
Leveraging User Interactions for

In-Depth Testing of Web Applications

Sean McAllister1, Engin Kirda2, and Christopher Kruegel3

1 Secure Systems Lab, Technical University Vienna, Austria
sean@seclab.tuwien.ac.at
2 Institute Eurecom, France

kirda@eurecom.fr
3 University of California, Santa Barbara

chris@cs.ucsb.edu

Abstract. Over the last years, the complexity of web applications has
grown significantly, challenging desktop programs in terms of functional-
ity and design. Along with the rising popularity of web applications, the
number of exploitable bugs has also increased significantly. Web applica-
tion flaws, such as cross-site scripting or SQL injection bugs, now account
for more than two thirds of the reported security vulnerabilities.
Black-box testing techniques are a common approach to improve software
quality and detect bugs before deployment. There exist a number of vul-
nerability scanners, or fuzzers, that expose web applications to a barrage
of malformed inputs in the hope to identify input validation errors. Un-
fortunately, these scanners often fail to test a substantial fraction of a web
application’s logic, especially when this logic is invoked from pages that
can only be reached after filling out complex forms that aggressively check
the correctness of the provided values.
In this paper, we present an automated testing tool that can find reflected
and stored cross-site scripting (XSS) vulnerabilities in web applications.
The core of our system is a black-box vulnerability scanner. This scanner
is enhanced by techniques that allow one to generate more comprehensive
test cases and explore a larger fraction of the application. Our exper-
iments demonstrate that our approach is able to test more thoroughly
these programs and identify more bugs than a number of open-source and
commercial web vulnerability scanners.

1 Introduction

The first web applications were collections of static files, linked to each other by
means of HTML references. Over time, dynamic features were added, and web
applications started to accept user input, changing the presentation and content
of the pages accordingly. This dynamic behavior was traditionally implemented
by CGI scripts. Nowadays, more often then not, complete web sites are created
dynamically. To this end, the site’s content is stored in a database. Requests are
processed by the web application to fetch the appropriate database entries and
present them to the user. Along with the complexity of the web sites, the use
cases have also become more involved. While in the beginning user interaction



was typically limited to simple request-response pairs, web applications today
often require a multitude of intermediate steps to achieve the desired results.

When developing software, an increase in complexity typically leads to a grow-
ing number of bugs. Of course, web applications are no exception. Moreover, web
applications can be quickly deployed to be accessible to a large number of users on
the Internet, and the available development frameworks make it easy to produce
(partially correct) code that works only in most cases. As a result, web applica-
tion vulnerabilities have sharply increased. For example, in the last two years, the
three top positions in the annual Common Vulnerabilities and Exposures (CVE)
list published by Mitre [17] were taken by web application vulnerabilities.

To identify and correct bugs and security vulnerabilities, developers have a va-
riety of testing tools at their disposal. These programs can be broadly categorized
as based on black-box approaches or white-box approaches. White-box testing
tools, such as those presented in [2, 15, 27, 32], use static analysis to examine
the source code of an application. They aim at detecting code fragments that are
patterns of instances of known vulnerability classes. Since these systems do not
execute the application, they achieve a large code coverage, and, in theory, can
analyze all possible execution paths. A drawback of white-box testing tools is that
each tool typically supports only very few (or a single) programming language.
A second limitation is the often significant number of false positives. Since static
code analysis faces undecidable problems, approximations are necessary. Espe-
cially for large software applications, these approximations can quickly lead to
warnings about software bugs that do not exist.

Black-box testing tools [11] typically run the application and monitor its ex-
ecution. By providing a variety of specially-crafted, malformed input values, the
goal is to find cases in which the application misbehaves or crashes. A significant
advantage of black-box testing is that there are no false positives. All problems
that are reported are due to real bugs. Also, since the testing tool provides only
input to the application, no knowledge about implementation-specific details (e.g.,
the used programming language) is required. This allows one to use the same tool
for a large number of different applications. The drawback of black-box testing
tools is their limited code coverage. The reason is that certain program paths are
exercised only when specific input is provided.

Black-box testing is a popular choice when analyzing web applications for secu-
rity errors. This is confirmed by the large number of open-source and commercial
black-box tools that are available [1, 16, 19, 29]. These tools, also called web
vulnerability scanners or fuzzers, typically check for the presence of well-known
vulnerabilities, such as cross-site scripting (XSS) or SQL injection flaws. To check
for security bugs, vulnerability scanners are equipped with a large database of test
values that are crafted to trigger XSS or SQL injection bugs. These values are
typically passed to an application by injecting them into the application’s HTML
form elements or into URL parameters.

Web vulnerability scanners, sharing the well-known limitation of black-box
tools, can only test those parts of a web site (and its underlying web application)
that they can reach. To explore the different parts of a web site, these scanners
frequently rely on built-in web spiders (or crawlers) that follow links, starting from



a few web pages that act as seeds. Unfortunately, given the increasing complexity
of today’s applications, this is often insufficient to reach “deeper” into the web
site. Web applications often implement a complex workflow that requires a user
to correctly fill out a series of forms. When the scanner cannot enter meaningful
values into these forms, it will not reach certain parts of the site. Therefore,
these parts are not tested, limiting the effectiveness of black-box testing for web
applications.

In this paper, we present techniques that improve the effectiveness of web
vulnerability scanners. To this end, our scanner leverages input from real users
as a starting point for its testing activity. More precisely, starting from recorded,
actual user input, we generate test cases that can be replayed. By following a
user’s session, fuzzing at each step, we are able to increase the code coverage by
exploring pages that are not reachable for other tools. Moreover, our techniques
allow a scanner to interact with the web application in a more meaningful fashion.
This often leads to test runs where the web application creates a large number
of persistent objects (such as database entries). Creating objects is important to
check for bugs that manifest when malicious input is stored in a database, such as
in the case of stored cross-site scripting (XSS) vulnerabilities. Finally, when the
vulnerability scanner can exercise some control over the program under test, it can
extract important feedback from the application that helps in further improving
the scanner’s effectiveness.

