
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

The Process Concept

•  The OS creates number of virtual computers

•  Execution of a program on one of these virtual computer is called a
sequential process

•  The virtual computer gives the illusion to each process that it is running
on a dedicated CPU with a dedicated memory

•  The actual CPU is switched back and forth among the processes
(multiprogramming with time-sharing)

•  Process memory is managed so that all the needed portions are
present in the actual memory

•  The virtual computer is the execution environment, the process is the
executor, and the program being executed determines the process
behavior

UC Santa Barbara

Programs and Processes

•  Static object existing in a file

•  A sequence of instruction

•  Static existence in space & time

•  Same program can be executed
by different processes

•  Dynamic object – program in
execution

•  A sequence of instruction
executions

•  Exists in limited span of time
•  Same process may execute

different program

main() {
 int i, prod = 1;
 for (i=0 ; i < 100; i++)

 prod = prod * i;
}

prod = prod*i; Process executes it 100 times

UC Santa Barbara

Process Life Cycle

•  A process can be created
–  During OS initialization

•  “init” process in UNIX
–  By another process

•  fork(), or NtCreateProcess()

•  A process can be terminated
–  By itself

•  exit(), or ExitProcess()
–  Because of an error

•  e.g., segmentation fault
–  By another process

•  kill(), TerminateProcess()

UC Santa Barbara

Process States

•  Process states
–  Running (using the CPU)
–  Ready (waiting for the CPU)
–  Blocked (waiting for a resource to become available)

UC Santa Barbara

Process States

•  Process hierarchy
–  each process has a parent
–  each process can have many children
–  does not have to be like that (e.g., Windows NT)

•  Parent must collect status of child processes
–  otherwise, children become zombie processes
–  what happens when parent dies first?

•  How is signal delivery handled
–  I.e., do children receive signals of parents?

UC Santa Barbara

Process Implementation

•  The OS maintains a process table with an entry for each
process, called Process Control Block (PCB)

•  The PCB contains:
–  Process ID, User ID, Group ID
–  Process state (Running, Ready, Blocked)
–  Registers (Program counter, PSW, Stack pointer, etc)
–  Pointers to memory segments (Stack, Heap, Data, Text)
–  Priority/Scheduling parameters
–  Accounting information
–  Signal management functions
–  Open file tables
–  Working directory

UC Santa Barbara

Process Implementation

•  In Minix, different pieces of information about a process are stored in
different parts of the OS

•  Kernel
–  register values (PC, stack pointer, …)
–  scheduling information

•  Process management
–  memory information (pointers to text, data, bss segment)
–  IDs (UID, GID, …)

•  File management
–  working directory
–  umask
–  file table

UC Santa Barbara

Threads

•  A process is a way to
–  Group resources (memory, open files, ...)
–  Perform the execution of a program: a thread of execution (code, program

counter, registers, stack)

•  Multiple threads of execution can run in the same process environment

•  Multiple threads share
–  Common address space (shared memory)
–  Open files
–  Process, user, and group IDs

•  Each thread has its own code, program counter, set of registers, and
stack

UC Santa Barbara

Threads

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	
 	
P2	

	
P1	

	
P1	
 	
P2	

	
P2	

Running	

Context	

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	

	
P1	

	
P2	

	
P1	
 	
P2	

	
P2	

Running	

Context	

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	

	
P1	

	
P2	

	
P1	
 	
P2	

	
P2	

Running	

Context	

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	

	
P1	

	
P2	

	
P1	
 	
P2	

	
P2	

Running	

Context	

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	

	
P1	

	
P2	

	
P1	
 	
P2	

	
P2	

Running	

Context	

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	

	
P1	

	
P2	

	
P1	
 	
P2	

	
P2	

Running	

Context	

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	

	
P1	

	
P2	

	
P1	
 	
P2	

	
P2	

Running	

Value of i is 17

Context	

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	

	
P1	

	
P2	

	
P1	
 	
P2	

	
P2	

Running	

Context	

UC Santa Barbara

Parallel Processes

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
P1	

	
P1	

	
P2	

	
P1	
 	
P2	

	
P2	

Running	

Value of i is 42

Context	

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

Value of i is 17

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

UC Santa Barbara

Threads

 1: int i;!

 2:!

 3: g() !

 4: {!

 5: printf(“Value of i is %d\n“, i); !

 6: }!

 7:!

 8: f() !

 9: {!

10:! g();!

11: }!

12:!

13: int main(int argc, char **argv)!

14: {!

15: i = get_input();!

16: f();!

17:! return 0;!

18: }!

	
T1	

	
T1	
 	
T2	

	
T2	

Running	

Context	

Value of i is 17

UC Santa Barbara

Why Threads?

•  Useful to structure applications that have to do many things
concurrently
–  One thread is waiting for I/O
–  Another thread in the same process is doing some computation

•  Having threads share common address space makes it easier to
coordinate activities

•  Use a shared data-structure through which the processes can
be coordinated:
–  Producer-Consumer interactions
–  Shared data structures/counts

•  More efficient than using processes (context switch is faster)

UC Santa Barbara

Thread Primitives

•  thread_create

•  thread_exit

•  thread_join

•  thread_yield

(synchronization primitives)

UC Santa Barbara

Thread Implementation

•  Threads can be implemented in user space

–  Pros
•  Performance (no kernel/user switch)
•  Portability (same primitives for every environment)
•  Flexibility (custom scheduling algorithm)

–  Cons
•  Blocking system calls block the process, not the thread

–  need to check if a system call would block before each invocation

•  Threads cannot be easily preempted (they have to yield)

UC Santa Barbara

Thread Implementation

•  Threads can be implemented in the kernel

–  Pros
•  Blocking system calls suspend the calling thread only
•  Can take advantage of multiple CPUs
•  Signals can be delivered more precisely

–  Cons
•  Can be heavy, not as flexible

UC Santa Barbara

Threading Issues

•  What happens on a fork()?
–  only a single thread is created in the child

•  What happens with shared data structures and files?
–  threads need to be careful and synchronize access

•  What about stack management?
–  each thread needs its own stack

•  What about signal delivery?
–  complicated!
–  some signals are sent to specific thread (alarm, segfault)
–  others to the first that does not block them (termination request)

UC Santa Barbara

Reentrant Functions

•  What about global variables in libraries?
–  functions need to be reentrant

•  Some functions are not designed to be invoked concurrently
–  Use of global variables, such as errno

•  Functions used by threads need to be reentrant

UC Santa Barbara

Portability Issues and Pthreads

•  POSIX 1003.1c (a.k.a. pthreads) is an API for multi-threaded
programming standardized by IEEE as part of the POSIX standards

•  Most Unix vendors have endorsed the POSIX 1003.1c standard

•  Implementations of 1003.1c API are available for many UNIX systems

•  pthreads defines an interface
–  implementation can be done in either user or kernel space

•  Thus, multithreaded programs using the 1003.1c API are likely to run
unchanged on a wide variety of Unix platforms

