedings of the IEEE Symposium on Security and
Privacy (SP), 2016.

[45] Sierraware, “Open Virtualizations SierraVisor and SierraTEE,” http://op
envirtualization.org, 2016.

[46] ——, “SierraWare Trusted Execution Environment,” http://www.sierr
aware.com/, 2016.

[47] STMicroelectronics and Linaro Security Working Group, “OP-TEE
non-secure world kernel driver,” https://github.com/linaro-swg/linux/tr
ee/optee/drivers/tee.

[48] ——, “OP-TEE non-secure world/secure world SMC call,” https://gith
ub.com/linaro-swg/linux/blob/optee/drivers/tee/optee/call.c#L117.

[49] ——, “OP-TEE normal world client library,” https://github.com/OP-TE
E/optee client.

[50] ——, “OP-TEE Test Suite,” https://github.com/OP-TEE/optee test.
[51] ——, “Open Source TEE,” https://github.com/OP-TEE/optee os.
[52] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia, “TrustDump: Reliable

Memory Acquisition on Smartphones,” in Proceedings of the 19th
European Symposium on Research in Computer Security (ESORICS),
2014.

[53] Trustonic, “Trustonic,” https://www.trustonic.com/.
[54] ——, “tee-mobicore-driver.kernel,” https://github.com/TrustonicNwd/

tee-mobicore-driver.kernel/blob/MC12/drivers/gud/MobiCoreDriver/f
astcall.h, 2015.

[55] ——, “trustonic-tee-user-space,” https://github.com/Trustonic/truston
ic-tee-user-space/blob/e3b0b06025605b06fc1e19588098e5011f6afc83/
MobiCoreDriverLib/Daemon/MobiCoreDriverDaemon.cpp, 2015.

[56] ——, “tee-mobicore-driver.daemon,” https://github.com/TrustonicNwd/
tee-mobicore-driver.daemon, 2016.

[57] J. Williams, “Inspecting data from the safety of your trusted execution
environment,” in BlackHat USA, 2015.