We have implemented our techniques in a vulnerability scanner that can an-
alyze applications that are based on the Django web development framework [8].
Our experimental results demonstrate that our tool achieves larger coverage and
detects more vulnerabilities than existing open-source and commercial fuzzers.

2 Web Application Testing and Limitations

One way to quickly and efficiently identify flaws in web applications is the use
of vulnerability scanners. These scanners test the application by providing mal-
formed inputs that are crafted so that they trigger certain classes of vulnerabili-
ties. Typically, the scanners cover popular vulnerability classes such as cross-site
scripting (XSS) or SQL injection bugs. These vulnerabilities are due to input val-
idation errors. That is, the web application receives an input value that is used
at a security-critical point in the program without (sufficient) prior validation. In
case of an XSS vulnerability [10], malicious input can reach a point where it is
sent back to the web client. At the client side, the malicious input is interpreted
as JavaScript code that is executed in the context of the trusted web application.
This allows an attacker to steal sensitive information such as cookies. In case of
a SQL injection flaw, malicious input can reach a database query and modify
the intended semantics of this query. This allows an attacker to obtain sensitive
information from the database or to bypass authentication checks.

By providing malicious, or malformed, input to the web application under
test, a vulnerability scanner can check for the presence of bugs. Typically, this is
done by analyzing the response that the web application returns. For example,
a scanner could send a string to the program that contains malicious JavaScript



code. Then, it checks the output of the application for the presence of this string.
When the malicious JavaScript is present in the output, the scanner has found a
case in which the application does not properly validate input before sending it
back to clients. This is reported as an XSS vulnerability.

To send input to web applications, scanners only have a few possible injection
points. According to [26], the possible points of attack are the URL, the cookie,
and the POST data contained in a request. These points are often derived from
form elements that are present on the web pages. That is, web vulnerability scan-
ners analyze web pages to find injection points. Then, these injection points are
fuzzed by sending a large number of requests that contain malformed inputs.

Limitations. Automated scanners have a significant disadvantage compared to
human testers in the way they can interact with the application. Typically, a
user has certain goals in mind when interacting with a site. On an e-commerce
site, for example, these goals could include buying an item or providing a rating
for the most-recently-purchased goods. The goals, and the necessary operations
to achieve these goals, are known to a human tester. Unfortunately, the scanner
does not have any knowledge about use cases; all it can attempt to do is to collect
information about the available injection points and attack them. More precisely,
the typical workflow of a vulnerability scanners consists of the following steps:

– First, a web spider crawls the site to find valid injection points. Commonly,
these entry points are determined by collecting the links on a page, the action
attributes of forms, and the source attributes of other tags. Advanced spiders
can also parse JavaScript to search for URLs. Some even execute JavaScript
to trigger requests to the server.

– The second phase is the audit phase. During this step, the scanner fuzzes the
previously discovered entry points. It also analyzes the application’s output
to determine whether a vulnerability was triggered.

– Finally, many scanners will start another crawling step to find stored XSS
vulnerabilities. In case of a stored XSS vulnerability, the malicious input is
not immediately returned to the client but stored in the database and later
included in another request. Therefore, it is not sufficient to only analyze the
application’s immediate response to a malformed input. Instead, the spider
makes a second pass to check for pages that contain input injected during the
second phase.

The common workflow outlined above yields good results for simple sites that
do not require a large amount of user interaction. Unfortunately, it often fails when
confronted with more complex sites. The reason is that vulnerability scanners
are equipped with simple rules to fill out forms. These rules, however, are not
suited well to advance “deeper” into an application when the program enforces
constraints on the input values that it expects. To illustrate the problem, we
briefly discuss an example of how a fuzzer might fail on a simple use case.

The example involves a blogging site that allows visitors to leave comments
to each entry. To leave a comment, the user has to fill out a form that holds the
content of the desired comment. Once this form is submitted, the web application



responds with a page that shows a preview of the comment, allowing the user
to make changes before submitting the posting. When the user decides to make
changes and presses the corresponding button, the application returns to the form
where the text can be edited. When the user is satisfied with her comment, she
can post the text by selecting the appropriate button on the preview page.

The problem in this case is that the submit button (which actually posts
the message to the blog) is activated on the preview page only when the web
application recognizes the submitted data as a valid comment. This requires that
both the name of the author and the text field of the comment are filled in.
Furthermore, it is required that a number of hidden fields on the page remain
unchanged. When the submit button is successfully pressed, a comment is created
in the application’s database, linked to the article, and subsequently shown in the
comments section of the blog entry.

For a vulnerability scanner, posting a comment to a blog entry is an entry
point that should be checked for the presence of vulnerabilities. Unfortunately, all
of the tools evaluated in our experiments (details in Section 5.2) failed to post a
comment. That is, even a relatively simple task, which requires a scanner to fill
out two form elements on a page and to press two buttons in the correct order,
proved to be too difficult for an automated scanner. Clearly, the situation becomes
worse when facing more complex use cases.

During our evaluation of existing vulnerability scanners, we found that, com-
monly, the failure to detect a vulnerability is not due to the limited capabilities
of the scanner to inject malformed input or to determine whether a response in-
dicates a vulnerability, but rather due to the inability to generate enough valid
requests to reach the vulnerable entry points. Of course, the exact reasons for fail-
ing to reach entry points vary, depending on the application that is being tested
and the implementation of the scanner.

