
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

2	

File Systems

•  File systems provide long-term information storage

•  Must store large amounts of data

•  Information stored must survive the termination of the process
using it

•  Multiple processes must be able to access the information
concurrently

•  Two facets:
–  File system interface (logical view)

–  File system implementation (physical view)

UC Santa Barbara

3	

The File Abstraction

•  Files are named entities used by processes to store data

•  Defined by a number of attributes
–  Name: File name, Extension
–  Type: Data, Directory, Special (Devices, IPC, etc)
–  Location: Info to map file to disk blocks
–  Size
–  Protection: Read, Write, Execute
–  Time(s): Creation, Modification, Last use
–  Owner: User ID, Group ID etc

•  Usually seen as a stream of bytes (record-based structures are
possible)

UC Santa Barbara

4	

File Access

•  Sequential access
–  Read all bytes/records from the beginning
–  Cannot jump around, could rewind or back up
–  Convenient when medium was tape

•  Random access
–  Bytes/records read in any order
–  Essential for data base systems
–  Read can be …

•  move file marker (seek), then read or …
•  read and then move file marker

•  Indexed access

UC Santa Barbara

5	

File Operations

•  Create
•  Delete
•  Open
•  Close
•  Read
•  Write
•  Append
•  Seek
•  Get attributes
•  Set Attributes
•  Rename

UC Santa Barbara

6	

An Example Program

UC Santa Barbara

7	

An Example Program

UC Santa Barbara

8	

Memory-Mapped Files

•  Some systems allow for mapping files into virtual memory

•  File is then accesses as part of the memory

•  If shared-memory is supported memory-mapped files can be
accessed by multiple processes

•  Solution can simplify access

UC Santa Barbara

9	

Directories

•  Used to organize files

•  Usually organized in trees or directed graphs

•  File is identified by a path name in the graph
–  absolute path name
–  relative path name (wrt working directory as stored in the PCB)

•  “.” and “..” entries are used to identify current and parent
directories

UC Santa Barbara

10	

A UNIX Directory Tree

UC Santa Barbara

11	

Directory Operations

•  Create
•  Delete
•  Opendir
•  Closedir
•  Readdir
•  Rename
•  Link
•  Unlink

UC Santa Barbara

12	

File System Implementation

•  Disks may contain one or more file systems

•  Sector 0 is the Master Boot Record
–  Used to boot the computer
–  Contains a partition table with start and end address of each partition

•  An active partition is chosen and the first sector (the boot sector) is
read in memory and executed

•  Each partition contains extra information used to manage the partition
space

–  Free blocks, Used blocks
–  Root directories
–  ...

UC Santa Barbara

13	

File System Implementation

UC Santa Barbara

14	

Blocks

•  Files and directories are allocated in blocks

•  Block size is usually a multiple of the sector size

•  Information about the blocks that compose a file must be
managed

•  File systems usually contain many small-size files
 and few big ones

UC Santa Barbara

15	

Blocks

•  Big block size (e.g., 32 KB)
–  Management does not require much space
–  Lots of wasted space
–  Performance improves (one read for each block)

•  Small block size
–  Saves space
–  May requires large management data structure
–  Requires many reads

UC Santa Barbara

16	

Implementing the File System

•  Implementing files
–  Keep track of which blocks are used by a files

•  Contiguous space
•  Linked list
•  File Allocation Table (FAT)
•  I-nodes

•  Implementing directories
–  Keep track of which files are in a directory

•  Managing free lists
–  Manage free disk space

UC Santa Barbara

17	

Contiguous Allocation

•  Files are stored as a sequence of contiguous blocks

•  File-to-blocks mapping is implemented with two numbers:
–  First block
–  Number of blocks used

•  This schema supports sequential disk reads and delivers better
performance

•  Drawbacks:
–  Fragmentation
–  Changes in size require reallocation

•  Used in CD-ROM (ISO 9660)

UC Santa Barbara

18	

Linked Lists

•  Each block contains a pointer to the next block in the file
•  A file can be accessed by specifying the address of the first

block and then following the list
•  Drawback: Random access is expensive

UC Santa Barbara

19	

File Allocation Table

•  Allocation table in RAM keeps
track of “next block” information

•  Random access is fast:
Requires traversing the list, but
in RAM

•  A file can be accessed by
specifying the address of the
first block and then following the
list

•  Drawback:
–  Memory usage

•  Block size: 1KB
•  Partition size: 2 GB
•  Number of blocks: 2M
•  One FAT entry: 32 bits
•  FAT size 64MB!!

