
Dirty Clicks: A Study of the Usability and Security
Implications of Click-related Behaviors on the Web

Iskander Sanchez-Rola
University of Deusto

NortonLifeLock Research Group

Davide Balzarotti
EURECOM

Christopher Kruegel
UC Santa Barbara

Giovanni Vigna
UC Santa Barbara

Igor Santos
University of Deusto

ABSTRACT
Web pages have evolved into very complex dynamic applications,
which are often very opaque and di�cult for non-experts to un-
derstand. At the same time, security researchers push for more
transparent web applications, which can help users in taking impor-
tant security-related decisions about which information to disclose,
which link to visit, and which online service to trust.

In this paper, we look at one of the simplest but also most repre-
sentative aspect that captures the struggle between these opposite
demands: a mouse click. In particular, we present the �rst com-
prehensive study of the possible security and privacy implications
that clicks can have from a user perspective, analyzing the discon-
nect that exists between what is shown to users and what actually
happens after. We started by identifying and classifying possible
problems. We then implemented a crawler that performed nearly
2.5M clicks looking for signs of misbehavior. We analyzed all the
interactions created as a result of those clicks, and discovered that
the vast majority of domains are putting users at risk by either
obscuring the real target of links or by not providing su�cient
information for users to make an informed decision. We conclude
the paper by proposing a set of countermeasures.

CCS CONCEPTS
• Security and privacy! Browser security.

KEYWORDS
browser click; web security; usability
ACM Reference Format:
Iskander Sanchez-Rola, Davide Balzarotti, Christopher Kruegel, Giovanni
Vigna, and Igor Santos. 2020. Dirty Clicks: A Study of the Usability and
Security Implications of Click-related Behaviors on the Web. In Proceedings
of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3366423.3380124

1 INTRODUCTION
Despite its current complexity, the World Wide Web is still, at its
core, an interconnected network of hypertextual content. Over the
years, static pages have been largely replaced by dynamic, stateful,

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380124

web applications. However, links and other clickable elements still
play a fundamental role in driving the interaction with users: it is
by clicking on links that most users navigate from one website to
another, and it is by clicking on menus, buttons, and other elements
of the DOM that they interact with a page and trigger functions.

Unfortunately, browsing the web also introduces important se-
curity risks. In fact, it is through malicious and compromised web
pages that many computers are infected with malware, and cre-
dentials and other personal information are regularly stolen from
millions of users [23, 42]. On top of these criminal activities, on-
line tracking, as performed by advertisement companies and other
large corporations, is one of the main privacy concerns for our
society [13, 50]. This translates into the fact that users need to
be extremely careful when visiting webpages. For instance, it is
very common to warn users not to click on suspicious links, and to
always verify the di�erent indicators provided by their browsers
to alert about potentially dangerous targets. In 2015 Egelman and
Peer [12] compiled a list of the most common computer security
advises, and used this information to derive a Security Behavior
Intentions Scale (SeBIS). One of the 16 �nal questions selected by
the authors to assess the users’ security behavior is “When browsing
websites, I frequently mouseover links to see where they go, before
clicking them”. In particular, this factor is one of the only �ve se-
lected to measure whether users are able to identify environmental
security cues. Moreover, in a later user study by Zhang-Kennedy et
al. [70] the authors found that more than half of their participants
always/often check the links’ URL before clicking on them. Even
though this same security tip has been repeated countless times, no
one to date measured to which extent this is possible – as bad web
design practices can make this step impossible for users to perform.

In this paper, we look closely at this problem, and we measure
how widespread are these bad practices, and whether they are
becoming the norm rather than the exception. Most of the work
performed to date on clicking behavior has focused on the server
side, i.e., on how an application can identify if a click was actually
made by a real user, and not by an automated machine or a script
(the so-called “click fraud”) [32, 41]. This is an important problem,
especially in the context of the advertising pay-per-click (PPC)
pricing model, but it is only a piece of a much larger picture. To
�ll this gap, our study looks at the click ecosystem from the user
perspective, with a focus on the di�erent security and privacy
threats to which a user may be exposed.

We present an extensive analysis that sheds light on the most
common click-related techniques used (intentionally or not) by web

395

developers. Despite the fact that one may expect bad practices to be
more common in dubious web sites (such as those associated with
free streaming [43] or porn [64]), our experiments show that their
adoption is nearly identical in highly accessed webpages listed in
Alexa [1]. Around 80% of the domains we tested adopt some form
of misleading technique that would prevent users from making
informed decisions on whether they want or not to click on a given
link. Moreover, around 70% of the domains exposed users to unex-
pected man-in-the-middle threats, 20% of which were completely
undetectable by a user even after the click was performed. Even
worse, 10-to-20% of the time a link pointing to a low-risk website
resulted in a visit to a site categorized as highly dangerous.

2 TOWARDS A CLICK “CONTRACT”
Today, there are no direct guidelines that completely de�ne what
is the acceptable behavior when a user clicks on an element of
a web page. However, there are a number of important assump-
tions, which users and web developers often take for granted, that
characterize such expected behavior. In order to formalize a click
contract, we propose a number of rules that are based on previous
web recommendations/standards and user experience handbooks.

Based on its de�nition [67], “the href attribute in each source
anchor speci�es the address of the destination anchor with a URI”.
Therefore, websites should follow theWorldWideWeb Consortium
(W3C) description, and use href to indicate the destination of the
link. The Same-document References [65] then describes the case
in which the URI reference is empty, and states that “the target of
that reference is de�ned to be within the same entity”. Additionally,
elements are identi�able as clickable [34] “Used, e.g., when hovering
over links. Typically an image of a hand”, so if a retrieval actions is
performed after clicking some element not marked as clickable [20,
66], they would be not using the de�ned method for it.

When designing and browsing websites, it is essential that they
follow general user experience guidelines in order to make them us-
able and secure. In the speci�c case of clicks, we want to empathize
the concept of dependability [54, 55], which indicates “Does the user
feel in control of the interaction? Can he or she predict the system’s
behavior?”. More concretely, recent user-driven studies using this
methodology [25, 30] de�ne it as cases in which a link “redirects the
page to the right place and website and not redirecting to other web-
sites”. Based on this concept, secure channels could be ambiguous
for users based on current indicators (e.g., green padlock) [36], they
describe cases in which “the connection has not been intercepted”,
and therefore should not be used when an intermediate website
in a chain of redirections is unencrypted. We also extended this
concept to consider user tracking and third-party trust, as users
want to be aware of unexpected situations of this nature [31, 63],
and even current regulations are pushing in that direction[14, 24].

We can summarize these points, which form what we call the
click contract, around two main concepts: What You See Is What
You Get (WYSIWYG), and Trust in the Endpoints. It is important to
indicate, that according to our de�nition, we do not consider back-
ground third-party content/requests (e.g., AJAX communications)
a bad practice, as it is the base for many client/server interactions,
and does not play a role in deceiving the user. We formalize our
click contract in the following:

What You See Is What You Get:
(1) When a user clicks on a link whose target URL is displayed

by the browser at the bottom of the screen, she expects
to navigate to that same destination. In case redirections
happen afterwards as a consequence of the click, the user
expects to remain within the same domain of the displayed
URL, or the website she is on at the moment of clicking.

(2) If an object is clickable, but the browser does not show any
domain at the bottom of the webpage, a user expects the
click to generate some action within the current website and
not to navigate to a di�erent domain.

(3) The user does not expect any external navigation to take
place when she clicks on a non-clickable element of the page
(such as a simple text paragraph).

(4) When the user clicks an HTTPS link, she expects that the
communication towards the target URL will be encrypted.