3 Increasing Test Coverage

To address the limitations of existing tools, we propose several techniques that
allow a vulnerability scanner to detect more entry points. These entry points can
then be tested, or fuzzed, using existing databases of malformed input values. The
first technique, described in Section 3.1, introduces a way to leverage inputs that
are recorded by observing actual user interaction. This allows the scanner to follow
an actual use case, achieving more depth when testing. The second technique,
presented in Section 3.2, discusses a way to abstract from observed user inputs,
leveraging the steps of the use case to achieve more breadth. The third technique,
described in Section 3.3, makes the second technique more robust in cases where
the broad exploration interferes with the correct replay of a use case.

3.1 Increasing Testing Depth

One way to improve the coverage, and thus, the effectiveness of scanners, is to
leverage actual user input. That is, we first collect a small set of inputs that were



provided by users that interacted with the application. These interactions corre-
spond to certain use cases, or workflows, in which a user carries out a sequence
of steps to reach a particular goal. Depending on the application, this could be a
scenario where the user purchases an item in an on-line store or a scenario where
the user composes and sends an email using a web-based mail program. Based
on the recorded test cases, the vulnerability scanner can replay the collected in-
put values to successfully proceed a number of steps into the application logic.
The reason is that the provided input has a higher probability to pass server-side
validation routines. Of course, there is, by no means, a guarantee that recorded
input satisfies the constrains imposed by an application at the time the values are
replayed. While replaying a previously recorded use case, the scanner can fuzz the
input values that are provided to the application.

Collecting input. There are different locations where client-supplied input data
can be collected. One possibility is to deploy a proxy between a web client and
the web server, logging the requests that are sent to the web application. Another
way is to record the incoming requests at the server side, by means of web server
log files or application level logging. For simplicity, we record requests directly at
the server, logging the names and values of all input parameters.

It is possible to record the input that is produced during regular, functional
testing of applications. Typically, developers need to create test cases that are
intended to exercise the complete functionality of the application. When such
test cases are available, they can be immediately leveraged by the vulnerability
scanner. Another alternative is to deploy the collection component on a production
server and let real-world users of the web application generate test cases. In any
case, the goal is to collect a number of inputs that are likely correct from the
application’s point of view, and thus, allow the scanner to reach additional parts
of the application that might not be easily reachable by simply crawling the site
and filling out forms with essentially random values. This approach might raise
some concerns with regards to the nature of the captured data. The penetration
tester must be aware of the fact that user input is being captured and stored
in clear text. This is acceptable for most sites but not for some (because, for
example, the unencrypted storage of sensitive information such as passwords and
credit card numbers might be unacceptable). In these cases, it is advisable to
perform all input capturing and tests in a controlled testbed.

Replaying input. Each use case consists of a number of steps that are carried out
to reach a certain goal. For each step, we have recorded the requests (i.e., the
input values) that were submitted. Based on these input values, the vulnerability
scanner can replay a previously collected use case. To this end, the vulnerability
scanner replays a recorded use case, one step at a time. After each step, a fuzzer
component is invoked. This fuzzer uses the request issued in the previous step
to test the application. More precisely, it uses a database of malformed values
to replace the valid inputs within the request sent in the previous step. In other
words, after sending a request as part of a replayed use case, we attempt to fuzz
this request. Then, the previously recorded input values stored for the current
step are used to advance to the next step. This process of fuzzing a request and



subsequently advancing one step along the use case is repeated until the test case
is exhausted. Alternatively, the process stops when the fuzzer replays the recorded
input to advance to the next page, but this page is different from the one expected.
This situation can occur when a previously recorded input is no longer valid.

When replaying input, the vulnerability scanner does not simply re-submit a
previously recorded request. Instead, it scans the page for elements that require
user input. Then, it uses the previously recorded request to provide input values
for those elements only. This is important when an application uses cookies or
hidden form fields that are associated with a particular session. Changing these
values would cause the application to treat the request as invalid. Thus, for such
elements, the scanner uses the current values instead of the “old” ones that were
previously collected. The rules used to determine the values of each form field aim
to mimic the actions of a benign user. That is, hidden fields are not changed, as
well as read-only widgets (such as submit button values or disabled elements). Of
course security vulnerabilities can also be triggered by malicious input data within
these hidden fields, but this is of no concern at this stage because the idea is to
generate benign and valid input and then apply the attack logic to these values.
Later on, during the attacking stage, the fuzzer will take care that all parameters
will be tested.

Guided fuzzing. We call the process of using previously collected traces to step
through an application guided fuzzing. Guided fuzzing improves the coverage of
a vulnerability scanner because it allows the tool to reach entry points that were
previously hidden behind forms that expect specific input values. That is, we can
increase the depth that a scanner can reach into the application.

3.2 Increasing Testing Breadth

With guided fuzzing, after each step that is replayed, the fuzzer only tests the
single request that was sent for that step. That is, for each step, only a single entry
point is analyzed. A straightforward extension to guided fuzzing is to not only test
the single entry point, but to use the current step as a starting point for fuzzing
the complete site that is reachable from this point. That is, the fuzzer can use
the current page as its starting point, attempting to find additional entry points
into the application. Each entry point that is found in this way is then tested
by sending malformed input values. In this fashion, we do not only increase the
depth of the test cases, but also their breadth. For example, when a certain test
case allows the scanner to bypass a form that performs aggressive input checking,
it can then explore the complete application space that was previously hidden
behind that form. We call this approach extended, guided fuzzing.

Extended, guided fuzzing has the potential to increase the number of entry
points that a scanner can test. However, alternating between a comprehensive
fuzzing phase and advancing one step along a recorded use case can also lead
to problems. To see this, consider the following example. Assume an e-commerce
application that uses a shopping cart to hold the items that a customer intends to
buy. The vulnerability scanner has already executed a number of steps that added
an item to the cart. At this point, the scanner encounters a page that shows the



cart’s inventory. This page contains several links; one link leads to the checkout
view, the other one is used to delete items from the cart. Executing the fuzzer on
this page can result in a situation where the shopping cart remains empty because
all items are deleted. This could cause the following steps of the use case to fail,
for example, because the application no longer provides access to the checkout
page. A similar situation can arise when administrative pages are part of a use
case. Here, running a fuzzer on a page that allows the administrator to delete all
database entries could be very problematic.