UC Santa Barbara

20	

I-Nodes

•  An i-node contains the file’s attributes and a list of pointers to
the blocks composing the files

•  A first set of pointer represent direct addresses

•  A second set of pointers are used to identify a block containing
more block pointers (single indirection)

•  A third set of pointers are used to implement double-indirection

•  A fourth set of pointers are used for triple-indirection

•  Advantage: I-node is in memory only when file is open

UC Santa Barbara

21	

I-Nodes

UC Santa Barbara

22	

Example

•  Block size: 1KB

•  Block address size: 4 bytes

•  I-node contains 14 block pointers
–  10 direct
–  2 single indirect
–  1 double indirect
–  1 triple indirect

•  File size will be
–  4 KB, 100 KB, 500 KB, 64 MB, 1GB

UC Santa Barbara

23	

Solution

•  1 block can contain 256 block address
–  Single indirect: 256 KB
–  Double indirect: 256 * 256 = 65, 536 KB = 64MB
–  Triple indirect: 256 * 256 * 256 = 16,777,216 KB = 16 GB

•  10 KB: 10 direct
•  266 KB: 10 direct + 1 indirect
•  522 KB: 10 direct + 2 indirect
•  66,058 KB: 10 direct + 2 indirect + 1 d-indirect
•  16,843,274 KB: 10 direct + 2 indirect + 1 d-indirect + 1 t-indirect

UC Santa Barbara

24	

Implementing Directories

•  Directory provide a mapping between a symbolic name and the
information used to retrieve the blocks composing the file
–  File name, First block
–  File name, I-node

•  In some cases the directory entries are used to maintain the
file’s attributes

UC Santa Barbara

25	

Accessing File /usr/ast/mbox

UC Santa Barbara

26	

Shared Files

•  In some file systems, file names referring to same file can be place in
more than one directory

•  Two types of references
–  Symbolic links

•  Entry contains actual path to be followed to access the file
•  Easy to manage
•  Generates small overhead
•  Can become invalid

–  Hard links
•  Entry directly points to file block information
•  No overhead
•  Deleting a file reference does not free the i-node
•  Must maintain counters of reference to file info (e.g., i-node)
•  must stay on same partition

UC Santa Barbara

27	

Shared Files

UC Santa Barbara

28	

Free Space Management

•  Free blocks can be maintained using lists of blocks or bitmaps

UC Santa Barbara

29	

File System Performance

•  File system performance is increased using
–  Block cache (e.g., managed in LRU mode)
–  Read-ahead
–  Minimizing disk arm motion

UC Santa Barbara

30	

The ISO 9660 File System

•  CD-ROM organized in sectors of 2352 bytes with a 2048
payload

•  File system composed of a preamble (primary volume
descriptor) containing authoring information and a pointer to the
root directory

•  Each directory is composed of a list of entries identifying
contiguously allocated files

UC Santa Barbara

31	

UNIX File System

•  Disk layout in classical UNIX systems
–  Boot block contains bootstrap information
–  Superblock contains critical info such as

•  number of i-nodes
•  number of blocks

UC Santa Barbara

32	

I-node in UNIX

UC Santa Barbara

33	

Accessing a File

•  When a process requests the opening of a file, the i-node index is
retrieved from the enclosing directory

•  The actual i-node is retrieved from the i-node list on disk and put in the
i-node table in the kernel

•  An entry is created in the open file description table in the kernel
–  Contains current read/write position
–  Points to the i-node

•  An entry is created in the file descriptor table in the process
–  Contains file descriptor that points to entry in kernel file description table

•  This is done to allow parent/children to share file positioning

UC Santa Barbara

34	

UNIX File System

UC Santa Barbara

35	

The Ext2 File System

UC Santa Barbara

36	

Mounting File Systems