Trust in the Endpoints:
(5) If a user on a website A clicks on a link to a domain B, she

does not expect any other domain, apart from A and B (or
those included by them), to execute code in her browser.

(6) If cookies are created in the process that follows a click, the
user only expects cookies from the domain she clicked, or
from any of the third party domains included by it.

(7) If a new tab is opened by the browser after the user clicks
on a link, the new tab should not be able to interact with the
other tabs already open in the browser.

In the rest of the paper, we present a comprehensive measure-
ment of how widespread are violations of these seven points in
the Web. We will also identify and discuss potential security and
privacy threats to which a user may be exposed due to the poor
usability of websites that do not follow these practices.

3 REAL-WORLD EXAMPLES
In this section, we present two real examples of websites that su�er
from some of the bad practices related to the click contract. These
cases can help to better understand what website owners are doing,
and what the potential consequences for the end users are. These
examples were automatically discovered during our experiments,
as we will describe in more details in Section 4.

The �rst case we want to discuss is the website of a prestigious
university, that contains a page with a form to join the mailing list
of one of its organizations. When a user clicks the submit button
(which has no href), the page redirects to a di�erent website owned
by a company related to tracking services, and then this new web-
site redirects back (thought JavaScript) to the original page. This
�nal page is exactly the same as the one the user clicked, but with
a “thank you” message on the top. The expected behavior in this
case would have been that clicking on the submit button generated
a POST request, and that a JavaScript listener was used to write
the acknowledgment message. Instead, the user is redirected to an
external company that executes JavaScript code without any con-
trol from the original website. We checked what this intermediate
website did, and it created a long lasting identi�er that would be
accessible as a third-party cookie. Even if the user tried to avoid

396

unexpected identi�ers choosing “Only Accept third-party cookies:
From visited” in the browser [35], the identi�er created in this case
would still be accessible, as the user actually visited the website
(even if she was unaware of the hidden redirection).

The second example is from a website o�ering betting discounts
and tips. When the user clicks on a discount (with an href pointing
to a subdomain of the website), she is redirected �rst to that URL,
then to a subdomain of an external betting company, and �nally
to the promotional discount on the website of that same company.
Both the second and third redirections are deceiving, as they result
in the user visiting other third-party sites without her consent. But
the main problem is in the second redirection. In fact, while the
original href is HTTPS and the �nal website is also served over
HTTPS, the intermediate subdomain access occurs over HTTP.
Even worse, the intermediate connection is completely invisible
for the user and therefore it is very di�cult to detect this middle
insecure transition. As the original website, the link clicked by the
user, and the �nal destination use HTTPS connections, a visitor
may erroneously believe that the entire chain was secure as well.
Instead, the user is subject to a possible man-in-the-middle attack
due to that intermediate HTTP connection. Moreover, she is also
subject to a possible eavesdropper that can read all information
sent on plain text. While analyzing this example for our case study,
we realized that the user can even have her credit card indirectly
compromised. In fact, the betting company does not create its lo-
gin cookies with the secure attribute, and since the intermediate
subdomain is HTTP, all those cookies are sent unencrypted. There-
fore, a malicious actor could later reuse these cookies to access
the account, which is linked to a credit card, and possibly use it to
withdraw money from it.

4 DATA COLLECTION
To capture a view of the global click ecosystem, we gathered a dataset
that includes top ranked domains (according to the Alexa domains
list [1]) as well as domains belonging to more dubious categories,
such as those o�ering the download or streaming of illegal content,
or those serving adult and pornographic material. Our hypothesis
is that popular websites would be less deceptive with their click-
related behavior, while websites associated to one of those gray
categories, can be more unpredictable and would tend to introduce
more risks for the end users. For example, previous studies that ana-
lyzed the security of free streaming webpages [43] observed various
situations where multiple overlays were used, superimposed on
each other in the website, in order to generate unintentional clicks
for certain links. Another recent study published in 2016 [64] found
that many pornographic websites were redirecting users through
JavaScript instead of using href, making it di�cult to infer the
�nal destination of the link by looking at its URL. Because of these
preliminary �ndings, we conducted experiments to verify whether
these poor practices are more prevalent in these classes of websites
with respect to the rest of the Web.

4.1 Domains Selection
We started by populating our gray list performing a number of dif-
ferent queries, focusing on illegal content (either video streaming

of software download) and pornographic pages, and using the auto-
complete feature o�ered by search engines (e.g., “game of thrones
season 7 free download”). In particular, we performed �ve di�erent
queries for each of the following eight categories: series, movies,
music, games, software, TV, sport events, and adult content. To in-
crease the coverage of our domain retrieval phase, we executed each
query in four di�erent search engines (Google, Bing, DuckDuckGO,
and Yandex) and we stored the �rst 100 links returned.

Moreover, to avoid incurring into very popular websites, we
�ltered this preliminary list of collected domains by removing those
that also belonged to the Alexa Top 1k category, and we performed
a manual sanity-check to verify that the resulting domains indeed
belonged to the categories depicted above. This resulted into a gray
dataset containing 6,075 unique domains.

We then randomly selected the same number of domains from
the Alexa’s Top 10k, Top 100k and Top 1M lists (2,025 each). By com-
bining both the Alexa domains and the gray domains, we obtained
a �nal dataset of 12,150 unique domains for our experiments.

4.2 Analysis Tool
We implemented our click analysis tool using a custom crawler
based on the well-known web browser Chrome. The crawler re-
ceives as input the main URL of a website, loads the corresponding
page, and then recursively visits three randomly selected pages up
to a distance of three clicks from the home URL. This results in
the analysis of 13 pages per website, mimicking a con�guration
previously used by other researchers in similar studies [49].

It is important to remark that we consider to be “clickable” all
elements that have the cursor property set to pointer. As de�ned
by Mozilla [34]: “The element can be interacted with by clicking on
it”. Some elements have it by default, such as anchor links with
href, others need to have it explicitly indicated, or inherit it from
their parent element. While it is possible for elements to react
to a click even without setting a di�erent cursor, this is per-se
already a deceiving behavior. In fact, a user may decide to click on
some text to select it, and she would not expect this to trigger her
browser to navigate to another page. Therefore, we considered this
phenomenon in Section 5, where we measure how many websites
adopt this technique to capture unintended user clicks.

On each visited page, our crawler performed 21 di�erent clicks.
The �rst is executed over a randomly selected seemingly non-
clickable element, with the goal of identifying websites that contain
an invisible layer that intercept the user’s clicks. To avoid the im-
pact of such invisible layers in the rest of the tests, polluting the
click analysis, we maintained the same session between every con-
secutive click on the same page.

The tool then dynamically computes the appearance of all click-
able objects according to styles de�ned both in the CSS stylesheets
and in the style tags embedded within the HTML. It then uses this
information to rank each link according to its computed visualiza-
tion size and performs one click on each of the ten largest elements.
Finally, it concludes the analysis by randomly clicking on ten other
clickable objects. In total, this process results in up to 273 clicks
for each website (21 per page). In order to avoid mis-classifying
websites according to their advertisements, or incurring in a possi-
ble click fraud, we instructed our crawler not to click on elements

397

directly linked to advertisement companies, as indicated by the list
used by Mozilla Firefox [38].

The crawler captures and records on a separate log �le the entire
behavior both during and after a click is performed. This informa-
tion is retrieved by using the Chrome debugging protocol, which
allows developers to instrument the browser [8]. To evade the detec-
tion of our automated browsing, we implemented the most recent
methods discussed in similar studies [11, 52, 53]. Our instrumen-
tation is divided in multiple groups (e.g., DOM and Network) that
support di�erent commands and events. Following this procedure,
our tool is able to performmouse click events natively, and precisely
detect all the possible situations it can create. For instance, we can
detect when a new tab is created through the targetCreated event
or retrieve created coookies using the getCookies function.