In general terms, the problem with extended, guided fuzzing is that the fuzzing
activity could interfere in undesirable ways with the use case that is replayed. In
particular, this occurs when the input sent by the fuzzer changes the state of the
application such that the remaining steps of a use case can no longer be executed.
This problem is difficult to address when we assume that the scanner has no
knowledge and control of the inner workings of the application under test. In the
following Section 3.3, we consider the case in which our test system can interact
more tightly with the analyzed program. In this case, we are able to prevent the
undesirable side effects (or interference) from the fuzzing phases.

3.3 Stateful Fuzzing

The techniques presented in the previous sections work independently of the ap-
plication under test. That is, our system builds black-box test cases based on
previously recorded user input, and it uses these tests to check the application
for vulnerabilities. In this subsection, we consider the case where the scanner has
some control over the application under test.

One solution to the problem of undesirable side effects of the fuzzing step when
replaying recorded use cases is to take a snapshot of the state of the application
after each step that is replayed. Then, the fuzzer is allowed to run. This might
result in significant changes to the application’s state. However, after each fuzzing
step, the application is restored to the previously taken snapshot. At this point,
the replay component will find the application in the expected state and can
advance one step. After that, the process is repeated - that is, a snapshot is taken
and the fuzzer is invoked. We call this process stateful fuzzing.

In principle, the concrete mechanisms to take a snapshot of an application’s
state depend on the implementation of this application. Unfortunately, this could
be different for each web application. As a result, we would have to customize our
test system to each program, making it difficult to test a large number of different
applications. Clearly, this is very undesirable. Fortunately, the situation is different
for web applications. Over the last years, the model-view-controller (MVC) scheme
has emerged as the most popular software design pattern for applications on the
web. The goal of the MVC scheme is to separate three layers that are present in
almost all web applications. These are the data layer, the presentation layer, and
the application logic layer. The data layer represents the data storage that handles
persistent objects. Typically, this layer is implemented by a backend database
and an object (relational) manager. The application logic layer uses the objects
provided by the data layer to implement the functionality of the application. It
uses the presentation layer to format the results that are returned to clients.



The presentation layer is frequently implemented by an HTML template engine.
Moreover, as part of the application logic layer, there is a component that maps
requests from clients to the corresponding functions or classes within the program.

Based on the commonalities between web applications that follow an MVC
approach, it is possible (for most such applications) to identify general interfaces
that can be instrumented to implement a snapshot mechanism. To be able to
capture the state of the application and subsequently restore it, we are interested
in the objects that are created, updated, or deleted by the object manager in
response to requests. Whenever an object is modified or deleted, a copy of this
object is serialized and saved. This way, we can, for example, undelete an object
that has been previously deleted, but that is required when a use case is replayed.
In a similar fashion, it is also possible to undo updates to an object and delete
objects that were created by the fuzzer.

The information about the modification of objects can be extracted at the
interface between the application and the data layer (often, at the database level).
At this level, we insert a component that can serialize modified objects and later
restore the snapshot of the application that was previously saved. Clearly, there
are limitations to this technique. One problem is that the state of an application
might not depend solely on the state of the persistent objects and its attributes.
Nevertheless, this technique has the potential to increase the effectiveness of the
scanner for a large set of programs that follow a MVC approach. This is also
confirmed by our experimental results presented in Section 5.

Application feedback. Given that stateful fuzzing already requires the instrumen-
tation of the program under test, we should consider what additional information
might be useful to further improve the vulnerability scanning process.

One piece of feedback from the application that we consider useful is the
mapping of URLs to functions. This mapping can be typically extracted by an-
alyzing or instrumenting the controller component, which acts as a dispatcher
from incoming requests to the appropriate handler functions. Using the mappings
between URLs and the program functions, we can increase the effectiveness of
the extended, guided fuzzing process. To this end, we attempt to find a set of
forms (or URLs) that all invoke the same function within the application. When
we have previously seen user input for one of these forms, we can reuse the same
information on other forms as well (when no user input was recorded for these
forms). The rationale is that information that was provided to a certain func-
tion through one particular form could also be valid when submitted as part of
a related form. By reusing information for forms that the fuzzer encounters, it is
possible to reach additional entry points.

When collecting user input (as discussed in Section 3.1), we record all input
values that a user provides on each page. More precisely, for each URL that is
requested, we store all the name-value pairs that a user submits with this request.
In case the scanner can obtain application feedback, we also store the name of
the program function that is invoked by the request. In other words, we record
the name of the function that the requested URL maps to. When the fuzzer later
encounters an unknown action URL of a form (i.e., the URL where the form
data is submitted to), we query the application to determine which function this



URL maps to. Then, we search our collected information to see whether the same
function was called previously by another URL. If this is the case, we examine
the name-value pairs associated with this other URL. For each of those names,
we attempt to find a form element on the current page that has a similar name.
When a similar name is found, the corresponding, stored value is supplied. As
mentioned previously, the assumption is that valid data that was passed to a
program function through one form might also be valid when used for a different
form, in another context. This can help in correctly filling out unknown forms,
possibly leading to unexplored entry points and vulnerabilities.

As an example, consider a forum application where each discussion thread
has a reply field at the bottom of the page. The action URLs that are used for
submitting a reply could be different for each thread. However, the underlying
function that is eventually called to save the reply and link it to the appropriate
thread remains the same. Thus, when we have encountered one case where a user
submitted a reply, we would recognize other reply fields for different threads as
being similar. The reason is that even though the action URLs associated with the
reply forms are different, they all map to the same program function. Moreover,
the name of the form fields are (very likely) the same. As a result, the fuzzer can
reuse the input value(s) recorded in the first case on other pages.