15

https://www.trustonic.com/news-events/blog/devices-trustonic-tee
https://www.trustonic.com/news-events/blog/devices-trustonic-tee
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
http://source.android.com/security/trusty/
http://www.huawei.com/en/psirt/security-advisories/huawei-sa-20161123-01-smartphone-en
http://www.huawei.com/en/psirt/security-advisories/huawei-sa-20161123-01-smartphone-en
https://atredispartners.blogspot.com/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com/2014/08/here-be-dragons-vulnerabilities-in.html
https://duo.com/blog/sixty-percent-of-enterprise-android-phones-affected-by-critical-qsee-vulnerability
https://duo.com/blog/sixty-percent-of-enterprise-android-phones-affected-by-critical-qsee-vulnerability
https://bits-please.blogspot.com/
http://www.lenovator.com/product/90.html
http://www.lenovator.com/product/90.html
https://github.com/linaro-swg/linux/blob/optee/drivers/tee/optee/core.c
http://www.arm.com/files/event/Developer_Track_6_TrustZone_TEEs_and_Trusted_Video_Path_implementation_considerations.pdf
http://www.arm.com/files/event/Developer_Track_6_TrustZone_TEEs_and_Trusted_Video_Path_implementation_considerations.pdf
http://www.arm.com/files/event/Developer_Track_6_TrustZone_TEEs_and_Trusted_Video_Path_implementation_considerations.pdf
https://github.com/OP-TEE/optee_linuxdriver/issues/52/
https://github.com/OP-TEE/optee_linuxdriver/issues/52/
https://github.com/OP-TEE/optee_linuxdriver/issues/53/
https://github.com/linaro-swg/linux/issues/13/
https://github.com/linaro-swg/linux/issues/14/
https://github.com/linaro-swg/linux/issues/14/
http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_submission_25.pdf
http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_submission_25.pdf
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/tee_ta_manager.c
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/tee_ta_manager.c
https://android.googlesource.com/kernel/msm/+/android-5.1.0_r0.6/arch/arm/mach-msm/scm.c
https://android.googlesource.com/kernel/msm/+/android-5.1.0_r0.6/arch/arm/mach-msm/scm.c
https://android.googlesource.com/kernel/msm.git/+/77cac325253126dd9e6c480d885aa51f1abf3c40/drivers/misc/qseecom.c
https://android.googlesource.com/kernel/msm.git/+/77cac325253126dd9e6c480d885aa51f1abf3c40/drivers/misc/qseecom.c
https://android.googlesource.com/kernel/msm.git/+/77cac325253126dd9e6c480d885aa51f1abf3c40/drivers/misc/qseecom.c
https://www.samsungknox.com/en/knox-technology
https://www.samsungknox.com/en/knox-technology
https://www2.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://www2.samsungknox.com/en/blog/real-time-kernel-protection-rkp
http://openvirtualization.org
http://openvirtualization.org
http://www.sierraware.com/
http://www.sierraware.com/
https://github.com/linaro-swg/linux/tree/optee/drivers/tee
https://github.com/linaro-swg/linux/tree/optee/drivers/tee
https://github.com/linaro-swg/linux/blob/optee/drivers/tee/optee/call.c#L117
https://github.com/linaro-swg/linux/blob/optee/drivers/tee/optee/call.c#L117
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_test
https://github.com/OP-TEE/optee_os
https://www.trustonic.com/
https://github.com/TrustonicNwd/tee-mobicore-driver.kernel/blob/MC12/drivers/gud/MobiCoreDriver/fastcall.h
https://github.com/TrustonicNwd/tee-mobicore-driver.kernel/blob/MC12/drivers/gud/MobiCoreDriver/fastcall.h
https://github.com/TrustonicNwd/tee-mobicore-driver.kernel/blob/MC12/drivers/gud/MobiCoreDriver/fastcall.h
https://github.com/Trustonic/trustonic-tee-user-space/blob/e3b0b06025605b06fc1e19588098e5011f6afc83/MobiCoreDriverLib/Daemon/MobiCoreDriverDaemon.cpp
https://github.com/Trustonic/trustonic-tee-user-space/blob/e3b0b06025605b06fc1e19588098e5011f6afc83/MobiCoreDriverLib/Daemon/MobiCoreDriverDaemon.cpp
https://github.com/Trustonic/trustonic-tee-user-space/blob/e3b0b06025605b06fc1e19588098e5011f6afc83/MobiCoreDriverLib/Daemon/MobiCoreDriverDaemon.cpp
https://github.com/TrustonicNwd/tee-mobicore-driver.daemon
https://github.com/TrustonicNwd/tee-mobicore-driver.daemon

	Introduction
	Background and Related Work
	The Boomerang Vulnerability
	Boomerang: Threat Model
	Boomerang on Real World Devices
	QSEE
	Untrusted Application and Untrusted OS
	Untrusted OS and Trusted OS
	Trusted OS and Trusted Application
	Boomerang on QSEE

	Trustonic
	Untrusted Application and Untrusted OS
	Untrusted OS and Trusted OS
	Trusted OS and Trusted Application
	Boomerang on Trustonic

	OP-TEE
	Untrusted Application and Untrusted OS
	Untrusted OS and Trusted OS
	Trusted OS and Trusted Application
	Boomerang on OP-TEE

	Huawei
	Untrusted Application and Untrusted OS
	Untrusted OS and Trusted OS
	Trusted OS and Trusted Application
	Boomerang on Huawei

	SierraTEE
	Untrusted Application and Untrusted OS
	Untrusted OS and Trusted OS
	Trusted OS and Trusted Application
	Boomerang on SierraTEE

	Observed Instances of Boomerang

	Finding Boomerang Vulnerabilities
	Detecting Potential Vulnerabilities
	Vulnerabilities in QSEE
	Proof-of-Concept (Memory Read)

	Vulnerabilities in Huawei

	Defenses
	Page Table Introspection
	Dedicated Shared Memory Region
	Cooperative Semantic Reconstruction

	Evaluation of Defenses
	Dedicated Shared Memory Region
	Cooperative Semantic Reconstruction
	Comparative Evaluation

	Conclusion
	References