There is a clear trade-o� between the accuracy of the results
and the scalability of the measurement process. As a result, it is
possible that some of the websites for which we did not discover
any anomalous behavior were actually performing them, but only
on a small subset of their links. We will discuss in more details the
coverage of our measurement in Section 6 and the consequences
for the precision of our results in Section 8.

4.3 General Stats
Our crawler performed a total of 2,331,239 distinct clicks in 117,826
pages belonging to 10,903 di�erent web sites – 5,455 of which
belonged to the Alexa top-ranked domains and 5,448 of which be-
longed to the gray domains, showing a balanced dataset between
the two main categories. 1,247 web sites could not be analyzed
because they were o�ine, replying with empty document, or with-
out any clickable element. Since not every domain has 13 di�erent
pages with at least 21 clickable elements each, the �nal number of
clicks is slightly smaller than the result obtained by multiplying the
individual factors. Additionally, as some advertisements may not
include a domain in the href in order to hide their nature, we used
the corresponding accesses generated after the click to detect these
cases. We removed a total of 42,663 clicks following this process.
We believe our dataset is su�cient for this speci�c analysis, in
particular given the widespread adoption of the threats.

It is interesting to observe that, on average, for each website
our analysis covered 28.32% of all clickable elements. From all the
clicked objects, 72.33% had an href attribute that displayed to the
user a target URL location associated to the element. The remaining
27.07% did not indicate this information, suggesting that the target
resided in the same domain of the currently accessed webpage.
Interestingly, only 42.19% of the links with an href and 45.39% of
those without used the secure transfer protocol (HTTPS).

5 FINDINGS
There are many security and privacy implications involved when
a user clicks on an element in a webpage. In this paper, we focus
on a particular aspect of those risks, namely the fact that the user
has enough information to take an informed decision on whether
or not she wants to proceed with her action. For instance, if a user
clicks a link with a href attribute pointing to an HTTP webpage
as destination, she consciously accepts the risk of receiving data
in the clear over the network. However, things are di�erent when

Figure 1: Percentage of domains misleading users.

Table 1: Occurrences of webpages misleading users.

Type Total Targeting
Occurrences Di�erent Domains

Invisible Layer 19,696 54.33%
Fake href attributes 138,860 31.14%
Fake local clicks 123,959 100.00%

TOTAL 282,515 63.00%

the same user clicks on a link with a href attribute pointing to
an HTTPS URL but the web application decides instead to issue
the request over the HTTP protocol. The �nal result remains the
same (in term of communication over a cleartext channel), but
in the second scenario the user had no information to take an
informed decision, and was deceived into believing her data would
be transmitted over a secure channel.

In this section, we present threats that the users could not pre-
dict before clicking, as they are much more dangerous and di�cult
to detect even for experienced users with a security background,
due to the lack of information required to perform any preventive
actions. All the results shown in this section are calculated from
aggregated data from both datasets used in this work. After per-
forming various statistical tests, we found that both datasets share
the same properties regarding click implication occurrences. We
will explain and discuss these statistical tests in Section 6.

While the issues discussed in this paper can lead to actual security
risks, as we will discuss in more details in Section 7, it is important
to remark that our goal is mainly to measure the disconnect that
exists between the information that links present to the users and
the actions associated to their clicks. This di�erence completely
undermines one of the most common and repeated security advice:
to look at the URL before clicking on a link [12, 61, 70].

5.1 Misleading Targets
One of the most important aspects for the user when performing
any type of click in a webpage, is trust. Trust implies that when the
webpage explicitly mentions the target URL, this is indeed where
the browser will navigate to [66, 67]. Even though many users take
this trust for granted, webpages do not always follow this rule and
often mislead users into performing actions that are di�erent from

398

the intended ones. In our study, we have detected three di�erent
types of misleading clicks:
• Invisible Layer: The user clicks some non-clickable object of
the webpage (e.g., some random text or image), despite the fact
that there should not be any expected result, this triggers a
webpage redirection or the opening of a new tab.

• Fake href Attributes: The user wants to click on a given
element, such as a simple <a> tag, and the user’s expectation is
that the browser will go to the website indicated by the link (as
speci�ed in the href attribute). However, the user is redirected
to a di�erent website, not related to the expected one.

• Fake Local Clicks: The user clicks on a clickable object in a
webpage that does not explicitly indicate a target URL. As a
result, the user expects the destination to be in the same domain
of the current website [65]. However, the user is redirected to a
completely unrelated domain without any prior notice.

Results. As shown in Figure 1, roughly 20% of the websites con-
tained an invisible layer that captured the user’s clicks. Moreover,
more than 10% of all websites are redirecting the user to a com-
pletely di�erent domain in this case. If we check the global numbers
(Table 1), we can see that more than half of all the redirections/new
tab opens using this technique were performed to a di�erent do-
main. Our data shows that this is a very widespread problem and
that in the majority of the cases the target URL is not even located
on the same domain.

Figure 1 also shows that the vast majority of websites (nearly
80%) mislead users by reporting incorrect href attributes on some
of their links. Even worse, in over 45% of the cases those links
pointed to completely di�erent domains from those reported in the
displayed URL. Finally, fake local clicks are also quite common on
the web with 65% of the websites we tested (Figure 1) adopting
this technique. Interestingly, the total number of occurrences is the
same as the fake href attributes, showing a similar global trend
between both techniques (Table 1).

To sum up, misleading targets are worryingly popular among all
types of websites. In fact, despite the common intuition that this
type of techniques would be prevalently used in gray webpages for
aggressive advertisement reasons, our results show that most of
these bad practices are equally common in both datasets.

5.2 Users Redirection
Even when a click initially behaves as expected, it is still possible
for the user to be redirected to di�erent pages without her consent.
Of course, redirections are very common on the Web and can be
used for perfectly legitimate reasons. Moreover, if a web page a.com
contains a link to b.com, which will eventually redirect to another
domain, the owner of a.com has no control over this behavior.
Nevertheless, we decided to measure and report how prevalent
this behavior is because, from a user point of view (pointed out
in user experience guidelines [54, 55]), it still results in hiding the
�nal target of a click. Ignoring internal (i.e., to the same website)
redirections, we can classify the remaining redirections in:

• Di�erent Domain: This family includes all the redirections
to domains di�erent from the one that the user was expecting
to visit when performing the click [25, 30]. For example, if the

Figure 2: Percentage of domains redirecting users.

Table 2: Occurrences of webpages redirecting users.

Type Total HTTP(S) Code
Occurrences

Di�erent Domain 525,975 68.68% 31.32%
Hidden Domain 42,558 31.31% 68.69%

TOTAL 568,533 65.88% 34.12%

user clicks a link on a.com pointing to b.com, any redirection
involving any of the two domains is considered legitimate.
This is the case in which b.com uses a redirection to point
to another URL in the same website. However, if the users
clicks on a link to b.com and ends up visiting c.com, this can
potentially be deceiving.

• Hidden Domain: This is a more severe variation of the sce-
nario described above. In this case, the user clicks on a link
pointing to b, which temporarily redirects to c, which then
in turn immediately redirects back to b – thus introducing a
third domain in the redirection chain that the user would not
even be aware of (as the browser would likely not show this
intermediate step).