4 Implementation Details

We developed a vulnerability scanner that implements the techniques outlined
above. As discussed in the last section, some of the techniques require that a web
application is instrumented (i) to capture and restore objects manipulated by
the application, and (ii) to extract the mappings between URLs and functions.
Therefore, we were looking for a web development framework that supports the
model-view-controller (MVC) scheme. Among the candidates were most popular
web development frameworks, such as Ruby on Rails [7], Java Servlets [28], or
Django [8], which is based upon Python. Since we are familiar with Python, we
selected the Django framework. That is, we extended the Django framework such
that it provides the necessary functionality for the vulnerability scanner. Our
choice implies that we can currently only test web applications that are built
using Django. Note, however, that the previously introduced concepts are general
and can be ported to other development frameworks (i.e., with some additional
engineering effort, we could use our techniques to test applications based upon
other frameworks).

Capturing web requests. The first task was to extend Django such that it can
record the inputs that are sent when going through a use case. This makes it
necessary to log all incoming requests together with the corresponding parame-
ters. In Django, all incoming requests pass through two middleware classes before
reaching the actual application code. One of these classes is a URL dispatcher
class that determines the function that should be invoked. At this point, we can
log the complete request information. Also, the URL dispatcher class provides
easy access to the mapping between URLs and the functions that are invoked.



Replaying use cases. Once a use case, which consists of a series of requests, has
been collected, it can be used for replaying. To this end, we have developed a small
test case replay component based on twill [30], a testing tool for web applications.
This component analyzes a page and attempts to find the form elements that
need to be filled out, based on the previously submitted request data.

Capturing object manipulations. Our implementation uses the Django middleware
classes to attach event listeners to incoming requests. These event listeners wait
for signals that are raised every time an object is created, updated, or deleted.
The signals are handled synchronously, meaning that the execution of the code
that sent the signal is postponed until the signal handler has finished. We exploit
this fact to create copies of objects before they are saved to the backend storage,
allowing us to later restore any object to a previous state.

Fuzzer component. An important component of the vulnerability scanner is the
fuzzer. The task of the fuzzer component is to expose each entry point that it
finds to a set of malformed inputs that can expose XSS vulnerabilities. Typically,
it also features a web spider that uses a certain page as a starting point to reach
other parts of the application, checking each page that is encountered.

Because the focus of this work is not on the fuzzer component but on tech-
niques that can help to make this fuzzer more effective, we decided to use an
existing web application testing tool. The choice was made for the “Web Appli-
cation Attack and Audit Framework,” or shorter, w3af [31], mainly because the
framework itself is easy to extend and actively maintained.

5 Evaluation

For our experiments, we installed three publicly available, real-world web appli-
cations based on Django (SVN Version 6668):

– The first application was a blogging application, called Django-basic-blog [9].
We did not install any user accounts. Initially, the blog was filled with three
articles. Comments were enabled for each article, and no other links were
present on the page. That is, the comments were the only interactive compo-
nent of the site.

– The second application was a forum software, called Django-Forum [23]. To
provide all fuzzers with a chance to explore more of the application, every
access was performed as coming from a privileged user account. Thus, each
scanner was making requests as a user that could create new threads and post
replies. Initially, a simple forum structure was created that consisted of three
forums.

– The third application was a web shop, the Satchmo online shop 0.6 [24].
This site was larger than the previous two applications, and, therefore, more
challenging to test. The online shop was populated with the test data included
in the package, and one user account was created.



We selected these three programs because they represent common archetypes of
applications on the Internet. For our experiments, we used Apache 2.2.4 (with pre-
forked worker threads) and mod python 3.3.1. Note that before a new scanner was
tested on a site, the application was restored to its initial state.

5.1 Test Methodology

We tested each of the three aforementioned web applications with three existing
web vulnerability scanners, as well as with our own tool. The scanners that we
used were Burp Spider 1.21 [5], w3af spider [31], and Acunetix Web Vulnerability
Scanner 5.1 (Free Edition) [1]. Each scanner is implemented as a web spider that
can follow links on web pages. All scanners also have support for filling out forms
and, with the exception of the Burp Suite Spider, a fuzzer component to check for
XSS vulnerabilities. For each page that is found to contain an XSS vulnerability,
a warning is issued. In addition to the three vulnerability scanners and our tool,
we also included a very simple web spider into the tests. This self-written spider
follows all links on a page. It repeats this process recursively for all pages that
are found, until all available URLs are exhausted. This web spider serves as the
lower bound on the number of pages that should be found and analyzed by each
vulnerability scanner.

We used the default configuration for all tools. One exception was that we
enabled the form filling option for the Burp Spider. Moreover, for the Acunetix
scanner, we activated the “extensive scan feature,” which optimizes the scan for
mod python applications and checks for stored XSS.

When testing our own tool, we first recorded a simple use case for each of the
three applications. The use cases included posting a comment for the blog, creating
a new thread and a post on the forum site, and purchasing an item in the online
store. Then, we executed our system in one of three modes. First, guided fuzzing
was used. In the second run, we used extended, guided fuzzing (together with
application feedback). Finally, we scanned the program using stateful fuzzing.

There are different ways to assess the effectiveness or coverage of a web vul-
nerability scanner. One metric is clearly the number of vulnerabilities that are
reported. Unfortunately, this number could be misleading because a single pro-
gram bug might manifest itself on many pages. For example, a scanner might find
a bug in a form that is reused on several pages. In this case, there is only a single
vulnerability, although the number of warnings could be significantly larger. Thus,
the number of unique bugs, or vulnerable injection points, is more representative
than the number of warnings.

Another way to assess coverage is to count the number of locations that a
scanner visits. A location represents a unique, distinct page (or, more precisely, a
distinct URL). Of course, visiting more locations potentially allows a scanner to
test more of the application’s functionality. Assume that, for a certain application,
Scanner A is able to explore significantly more locations than Scanner B. However,
because Scanner A misses one location with a vulnerability that Scanner B visits,
it reports fewer vulnerable injection points. In this case, we might still conclude
that Scanner A is better, because it achieves a larger coverage. Unfortunately,
this number can also be misleading, because different locations could result from



different URLs that represent the same, underlying page (e.g., the different pages
on a forum, or different threads on a blog).

Finally, for the detection of vulnerabilities that require the scanner to store
malicious input into the database (such as stored XSS vulnerabilities), it is more
important to create many different database objects than to visit many locations.
Thus, we also consider the number and diversity of different (database) objects
that each scanner creates while testing an application.

Even though we only tested for XSS vulnerabilities, many other attacks can
be performed against web applications. XSS is a very common and well under-
stood vulnerability and, therefore, we selected this type of attack for our testing.
However, the techniques presented in this paper apply to other injection attacks
as well (for example, SQL injection and directory traversal attacks).

5.2 Experimental Results

In this section, we present and discuss the results that the different scanners
achieve when analyzing the three test applications. For each application, we
present the number of locations that the scanner has visited, the number of re-
ported vulnerabilities, the number of injection points (unique bugs) that these
reports map to, and the number of relevant database objects that were created.

Locations POST/GET Comments XSS Warnings Injection Points
Requests Reflected Stored Reflected Stored

Spider 4 4 - - - - -
Burp Spider 8 25 0 - - - -
w3af 9 133 0 0 0 0 0
Acunetix 9 22 0 0 0 0 0

Use Case 4 4 1 - - - -
Guided Fuzzing 4 64 12 0 1 0 1
Extended Fuzz. 6 189 12 0 1 0 1
Stateful Fuzz. 6 189 12 0 1 0 1

Table 1. Scanner effectiveness for blog application.

Blogging application. Table 1 shows the results for the simple blog application.
Compared to the simple spider, one can see that all other tools have reached more
locations. This is because all spiders (except the simple one) requested the root
of each identified directory. When available, these root directories can provide
additional links to pages that might not be reachable from the initial page. As
expected, it can be seen that extended, guided fuzzing reaches more locations than
guided fuzzing alone, since it attempts to explore the application in breadth.
Moreover, there is no difference between the results for the extended, guided
fuzzing and the stateful fuzzing approach. The reason is that, for this application,
invoking the fuzzer does not interfere with the correct replay of the use case.

None of the three existing scanners was able to create a valid comment on
the blogging system. This was because the posting process is not straightforward:
Once a comment is submitted, the blog displays a form with a preview button.



This allows a user to either change the content of the comment or to post it.
The problem is that the submit button (to actually post the message) is not part
of the page until the server-side validation recognizes the submitted data as a
valid comment. To this end, both comment fields (name and comment) need to
be present. Here, the advantage of guided fuzzing is clear. Because our system
relies on a previously recorded test case, the fuzzer can correctly fill out the
form and post a comment. This is beneficial, because it is possible to include
malicious JavaScript into a comment and expose the stored XSS vulnerability
that is missed by the other scanners. Concerning the number of injection points,
which are higher for some tested scanners, it has to be noted that this is caused
by the way in which some scanners attempt to find new attack points. When
discovering a new URL, these scanners also issue requests for all subdirectories of
the injection point. Depending on the application, this might lead to the discovery
of new pages (injection points), redirects, or page-not-found errors. As our fuzzer
focuses on following use cases, we did not implement this heuristics for our scanner
(of course, it could be easily added).

Locations POST/GET Threads Replies XSS Warnings Inject. Points
Requests Created Created Reflect Stored Reflect Stored

Spider 8 8 - - - - - -
Burp Spider 8 32 0 0 - - - -
w3af 14 201 29 0 0 3 0 1
Acunetix 263 2,003 687 1,486 63 63 0 1

Use Case 6 7 1 2 - - - -
Guided Fuzzing 16 48 12 22 0 1 0 1
Extended Fuzz. 85 555 36 184 0 3 0 1
Stateful Fuzz. 85 555 36 184 0 3 0 1

Table 2. Scanner effectiveness for the forum application.

Forum application. For the forum application, the scanners were able to generate
some content, both in the form of new discussion threads and replies. Table 2
shows that while Burp Spider [5] and w3af [31] were able to create new discussion
threads, only the Acunetix scanner managed to post replies as well. w3af correctly
identified the form’s action URL to post a reply, but failed to generate valid input
data that would have resulted in the reply being stored in the database. However,
since the vulnerability is caused by a bug in the routine that validates the thread
title, posting replies is not necessary to identify the flaw in this program.

Both the number of executed requests and the number of reported vulner-
abilities differ significantly between the vulnerability scanners tested. It can be
seen that the Acunetix scanner has a large database of malformed inputs, which
manifests both in the number of requests sent and the number of vulnerabilities
reported. For each of the three forum threads, which contain a link to the unique,
vulnerable entry point, Acunetix sent 21 fuzzed requests. Moreover, the Acunetix



scanner reports each detected vulnerability twice. That is, each XSS vulnerability
is reported once as reflected and once as stored XSS. As a result, the scanner
generated 126 warnings for a single bug. w3af, in comparison, keeps an internal
knowledge base of vulnerabilities that it discovers. Therefore, it reports each vul-
nerability only once (and the occurrence of a stored attack replaces a previously
found, reflected vulnerability).

The results show that all our techniques were able to find the vulnerability
that is present in the forum application. Similar to the Acunetix scanner (but
unlike w3af), they were able to create new threads and post replies. Again, the
extended, guided fuzzing was able to visit more locations than the guided fuzzing
alone (it can be seen that the extended fuzzing checked all three forum threads
that were present initially, while the guided fuzzing only analyzed the single forum
thread that was part of the recorded use case). Moreover, the fuzzing phase was
not interfering with the replay of the use cases. Therefore, the stateful fuzzing
approach did not yield any additional benefits.