On top of these two classes, there is another orthogonal classi�ca-
tion related to the speci�c method used to perform the redirection.
On the one hand, we have the HTTP(S) redirection, where the
request can for example include the Set-Cookie header to create
di�erent cookies in the user’s browser for that speci�c domain. The
HTTP code employed in these redirection is 30X, where the last
number speci�es the reason for the redirections (e.g., 302 is used
to notify that the requested resource has been Moved Temporarily).
On the other hand, we have code-based redirections that do not
happen by means of an HTTP request, but by code being executed
on the webpage, once it is parsed and loaded by the browser. The
problem in this type of redirection is that the domains involved
can execute JavaScript code without any control of the original or
expected website (e.g., creating tracking identi�ers). They rely on
HTML refresh using a meta element with the http-equiv parame-
ter, directly with JavaScript using window.location, or any other
equivalent method. Even if header-based redirecting parties could
change themselves to a code-based redirection, we checked how
many are actually getting these privileged rights.

399

Independently from the method used to redirect the browser, for
our study, we are particularly interested in how transparent it is to
the user which domains have been visited during the transition, in
particular in the case of multiple consecutive redirections.

Results. As shown in Figure 2, 80% of all domains performHTTP(S)
redirections pointing to completely di�erent domains with respect
to the ones expected by the users. Regarding code redirections to
di�erent domains, an impressive 35% of them use this technique.
This is particularly worrying because of the aforementioned se-
curity problems, which may result in possible uncontrolled code
executions or cookies. The user was never noti�ed that she was
going to give these rights to those domains. According to the global
occurrence data presented in Table 2, the percentages follow a sim-
ilar trend, with a majority of domains redirecting through HTTP(S)
and a not negligible one third of domains allowing code execution.

More worryingly, around 15% of the analyzed domains stealthily
allows other domains to gain uncontrolled cookie or code execu-
tion rights, by including them in the middle of redirections chains
that end in the correct domain. Nearly 10% of them actually allow
intermediate hidden domains to execute code without any control.
Checking the total occurrence numbers (see Table 2), this percent-
age is much bigger, with nearly 70% of the websites allowing hidden
domains to execute their own code. The problem here is very se-
rious, as all hidden domains (not detectable for the user) that are
using code redirections can execute JavaScript without any control
from the original or expected website, allowing them to execute
anything they want in the user’s browser (e.g., tracking and pro�l-
ing the user) The user was never informed that she was going to
give these rights to those domains.

5.3 Insecure Communication
Man-in-the-middle attacks that can violate the user’s privacy, steal
credentials, and even inject/modify the data in transit are a seri-
ous threat to web users [6, 68]. When a user visits a website over
HTTP, she implicitly accepts the fact that her tra�c would not be
protected against eavesdropping. However, when a user clicks on
a link that displays an HTTPS URL, she expects to send her data
over a protected channel [36, 54, 55]. Unfortunately, in reality we
found that this behavior is not the rule. In particular, we identi�ed
three main scenarios in which this requirement is not met:

• Insecure Access: This is the basic case in which the user
clicks an element pointing to an HTTPS URL but eventually
the browser (either from the beginning, or because of a redi-
rection) drops the secure channel and ends up visiting a page
over an insecure HTTP connection.

• HiddenHTTPConnection: In this very subtle scenario, the
user initially clicks on an HTTPS URL, and eventually lands
on a website served over HTTPS. Everything may therefore
seems normal, but unfortunately there were intermediate
HTTP webpages (invisible to the user) visited by the browser
before reaching the �nal destination. In other words, the two
endpoints are secure but the entire communication was not –
without the user being aware of it.

• Unexpected Mixed Content: By default, over a secure con-
nection, browsers block what is generally known as active

Figure 3: Percentage of domains creating man-in-the-
middle threats.

Table 3: Occurrences of webpages creating MitM threats.

Type Total Unique
Occurrences Domains

Insecure Access 185,984 23,570
* Di�erent Domain 129,710 9,256
Hidden HTTP Connection 43,773 7,292
* Di�erent Domain 39,903 2,484
Unexpected Mixed Content 279,550 22,322
* Di�erent Domain 194,019 17,093

TOTAL 465,534 45,892

mixed content, i.e., elements served over HTTP that can di-
rectly interact with the content of the page. However, other el-
ements such as images and video �les (i.e., passive mixed con-
tent) are allowed [10, 37]. This opens the door to possible se-
curity and privacy attacks that use passive mixed content. For
instance, an element loaded via HTTP can be modi�ed to a 401
Unauthorized response that includes a WWW-Authenticate
header asking for a con�rmation of their credentials (which
will be sent directly to the attacker) [46]. It is important to
stress the fact that we are not analyzing the problems of mixed
content in general [7], but the occurrence of this threat related
to clicks. Following our usual guidelines, we only measure
mixed content loaded in webpages from domains that are
di�erent from those that the user was aware of contacting.

Results: Figure 3 shows that approximately 40% of all the domains
we tested contained at least one link in which they insecurely
redirected users over an HTTP connection when they explicitly
speci�ed HTTPS in the destination URL. To make thing worse
(see Figure 3), a non-negligible 20% of these insecure redirections
happen in the middle of theoretically secure connections, making
it impossible for the end-user to detect this dangerous behavior.
Overall (see Table 3), 23,570 unique domains were involved (sum
of unique domains per accessed domain), and 30.94% of them were
related to intermediate undetectable insecure HTTP connections.

Regarding the non-informed mixed content fetched from third-
party websites, we measured that around 45% of all domains have
at least one in their redirection chains (see Figure 3). In fact, only 5%
of the domains include mixed content only from the same domain

400

Table 4: Occurrences of webpages opening new tabs.

Type Total
Occurrences

Link (_blank) 239,628
JavaScript (window.open) 613,457

TOTAL 853,085
* Protected 1,324

— the one that is expected and accepted by the user. This shows
that more than half of the domains indirectly put their users in
jeopardy not by performing an insecure redirections, but by load-
ing external content over an insecure channel. Furthermore, if we
count the unique domains that su�er from this problem, from a
total of 22,322 di�erent domain, a remarkable 76.57% belong to com-
pletely di�erent domains of those expected by the user (as shown
in Table 3).

5.4 Phishing-related Threats
While phishing attacks are usually associated with spam or scam
campaigns, it is also possible for users to encounter a phishing
website when sur�ng theWeb. In this section, we explore howmany
websites are jeopardizing their visitors through their poor links
hygiene. In fact, when a website opens a new browser tab or a new
window, this new page obtains a reference to the original website
that has triggered its opening through the window.opener object.
To prevent the new site to tamper with the content of its parent,
modern browsers are equipped with blocking capabilities through
speci�c cross-origin actions derived from the well-known same-
origin policy. However, it is still possible for the new tab to redirect
the original opener website using the window.opener.location
object, thus bypassing this protection [39].

In this way, from a newly opened tab, a miscreant is capable
of detecting the domain of the opening website (by checking the
HTTP referer header), and then redirecting the user to a phishing
website of that same domain (maybe adopting some typosquatting
techniques [33, 60] to make it harder for the user to notice the
replacement), and �nally even closing the new tab. For example, a
user on Facebook can click a link to an external website that could
act perfectly benign except from replacing the Facebook page itself
with a fake copy that may be used to phish users into disclosing
personal information or login credentials. This makes the scheme
very di�cult to detect even for an expert user. This type of attack
is popularly called as “tabnabbing” [40, 45].

A simple solution exists to protect against this type of attacks:
when a website includes links to external resources, it can spec-
ify rel=�noopener noreferrer� to prevent the new page from
accessing the parent URL [5, 19]. Equivalently, when a new tab is
opened via JavaScript, by opening an about:blank tab, setting the
new window’s opener to null, and then redirecting it would solve
the problem. However, still today many webpages do not adopt any
protection methods when opening new tabs, exposing themselves
and their visitors to these phishing attacks.

Results. During our experiments, a stunning 90% of the websites
contained links that opened new tabs as a result of a click. Overall,
this accounted for 853,085 new tabs. As reported in Table 4, the
majority of them (71.91%) were opened by using JavaScript code.

Although this behavior is extremely widespread, we found that
only 2% of the examined domains employed prevention techniques
to secure their users from potential phishing attacks. For all links
(see Table 4), the number is even smaller with only 1,324 protected
links out of more than 850K visited ones.

In summary, these results show that nearly all of the new tabs
opened are completely unprotected from possible phishing attacks.
Moreover, opening new tabs is an very common action that most
webpages do at some point.

5.5 User Tracking
One of the biggest concern nowadays regarding web privacy is web
tracking, which consists in the ability to obtain or infer the users’
browsing history, or to identify the same user across multiple dif-
ferent accesses. The �rst and still most common method to perform
web tracking is based on cookies. In its most basic form, when a
user visits a website a.com, she acknowledges that several cookies
can be created and stored in her computer. These cookies can be set
from the website she is visiting (a.com) or from a third-party do-
main (e.g., z.com) that may be also present on other websites (e.g.,
b.com, and c.com). This allows z.com to follow the user activity
if she also visits these webpages. While Libert recently found [27]
that in most cases the main domain does not notify the user about
those third-party cookies, in this paper we take an optimistic posi-
tion and we consider those cases as benign. What we are instead
interested in measuring is the fact that the user is not even aware
of new cookies generated [31, 36, 63], in the following cases:

• Undesired Cookies: If a user clicks on a link to a.com, she
does not expect any other cookie besides the ones created by
a.com and its direct third parties. Thereby, we will consider
as undesired any cookie that does not follow this simple rule.
For example, imagine that the previous click redirects you to
b.com and later, though JavaScript, to c.com. All cookies set
by b.com, c.com, and their respective third parties would be
considered as undesired cookies.

• Undesired HTTP Cookies: In several cases, the problem is
bigger than just having a large number of undesired cookies
created in the browser. Sometimes, these cookies besides being
undesired, they are also insecure, even if the user clicked a link
directing to a secure webpage. For instance, a miscreant can
perform a man-in-the-middle attack, and steal those cookies
or even modify them to allow for future attacks or perform
tracking of this user.

• First-Party Bypass: Browsers started introducing a new op-
tion to control the type of cookies they accept [2, 35]: accept
cookies from the domain the user is currently visiting, but
only allows third-party cookies from webpages previously vis-
ited by the user. Nevertheless, the current click ecosystemmay
undermines this option, as the user ends up unintentionally
visiting many domains – which will therefore be whitelisted,

401

Figure 4: Percentage of domains creating tracking threats.

Table 5: Occurrences of webpages creating tracking threats.

Type Total Unique
Occurrences Domains

Undesired Cookies 1,924,371 188,992
* Di�erent Domain 1,241,806 165,735
Undesired HTTP Cookies 80,494 19,338
* Di�erent Domain 73,171 18,175
First-Party Bypass 500,073 104,075

TOTAL 2,504,938 312,405

and allowed to set cookies. WebKit implemented a speci�c de-
tection for these cases [62], but others browsers do not make
any direct mention to this unwanted situation.

Results. In our experiments we did not count the number of cook-
ies, but the number of domains that created undesired cookies. For
example, if b.com created 5 undesired cookies and c.com 3 unde-
sired cookies, we would report 2 (b.com and c.com) in our statistics
(see Table 5). Moreover, unique domains are counted as the sum of
unique domains per accessed domains.

The overwhelming number of domains (around 95%) created
undesired cookies (see Figure 4). Globally, 64.53% of all occurrences
were created by di�erent domains, making a total of 188,992 unique
domains. Analyzing the speci�c case of insecure undesired HTTP
cookies, the number are much lower, but still concerning, due to the
security and privacy problems they incur. 30% of domains created
these type on dangerous undesired cookies, and our data shows
that 90.90% of all the occurrences were performed by di�erent
domains (18,175 unique ones). Finally, we found 500,073 occurrences
of unexpected domains becoming �rst-party webpages (104,075
unique), and thereby bypassing the newest cookie control policy
implemented in browsers. Figure 4 shows that 87% of the websites
(both in the Alexa and Gray categories), once visited by a user, as
a side e�ect result in at least one new domain being added to the
whitelist. As these domains were not visible to the user at any point
in time before the click (and often even after), the user is completely
unaware that they are considered “visited webpages” from now on.

6 STATISTICAL ANALYSIS
In Section 5, we analyzed (i) the percentage of websites that su�er
from each problem we discussed in this paper, and (ii) the number

and type of these occurrences. We now present the results of a
number of statistical tests that show that both the Alexa and the
gray domains categories follow similar trends in these practices.

For this speci�c case, conducting a Chi-Square test is the most ap-
propriate approach, as the variables under study are categorical, and
we want to check if the outcome frequencies follow a speci�c distri-
bution. Following this method, we tested the null hypothesis that
that the variables are independent. This way, we can compute the
probability that the observed di�erences between the two groups
are due to chance (statistical signi�cance). If the corresponding
p-value is larger than the alpha level 0.05, any observed di�erence
is assumed to be explained by sampling variability. We found that
many of the threats we presented have some statistical di�erences
between the two groups. Nevertheless, with a very large sample
size, a statistical test will often return a signi�cant di�erence. Since
reporting only these values is insu�cient to fully understand the
obtained results, we additionally calculated the e�ect size (Cramer’s
V) to check whether the di�erence is large enough to be relevant.
In statistics, the e�ect size is a quantitative measure of the magni-
tude of a phenomenon, used to indicate the standardized di�erence
between two means (the value should be greater than 0.15 in order
to obtain an appreciable di�erence). Even if the di�erence is statis-
tically signi�cant in some cases, the e�ect size is virtually zero in
all of them. This indicates that the actual di�erences are not large
or consistent enough to be considered important, which con�rms
our statement that both groups follow similar trends.

7 THREAT RISKS
In a recent user study about security beliefs and protective behav-
iors byWash and Rader [61], one of the questions was “Being careful
with what you click on while browsing the Internet makes it much
more di�cult to catch a virus.” In this section we check whether
this this is the case by investigating the actual risks associated to
the threats we measured.

In order to obtain this information, we used the risk level calcu-
lator for secure web gateways o�ered by Symantec [58, 59]. The
service uses cloud-based arti�cial intelligence engines to categorize
websites by using di�erent indicators, such as historical informa-
tion, characteristics of the websites, or features extracted from the
server’s behavior. Websites are classi�ed in �ve risk groups, namely:

• Low: Consistently well-behaved.
• Moderately Low: Established history of normal behavior.
• Moderate: Not established history of normal behavior but
neither evidence of suspicious behavior.

• Moderately High: Suspicious behavior (including spam,
scam, etc.) or possibly malicious.

• High: Solid evidence of maliciousness.

It is important to remark that we did not analyze the websites
in our dataset, but the websites the user was expecting to visit and
the ones she accessed unintentionally because of the click threats
presented in this paper. We then compared the risk level of the
website that the user was expecting (e.g., b.com, low risk) with the
website the user actually ended up accessing (e.g., c.com, high risk).
Based on this, we computed two di�erent factors, one indicating an
increase in the threat risk, and another indicating an increase from

402

Table 6: A comparison between Alexa and gray websites according the increase in risk generated by the user click. The p-value
is always lower than 0.05, indicating statistical signi�cance for all values in this table.