Locations POST/GET XSS Warnings Injection Points
Requests Reflected Stored Reflected Stored

Spider 18 18 - - - -
Burp Spider 22 52 - - - -
w3af 21 829 1 0 1 0
Acunetix #1 22 1,405 16 0 1 0
Acunetix #2 25 2,564 8 0 1 0

Use Case 22 36 - - - -
Guided Fuzzing 22 366 1 8 1 8
Extended Fuzz. 25 1,432 1 0 1 0
Stateful Fuzz. 32 2,078 1 8 1 8

Table 3. Scanner effectiveness for the online shopping application.

Online shopping application. The experimental results for the online shopping
application are presented in Tables 3 and 4. Table 3 presents the scanner effec-
tiveness based on the number of locations that are visited and the number of
vulnerabilities that are detected, while Table 4 compares the number of database
objects that were created by both the Acunetix scanner and our approaches. Note
that the Acunetix scanner offers a feature that allows the tool to make use of login
credentials and to block the logout links. For this experiment, we made two test
runs with the Acunetix scanner: The first run (#1) as anonymous user and the
second test run (#2) by enabling this feature.

Both w3af and Acunetix identified a reflected XSS vulnerability in the login
form. However, neither of the two scanners was able to reach deep into the appli-
cation. As a result, both tools failed to reach and correctly fill out the form that
allows to change the contact information of a user. This form contained eight
stored XSS vulnerabilities, since none of the entered input was checked by the



application for malicious values. However, the server checked the phone number
and email address for their validity and would reject the complete form whenever
one of the two values was incorrect.

Object Acunetix Acunetix Use Case Guided Extended Stateful
Class #1 #2 Fuzzing Fuzzing Fuzzing

OrderItem - - 1 1 - 2
AddressBook - - 2 2 - 7
PhoneNumber - - 1 3 - 5
Contact 1 - 1 1 1 2
CreditCardDetail - - 1 1 - 2
OrderStatus - - 1 1 - 1
OrderPayment - - 1 1 - 2
Order - - 1 1 - 2
Cart 2 1 1 1 3 3
CartItem 2 1 1 1 5 5
Comment - - 1 21 11 96
User 1 - 1 1 1 1

Table 4. Object creation statistics for the online shopping application.

In contrast to the existing tools, guided fuzzing was able to analyze a large
part of the application, including the login form and the user data form. Thus,
this approach reported a total of nine vulnerable entry points. In this experiment,
we can also observe the advantages of stateful fuzzing. With extended, guided
fuzzing, the fuzzing step interferes with the proper replay of the use case (because
the fuzzer logs itself out and deletes all items from the shopping cart). The stateful
fuzzer, on the other hand, allows to explore a broad range of entry points, and,
using the snapshot mechanism, keeps the ability to replay the test case. The
number of database objects created by the different approaches (as shown in
Table 4) also confirms the ability of our techniques to create a large variety of
different, valid objects, a result of analyzing large portions of the application.

Discussion. All vulnerabilities that we found in our experiments were previously
unknown, and we reported them to the developers of the web applications. Our
results show that our fuzzing techniques consistently find more (or, at least, the
same amount) of bugs than other open-source and commercial scanners. Moreover,
it can be seen that the different approaches carry out meaningful interactions
with the web applications, visiting many locations and creating a large variety of
database objects. Finally, the different techniques exhibit different strengths. For
example, stateful fuzzing becomes useful especially when the tested application is
more complex and sensitive to the fuzzing steps.

6 Related Work

Concepts such as vulnerability testing, test case generation, and fuzzing are well-
known concepts in software engineering and vulnerability analysis [3, 4, 11]. When



analyzing web applications for vulnerabilities, black-box fuzzing tools [1, 5, 31] are
most popular. However, as shown by our experiments, they suffer from the prob-
lem of test coverage. Especially for applications that require complex interactions
or expect specific input values to proceed, black-box tools often fail to fill out
forms properly. As a result, they can scan only a small portion of the application.
This is also true for SecuBat [16], a web vulnerability scanner that we developed
previously. SecuBat can detect reflected XSS and SQL injection vulnerabilities.
However, it cannot fill out forms and, thus, was not included in our experiments.

In addition to web-specific scanners, there exist a large body of more gen-
eral vulnerability detection and security assessment tools. Most of these tools
(e.g., Nikto [19], Nessus [29]) rely on a repository of known vulnerabilities that
are tested. Our tool, in contrast, aims to discover unknown vulnerabilities in the
application under analysis. Besides application-level vulnerability scanners, there
are also tools that work at the network level, e.g., nmap [14]. These tools can
determine the availability of hosts and accessible services. However, they are not
concerned with higher-level vulnerability analysis. Other well-known web vulner-
ability detection and mitigation approaches in literature are Scott and Sharp’s
application-level firewall [25] and Huang et al.’s [13] vulnerability detection tool
that automatically executes SQL injection attacks. Moreover, there are a large
number of static source code analysis tools [15, 27, 32] that aim to identify vul-
nerabilities.

A field that is closely related to our work is automated test case generation.
The methods used to generate test cases can be generally summarized as ran-
dom, specification-based [20, 22], and model-based [21] approaches. Fuzzing falls
into the category of random test case generation. By introducing use cases and
guided fuzzing, we improve the effectiveness of random tests by providing some
inputs that are likely valid and thus, allow the scanner to reach “deeper” into the
application.

A well-known application testing tool, called WinRunner, allows a human
tester to record user actions (e.g., input, mouse clicks, etc.) and then to replay
these actions while testing. This could be seen similar to guided fuzzing, where
inputs are recorded based on observing real user interaction. However, the testing
with WinRunner is not fully-automated. The developer needs to write scripts and
create check points to compare the expected and actual outcomes from the test
runs. By adding automated, random fuzzing to a guided execution approach, we
combine the advantages provided by a tool such as WinRunner with black-box
fuzzers. Moreover, we provide techniques to generalize from a recorded use case.