Alexa Websites Gray Websites E�ect Size
Click Implication Type Increase Low to High Increase Low to High Increase Low to High

Invisible Layer 43.07% 16.84% 58.49% 25.36% 0.440 0.429
Fake href Attributes 41.17% 5.42% 55.63% 18.92% 0.229 0.268
Fake Local Clicks 22.44% 4.55% 26.24% 8.41% 0.062 0.098
Redirecting 42.73% 9.85% 53.10% 23.42% 0.145 0.222
Hidden Domain 9.73% 0.63% 12.56% 3.05% 0.106 0.137
Insecure Access 66.01% 9.06% 74.74% 20.84% 0.141 0.203
Hidden HTTP Connection 35.79% 4.65% 47.90% 17.48% 0.188 0.258
Unexp. Mixed Content 41.99% 6.07% 39.94% 11.19% 0.051 0.117
Undesired Cookies 64.92% 15.18% 67.40% 29.86% 0.042 0.232
Undesired HTTP cookies 68.08% 12.89% 70.32% 25.95% 0.041 0.216
First-Party Bypass 50.10% 11.01% 59.84% 25.13% 0.141 0.231

the ‘green’ part of the spectrum, to the ‘red’ part. The percentages
shown in Table 6 are the percentage of websites in each category
that su�ered from at least one case of the implications.

Overall, the consequences of the results of this test are very
serious. For instance, fake href or redirections associated to a low-
to-high risk transitions (which capture the cases in which a user
clicks on a link considered safe by security products but ends up
instead on a website �agged as malicious) account for 5-10% of the
cases in the Alexa category and up to 19-23% in the gray group. In
total, we detected that around half of the websites that have poor
click hygiene actually increased the risk of the users because of
these poor practices, and in 8.74% (for the Alexa set) and 19.33%
(for the gray set) of the cases, the risk associated with the a�ected
URLs went from “low” to “high”.

Moreover, we statistically checked if the di�erences found be-
tween Alexa and gray websites for this factors were signi�cant. We
followed the same procedure as in the previous case, using Chi-
Square and Cramer’s V (see Section 6 for more details). In this case,
all test showed a statistical signi�cance. Moreover, the e�ect size
scores are also considerably larger (often surpassing 0.15), show-
ing that there is a clear di�erence between the two groups. These
�gures also show another important message. In fact, while we
discovered that popular websites are no less deceptive than web-
sites serving porn or illegal content, when these poor practices are
present in the second group they are more often associated to a
drastic increase in the risk for the users.

8 DISCUSSION
There are two main possible explanations for each of the di�erent
threats presented in this paper: (i) the �aws were deliberately in-
troduced by the developers, or (ii) they were just the unintended
consequence of poor practices or coding mistakes. While it may be
di�cult to know for sure, we believe that most cases fall into the
second category. To clarify this statement, we are going to analyze
the case studies presented in Section 3 from this perspective.

The case in which a form on the website of a prestigious uni-
versity redirects to a external website without prior notice is the
perfect example. It looks like the web developers wanted to collect

some statistics of who was joining the mailing list, but instead of
including the code themselves, they decided to rely on an external
tracking company. This company might have asked the develop-
ers to include few lines of code in their website, probably without
explaining the possible consequences of that action. As a result,
there was probably no malicious intent, and the entire example is
probably the result of a mistake by the site developers.

In our second example, the website used an intermediate sub-
domain in order track who was clicking on the o�ered discounts,
probably without realizing that by doing that, the user could not
tell anymore the �nal destination of her clicks. This is already per
se a poor practice, but the problem goes one step further due to the
hidden HTTP redirection. This is bad for two reasons. On the one
hand, the website where the user is clicking should have checked if
the redirection could be secured or not. On the other hand, the �nal
betting website should either set its core cookies with the secure
attribute, or implement HTTP Strict Transport Security (HSTS) to
avoid this undesired intermediate insecure communications.

While plausible, the previous explanations are completely �cti-
tious. In fact, it is impossible to know if the web developers were
aware of the threats created and proceeded anyway, or if they did
not realize the consequences of their actions. Because of this, as we
will explain in more details in Section 9, we believe it is important
to provide a service that web developers can use to analyze their
own websites to detect the presence of poor practices.

8.1 Precision
Following the click analysis structure presented in Section 4, we
performed nearly 2.5M di�erent clicks. If we calculate the percent-
age of clicks we made comparing to all the possible clicks in each
domain and compute the mean, we obtain 28.32% – which means
than in average we clicked one third of the clickable elements in the
pages we visited. We also calculated the percentages of clicks per
domain that were a�ected by the various problems we identi�ed
in Section 5 and computed the values corresponding to di�erent
quartiles (e.g., Q3 and Q4) to obtain a general overview.

With the data relative to the quartiles and the percentage of total
clicks performed, we can statistically estimate the probability of

403

detecting at least one case of every dangerous category with the
amount of clicks we performed in a given website. In fact, we can
model a website as an urn containing links of two categories: those
a�ected by a given problem X and those that are not. Since we can
estimate the percentage of the two types of links based on the data
we collected, and we know that for a certain website we randomly
visit (i.e., extract from the urn) a certain number of elements over
the total number contained in the urn, we can estimate the odds of
picking at least one link a�ected by the problem [4]. We repeated
this computation for all the types of problems discussed in the paper.
In average, the probability of misclassifying a website just because
we did not test the right link varied from 0% (for tracking-related
threats) to 4.7% in the case of insecure communications. These val-
ues show that when a website su�ers from a poor behavior related
to its links, this often a�ects a large percentage of its elements,
thus making our sampling rate of testing one out of three links
appropriate to estimate the presence of the di�erent problems.

9 COUNTERMEASURES
In our measurement, we identi�ed several bad practices on how
click-related events are managed by existing websites. Even if some
of them may have been deliberately introduced by the developers
(e.g., to avoid recent cookie-control policies), we believe that the
main cause for these problems is a lack of awareness, a lack of
clear guidelines, and a poor understanding of the risks that these
problems can introduce.

We hope that this paper can raise awareness about the wide-
spread adoption of misleading links and potentially dangerous
click-related behaviors. To make our work more usable for end
users and developers alike, we decided to implement our checks in
a proof-of-concept service that can test a given web page and gen-
erate a report describing the bad practices identi�ed in its clickable
elements. We believe that such a tool can be useful for end-users
interested in validating suspicious websites before visiting them,
and in particular for web application developers to discover how
they could improve both the usability and the security of their web-
site. Moreover, on top of testing an existing site, our online service
also provides a list of guidelines to help developers avoid common
mistakes and adhere to the click contract described in Section 2.
As we cannot expect all web pages to follow the click contract, it
is important to introduce a second line of defense to protect the
end-users. We implemented a browser extension that could prevent
these dangerous side e�ects.

A proof-of-concept demo of the service, guidelines and extension
are publicly accesible at https://clickbehavior.github.io.

10 RELATEDWORK
Researchers have looked at di�erent ways users are misled into
performing actions they did not originally intend to perform [9]. For
instance, researches from Google analyzed the distribution of fake
anti-virus products on the Web [44]. More speci�c to user clicks,
Fratantonio et al. [17] proposed an attack where users are fooled
into clicking certain elements while actually clicking on others,
Many other works analyzed the speci�c case of clickjacking [3, 22,
48], where a malicious website tricks the user into clicking on an

element of a completely di�erent website by stacking the sites and
making the top site invisible.