Finally, a number of approaches [6, 12, 18] were presented in the past that
aim to explore the alternative execution paths of an application to increase the
analysis and test coverage of dynamic techniques. The work we present in this
paper is analogous in the sense that the techniques aim to identify more code to
test. The difference is the way in which the different approaches are realized, as
well as their corresponding properties. When exploring multiple execution paths,
the system has to track constraints over inputs, which are solved at branching
points to determine alternative paths. Our system, instead, leverages known, valid
input to directly reach a large part of an application. Then, a black-box fuzzer



is started to find vulnerabilities. This provides better scalability, allowing us to
quickly examine large parts of the application and expose it to black-box tests.

7 Conclusions

In this paper, we presented a web application testing tool to detect reflected and
stored cross-site scripting (XSS) vulnerabilities in web applications. The core of
our system is a black-box vulnerability scanner. Unfortunately, black-box testing
tools often fail to test a substantial fraction of a web application’s logic, espe-
cially when this logic is invoked from pages that can only be reached after filling
out complex forms that aggressively check the correctness of the provided val-
ues. To allow our scanner to reach “deeper” into the application, we introduce
a number of techniques to create more comprehensive test cases. One technique,
called guided fuzzing, leverages previously recorded user input to fill out forms
with values that are likely valid. This technique can be further extended by using
each step in the replay process as a starting point for the fuzzer to explore a
program more comprehensively. When feedback from the application is available,
we can reuse the recorded user input for different forms during this process. Fi-
nally, we introduce stateful fuzzing as a way to mitigate potentially undesirable
side-effects of the fuzzing step that could interfere with the replay of use cases
during extended, guided fuzzing. We have implemented our use-case-driven test-
ing techniques and analyzed three real-world web applications. Our experimental
results demonstrate that our approach is able to identify more bugs than several
open-source and commercial web vulnerability scanners.

Acknowledgments

This work has been supported by the Austrian Science Foundation (FWF) under
grant P-18764, the FIT-IT project SECoverer (Detection of Application Logic
Errors in Web Applications), and the Secure Business Austria Competence Center.

References

[1] Acunetix. Acunetix Web Vulnerability Scanner. http://www.acunetix.com/, 2008.
[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanov, E. Kirda, C. Kruegel, and

G. Vigna. Saner: Composing Static and Dynamic Analysis to Validate Sanitization
in Web Applications. In IEEE Security and Privacy Symposium, 2008.

[3] B. Beizer. Software System Testing and Quality Assurance. Van Nostrand Reinhold,
1984.

[4] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990.
[5] Burp Spider. Web Application Security. http://portswigger.net/spider/, 2008.
[6] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: Automatically

Generating Inputs of Death. In ACM Conference on Computer and Communication
Security, 2006.

[7] David Hannson. Ruby on Rails. http://www.rubyonrails.org/, 2008.
[8] Django. The Web Framework for Professionals with Deadlines. http://www.

djangoproject.com/, 2008.



[9] Basic Django Blog Application. http://code.google.com/p/

django-basic-blog/.
[10] D. Endler. The Evolution of Cross Site Scripting Attacks. Technical report, iDE-

FENSE Labs, 2002.
[11] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.

Prentice-Hall International, 1994.
[12] P. Godefroid, N. Klarlund, and K. Sen. DART. In Programming Language Design

and Implementation (PLDI), 2005.
[13] Y. Huang, S. Huang, and T. Lin. Web Application Security Assessment by Fault

Injection and Behavior Monitoring. 12th World Wide Web Conference, 2003.
[14] Insecure.org. NMap Network Scanner. http://www.insecure.org/nmap/, 2008.
[15] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for Detecting

Web Application Vulnerabilities (Short Paper). In IEEE Symposium on Security
and Privacy, 2006.

[16] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBat: A Web Vulnerability
Scanner. In World Wide Web Conference, 2006.

[17] Mitre. Common Vulnerabilities and Exposures. http://cve.mitre.org/.
[18] A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple Execution Paths for

Malware Analysis. In IEEE Symposium on Security and Privacy, 2007.
[19] Nikto. Web Server Scanner. http://www.cirt.net/code/nikto.shtml, 2008.
[20] J. Offutt and A. Abdurazik. Generating Tests from UML Specifications. Second

International Conference on the Unified Modeling Language, 1999.
[21] J. Offutt and A. Abdurazik. Using UML Collaboration Diagrams for Static Check-

ing and Test Generation. Third International Conference on UML, 2000.
[22] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. Generating Test Data from State-

based Specifications. Journal of Software Testing, Verification and Reliability, 2003.
[23] R. Poulton. Django Forum Component. http://code.google.com/p/

django-forum/.
[24] Satchmo. http://www.satchmoproject.com/.
[25] D. Scott and R. Sharp. Abstracting Application-level Web Security. 11th World

Wide Web Conference, 2002.
[26] WhiteHat Security. Web Application Security 101 . http://www.whitehatsec.

com/articles/webappsec101.pdf, 2005.
[27] Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web

Applications. In Symposium on Principles of Programming Languages, 2006.
[28] Sun. Java Servlets. http://java.sun.com/products/servlet/, 2008.
[29] Tenable Network Security. Nessus Open Source Vulnerability Scanner Project.

http://www.nessus.org/, 2008.
[30] Twill. Twill: A Simple Scripting Language for Web Browsing. http://twill.

idyll.org/, 2008.
[31] Web Application Attack and Audit Framework. http://w3af.sourceforge.net/.
[32] Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in Scripting

Languages. In 15th USENIX Security Symposium, 2006.