Redirections are often used for legitimate purposes (e.g., to
redirect users from a temporarily moved website), but other times
are abused by attacker for malicious reasons. For example, Lu et
al. [28] were able to classify di�erent search poisoning campaigns
by checking their redirection chains. Stringhini et al. [57] proposed
a similar idea to detect malicious webpages. Our work di�ers in
many ways from these approaches, as we check what the possible
risks a user may su�er because of obfuscated redirection chains.

The problem of possibleman-in-the-middle attacks have been
extensively analyzed in the Web. Chang et al. [6] screened the
integrity and consistency of secure redirections that happen when
accessing the main page and login page of domains listed in Alexa.
Later, researchers from Google, Cisco, and Mozilla measured the
adoption of HTTPS on the web [15]. They conclude that globally
most of the browsing activity is secure. Regarding mixed content,
Chen et al. [7] investigated the dangers of this type of insecure
content. None of the aforementioned studies analyzed how this
security and privacy problems is related to the click ecosystem.

Phishing attacks have often been associated to spam emails [16,
21]. Therefore, the majority of the e�ort to stop this kind of prac-
tices was in the early detection of malicious emails [71], or on
the detection of phishing pages on the Web [18, 29, 69]. However,
we are not aware of any study that tries to identify how common
are phishing threats created by insecurely opening new tabs. Our
works shows that nearly all the targets opened, either via HTML
or directly through JavaScript, su�er from this problem. Even if
defenses exist for both cases, they are very rarely implemented.

User tracking is an increasingly growing concern that has at-
tracted a considerable amount of attention from researchers and
end users [47, 51]. Lerner et al. [26] studied the evolution of tracking
over the last 20 years, showing an impressive growth in adoption
and complexity. More recently, Sivakorn et al. [56] studied the case
of HTTP cookies and the corresponding exposure of private infor-
mation. On the other hand, we analyzed the concept of undesired
cookies that are the consequence of user clicks, and we measured
how many of those are insecure.

11 CONCLUSIONS
Using the mouse to click on links and other interactive elements
represents the core interaction model of the Web. In this work,
we perform the �rst measurement of click-related behaviors and
their associated consequences. We �rst identi�ed di�erent types
of undesired actions that may be triggered when a user clicks on,
in principle, harmless elements. In order to assess how widespread
these behaviors are on the Internet, we then implemented a crawler,
which we used to perform nearly 2.5M clicks on di�erent types of
domains of various popularity. Our results show that these dan-
gerous situations are extremely common in all types of domains,
making a huge number of users vulnerable to many di�erent possi-
ble attacks. Moreover, we o�er di�erent possible countermeasures.

ACKNOWLEDGMENTS
This work is partially supported by the Basque Government under
a pre-doctoral grant given to Iskander Sanchez-Rola.

404

REFERENCES
[1] Amazon Web Services. 2019. Alexa Top Sites. https://aws.amazon.com/es/

alexa-top-sites/.
[2] Apple. 2019. Manage cookies and website data using Safari. https://support.

apple.com/kb/ph21411?locale=en_US.
[3] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide Balzarotti, and Christopher

Kruegel. 2010. A Solution for the Automated Detection of Clickjacking Attacks.
In ACM ASIA Computer and Communications Security (ASIACCS).

[4] D Basu. 1958. On sampling with and without replacement. Sankhyā: The Indian
Journal of Statistics 20 (1958).

[5] Mathias Bynens. 2019. About rel=noopener. https://mathiasbynens.github.
io/rel-noopener/.

[6] Li Chang, Hsu-Chun Hsiao, Wei Jeng, Ti�any Hyun-Jin Kim, and Wei-Hsi Lin.
2017. Security Implications of Redirection Trail in Popular Websites Worldwide.
In World Wide Web Conference (WWW).

[7] Ping Chen, Nick Nikiforakis, Christophe Huygens, and Lieven Desmet. 2015. A
Dangerous Mix: Large-scale analysis of mixed-content websites. In International
Journal of Information Security.

[8] ChromeDevTools. 2019. DevTools Protocol API. https://github.com/
ChromeDevTools/debugger-protocol-viewer.

[9] Vacha Dave, Saikat Guha, and Yin Zhang. 2013. ViceROI: Catching Click-Spam
in Search Ad Networks. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS).

[10] Developers Google. 2019. What Is Mixed Content? https://developers.
google.com/web/fundamentals/security/prevent-mixed-content/what-
is-mixed-content.

[11] Dymo. 2017. Missing Accept_languages in Request for Headless Mode. https:
//bugs.chromium.org/p/chromium/issues/detail?id=775911.

[12] Serge Egelman and Eyal Peer. 2015. Scaling the Security Wall. Developing a
Security Behavior Intentions Scale (SeBIS). In ACM Conference on Human Factors
in Computing Systems (CHI).

[13] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-
site measurement and analysis. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[14] European Union. 2016. Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation). O�cial
Journal of the European Union (2016).

[15] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,
and Parisa Tabriz. 2017. Measuring HTTPS adoption on the web. In USENIX
Security Symposium (Sec).

[16] Ian Fette, Norman Sadeh, and Anthony Tomasic. 2007. Learning to Detect
Phishing Emails. In World Wide Web Conference (WWW).

[17] Yanick Fratantonio, ChenxiongQian, Simon P Chung, andWenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In IEEE Symposium on Security and Privacy (Oakland).

[18] Sujata Garera, Niels Provos, Monica Chew, and Aviel D Rubin. 2007. A Frame-
work for Detection and Measurement of Phishing Attacks. In ACM Workshop on
Recurring Malcode (WORM).

[19] Google. 2019. Opens External Anchors Using rel="noopener". https://
developers.google.com/web/tools/lighthouse/audits/noopener.

[20] Google App Maker. 2019. CSS Reference. https://developers.google.com/
appmaker/ui/css.

[21] Xiao Han, Nizar Kheir, and Davide Balzarotti. 2016. PhishEye: Live Monitor-
ing of Sandboxed Phishing Kits. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[22] Lin-Shung Huang, Alexander Moshchuk, Helen J Wang, Stuart Schecter, and
Collin Jackson. 2012. Clickjacking: Attacks and Defenses. In USENIX Security
Symposium (Sec).

[23] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel,
and Giovanni Vigna. 2013. Revolver: An Automated Approach to the Detection
of Evasive Web-based Malware.. In USENIX Security Symposium (Sec).

[24] Issie Lapowsky. 2018. California Unanimously Passes Historic Privacy Bill.
Wired.

[25] Zhulieta Lecheva. [n.d.]. Characterizing the di�erences of Online Banking User
Experience on computer andmobile platforms. Project Library, AAlborg University
([n. d.]).

[26] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
2016. Internet Jones and the Raiders of the Lost Trackers: An Archaeological
Study of Web Tracking from 1996 to 2016.. In USENIX Security Symposium (Sec).

[27] Timothy Libert. 2018. An Automated Approach to Auditing Disclosure of Third-
Party Data Collection in Website Privacy Policies. InWorld Wide Web Conference
(WWW).

[28] Long Lu, Roberto Perdisci, and Wenke Lee. 2011. SURF: Detecting and Measuring
Search Poisoning. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[29] Christian Ludl, Sean McAllister, Engin Kirda, and Christopher Kruegel. 2007. On
the E�ectiveness of Techniques to Detect Phishing Sites. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA).

[30] Kevin Andika Lukita, Maulahikmah Galinium, and James Purnama. 2018. User
Experience Analysis of an E-Commerce Website Using User Experience Ques-
tionnaire (UEQ) Framework. In Prosiding Seminar Nasional Pakar.

[31] William Melicher, Mahmood Sharif, Joshua Tan, Lujo Bauer, Mihai Christodor-
escu, and Pedro Giovanni Leon. 2016. (Do Not) Track me sometimes: users’
contextual preferences for web tracking. In Privacy Enhancing Technologies Sym-
posium (PETS).

[32] Brad Miller, Paul Pearce, Chris Grier, Christian Kreibich, and Vern Paxson. 2011.
What’s clicking what? techniques and innovations of today’s clickbots. In Detec-
tion of Intrusions and Malware, and Vulnerability Assessment (DIMVA).

[33] Tyler Moore and Benjamin Edelman. 2010. Measuring the Perpetrators and
Funders of Typosquatting. In International Conference on Financial Cryptography
and Data Security (FC).

[34] Mozilla Foundation. 2019. Cursor - CSS: Cascading Style Sheets. https://
developer.mozilla.org/en-US/docs/Web/CSS/cursor.

[35] Mozilla Foundation. 2019. Disable third-party cookies in Firefox to stop some
types of tracking by advertisers. https://support.mozilla.org/en-US/kb/
disable-third-party-cookies.

[36] Mozilla Foundation. 2019. How do I tell if my connection to a website is
secure? https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-
connection-is-secure.

[37] Mozilla Foundation. 2019. Mixed content blocking in Firefox. https://support.
mozilla.org/en-US/kb/mixed-content-blocking-firefox.

[38] Mozilla Foundation. 2019. Security/Tracking protection. https://wiki.
mozilla.org/Security/Tracking_protection.

[39] Mozilla Foundation. 2019. Window.opener. https://developer.mozilla.org/
en-US/docs/Web/API/Window/opener.

[40] OWASP. 2019. Reverse Tabnabbing. https://www.owasp.org/index.php/
Reverse_Tabnabbing.

[41] Paul Pearce, Vacha Dave, Chris Grier, Kirill Levchenko, Saikat Guha, Damon
McCoy, Vern Paxson, Stefan Savage, and Geo�reyMVoelker. 2014. Characterizing
Large-Scale Click Fraud in ZeroAccess. In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[42] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, Nagendra
Modadugu, et al. 2007. The Ghost in the Browser: Analysis ofWeb-basedMalware.
USENIX Workshop on Hot Topics in Understanding Botnets (HotBots) (2007).

[43] M Zubair Ra�que, Tom Van Goethem, Wouter Joosen, Christophe Huygens, and
Nick Nikiforakis. 2016. It’s Free for a Reason: Exploring the Ecosystem of Free
Live Streaming Services. In Network and Distributed System Security Symposium
(NDSS).

[44] Moheeb Abu Rajab, Lucas Ballard, Panayiotis Mavrommatis, Niels Provos, and
Xin Zhao. 2010. The Nocebo E�ect on the Web: An Analysis of Fake Anti-Virus
Distribution. In USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET).

[45] Aza Raskin. 2019. Tabnabbing: A New Type of Phishing Attack. http://www.
azarask.in/blog/post/a-new-type-of-phishing-attack/.

[46] RFC 7235. 2018. Section 3.1: 401 Unauthorized. https://tools.ietf.org/
html/rfc7235/.

[47] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and
Defending Against Third-Party Tracking on the Web. In USENIX conference on
Networked Systems Design and Implementation (NSDI).

[48] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. 2010. Busting
frame busting: a study of clickjacking vulnerabilities at popular site. IEEE Oakland
Web 2 (2010).

[49] Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos. 2017. The Onions
Have Eyes: A Comprehensive Structure and Privacy Analysis of Tor Hidden
Services. In World Wide Web Conference (WWW).

[50] Iskander Sanchez-Rola and Igor Santos. 2018. Knockin’ on Trackers’ Door: Large-
Scale Automatic Analysis of Web Tracking. InDetection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA).

[51] Iskander Sanchez-Rola, Xabier Ugarte-Pedrero, Igor Santos, and Pablo G Bringas.
2016. The Web is Watching You: A Comprehensive Review of Web-tracking
Techniques and Countermeasures. Logic Journal of IGPL 25 (2016).

[52] Evan Sangaline. 2017. Making Chrome Headless Undetectable. https://intoli.
com/blog/making-chrome-headless-undetectable/.

[53] Evan Sangaline. 2018. It is *Not* Possible to Detect and Block Chrome Headless.
https://intoli.com/blog/not-possible-to-block-chrome-headless/.

[54] Martin Schrepp. 2015. User Experience Questionnaire Handbook. All you need
to know to apply the UEQ successfully in your project (2015).

[55] Martin Schrepp, Andreas Hinderks, and Jörg Thomaschewski. 2017. Design and
Evaluation of a Short Version of the User Experience Questionnaire (UEQ-S).
International Journal of Interactive Multimedia and Arti�cial Intelligence (IJIMAI)
4 (2017).

[56] Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis. 2016. The
Cracked Cookie Jar: HTTP Cookie Hijacking and the Exposure of Private Infor-
mation. In IEEE Symposium on Security and Privacy (Oakland).

405

[57] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. 2013. Shady Paths:
Leveraging Sur�ng Crowds to Detect. Malicious Web Pages. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[58] Symantec. 2017. The Need for Threat Risk Levels in Secure Web Gateways.
https://www.symantec.com/content/dam/symantec/docs/white-papers/
need-for-threat-tisk-Levels-in-secure-web-gateways-en.pdf.

[59] Symantec. 2017. WebPulse. https://www.symantec.com/content/dam/
symantec/docs/white-papers/webpulse-en.pdf.

[60] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Felegyhazi, and
Chris Kanich. 2014. The Long" Taile" of Typosquatting Domain Names. In USENIX
Security Symposium (Sec).

[61] Rick Wash and Emilee Rader. 2015. Too Much Knowledge? Security Beliefs and
Protective Behaviors Among United States Internet Users. In Symposium On
Usable Privacy and Security (SOUPS).

[62] WebKit. 2018. Intelligent Tracking Prevention 2.0. https://webkit.org/blog/
8311/intelligent-tracking-prevention-2-0/.

[63] Craig E Wills and Mihajlo Zeljkovic. 2011. A personalized approach to web
privacy: awareness, attitudes and actions. Information Management & Computer
Security 19 (2011).

[64] Gilbert Wondracek, Thorsten Holz, Christian Platzer, Engin Kirda, and Christo-
pher Kruegel. 2010. Is the Internet for Porn? An Insight Into the Online Adult
Industry.. In Workshop on the Economics of Information Security (WEIS).

[65] World Wide Web Consortium. 2005. Uniform Resource Identi�er (URI): Generic
Syntax. https://tools.ietf.org/html/std66.

[66] World Wide Web Consortium. 2018. CSS Basic User Interface. https://drafts.
csswg.org/css-ui-3/.

[67] World Wide Web Consortium. 2018. HTML Speci�cation: Links. https://www.
w3.org/TR/html401/struct/links.html.

[68] Haidong Xia and José Carlos Brustoloni. 2005. Hardening Web Browsers Against
Man-in-the-Middle and. Eavesdropping Attacks. InWorld Wide Web Conference
(WWW).

[69] Yue Zhang, Jason I Hong, and Lorrie F Cranor. 2007. CANTINA: A Content-
Based Approach to Detecting Phishing Web Sites. In World Wide Web Conference
(WWW).

[70] Leah Zhang-Kennedy, Elias Fares, Sonia Chiasson, and Robert Biddle. 2016. Geo-
Phisher: The Design and Evaluation of Information Visualizations about Internet
Phishing Trends. In Symposium on Electronic Crime Research (eCrime).

[71] Bing Zhou, Yiyu Yao, and Jigang Luo. 2014. Cost-sensitive three-way email spam
�ltering. Journal of Intelligent Information Systems 42 (2014).

406

