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Cryptography = Hidden Writing

Important component of secure systems: Ensures 
confidentiality and integrity of information.

First use: 1900 BC, ancient Egypt

Today: Still hard to get right, but used ubiquitously. 
Images: https://en.wikipedia.org/wiki/Cryptography



Why Cryptography?

Correct deployment of cryptography is very tricky

Cryptography is important component of every secure system!

Even the best do it wrong!



Cryptography - Tasks

• Guaranteeing confidentiality of data (encryption)
• Guaranteeing integrity of data (message 

authentication, digital signatures)
• Guaranteeing identity of data sender (digital 

signatures, digital certificates, public-key 
infrastructures, …)

• … and much more!
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Customer and bank want to communicate securely:
- Confidentiality (messages remain private)
- Integrity (accepted messages are as sent)
- Authenticity (is it the bank? is this the customer?)

Example of protocols achieving this: TLS, SSH, IPsec, PGP

Example 1 - Secure Internet Communication



Example 2 – Secure Messaging

Example: Signal protocol (used by WhatsApp, Facebook, Google, …)
End-to-end encryption (provider does not learn the keys!)

Init 555-123-4567

Forward secrecy: Device compromise does not help decrypting previous communication

555-123-4567555-314-1592



Data protection: In transit vs at rest

• The above examples are of data protection ”in 
transit”

• Other application scenario: Data protection at rest.



Example 3 – Storage Server

Assumption: Cloud storage is not trusted 
• Surveillance
• Account may be compromised

User knows secret key, provider does not



Symmetric Cryptography

Symmetric cryptography (aka. secret-key 
cryptography) considers the setting where the sender
and the receiver share the same secret key, and want 
to communicate securely in presence of an adversary.

• Sender = Alice, Receiver = Bob, Adversary = Eve
• Secret key is usually a (randomly chosen) string, hard to 

guess – e.g., 128 bits or more
• Sender = receiver possible (data-at-rest scenarios, Eve is 

the server/memory)



Symmetric Cryptography – Tasks 

1. Symmetric encryption

2. Symmetric message 
authentication

combination = 
authenticated 
encryption

Why important? A large portion of the cryptography 
you actually end up using is symmetric
• Super-fast, on-chip support, …



Symmetric Encryption Scheme

Definition. A symmetric encryption scheme consists of three 
algorithms Kg, Enc, and Dec

• Key generation algorithm Kg, takes no input and outputs a 
(random) secret key 𝐾

• Encryption algorithm Enc, takes input the key 𝐾 and the 
plaintext𝑀, outputs ciphertext C ← Enc(𝐾,𝑀)

• Decryption algorithm Dec, is such that
Dec 𝐾, Enc 𝐾,𝑀 = 𝑀



v

Symmetric Encryption – Confidentiality 

Alice Bob

Eve

C ← Enc(𝐾,𝑀) Dec 𝐾, 𝐶𝑀

𝐾 ← Kg

Should not learn 
anything about 𝑀

How do Alice and Bob agree on a key: Later in this class!



A toy cipher: Mono-alphabetic substitution

Key Generation: Random one-to-one mapping {A, B, …, Z} → {A, B, …, Z}

A B C D E F G H I J K L M

O C S G K H T E U Y P A X

N O P Q R S T U V W X Y Z

R I N D V Q F J Z B M W L

How many possible keys are there?

26×25×24×⋯ = 26!



A toy cipher: Mono-alphabetic substitution

Key Generation: Random one-to-one mapping {A, B, …, Z} → {A, B, …, Z}

A B C D E F G H I J K L M

O C S G K H T E U Y P A X

N O P Q R S T U V W X Y Z

R I N D V Q F J Z B M W L

Encryption: Replace every single letter with corresponding letter in secret key.



A toy cipher: Mono-alphabetic substitution

Key Generation: Random one-to-one mapping {A, B, …, Z} → {A, B, …, Z}

A B C D E F G H I J K L M

O C S G K H T E U Y P A X

N O P Q R S T U V W X Y Z

R I N D V Q F J Z B M W L

Encryption: Replace every single letter with corresponding letter in secret key.

Plaintext =
S O L O N G A N D T H A N K S F O R A L L T H E F I S H

Q I A I R T O R G F E O R P Q H I V O A A F E K H U Q E

Ciphertext =

Decryption?



Can be cast in the format defined above!

Definition. A symmetric encryption scheme consists of three 
algorithms Kg, Enc, and Dec

• Key generation algorithm Kg, takes no input and outputs a 
(random) secret key 𝐾

• Encryption algorithm Enc, takes input the key 𝐾 and the 
plaintext𝑀, outputs ciphertext C ← Enc(𝐾,𝑀)

• Decryption algorithm Dec, is such that
Dec 𝐾, Enc 𝐾,𝑀 = 𝑀



Is monoalphabetic substitution secure?

How do we decide whether a scheme is secure?



Breaking encryption

We need to address two questions:
1. What does the adversary know to start with?
2. What do we want to protect?



What does the attacker know: Kerchoff’s principle

A cryptosystem must be secure even if everything
about the system, except the key, is public knowledge.

In other words: No security by obscurity!
• Hiding specifications of encryption schemes still 

common in industrial settings 
• However, often fails. Example: GSM standard

https://www.sans.org/reading-room/whitepapers/telephone/gsm-standard-
an-overview-security-317 

Why is this a good idea?



Breaking encryption – the basic game

• Adversary does not learn the secret key
• Adversary knows the specification of Kg, Enc, and Dec. 

Ciphertext-only attack: The adversary sees ciphertexts
𝐶!, … , 𝐶", and should not be able to recover any “useful 
information” about the plaintexts 𝑀!, … ,𝑀"

v

C! ← Enc(𝐾,𝑀!)

Dec 𝐾, 𝐶𝑀", … ,𝑀#

𝐾 ← Kg

𝐶", … , 𝐶#



What is useful information?

• Recovering all of 𝑀!, … ,𝑀" is certain useful
• But recovering partial information is also useful 

(context-dependent)

Example of useful partial information:
Around 50% of the data has been erased 
from this picture, yet contents are still 
clear

Warning: One may have some a-priori information about the plaintext(s) (e.g., data consists 
of election results, pictures, tax forms). The goal is to recover information that is not a-priori 
known!



An important distinction – Security vs attacks

An attack is successful as long as it recovers some
useful information about the plaintext(s).

A secure encryption scheme should hide all 
possible partial information about the plaintext(s), 
since what is useful is usage-dependent. 



Do you need to recover the key?

However: attacker does not necessarily need to learn 
the key to compromise the encryption.

v

C! ← Enc(𝐾,𝑀!)

Dec 𝐾, 𝐶𝑀", … ,𝑀#

𝐾 ← Kg

𝐶", … , 𝐶#

Full break: Attacker recovers 𝐾 from 𝐶!, …𝐶"
Easy to recover any plaintext given 𝐾:  𝑀# ← Dec(𝐾, 𝐶#)



Mono-alphabetic Substitution Ciphers

Key Generation: Random one-to-one mapping {A, B, …, Z} → {A, B, …, Z}

A B C D E F … X Y Z

W T F N B H … Y O IK = 
plaintext digit

ciphertext digit

Encryption: Replace every single letter with corresponding letter in secret key.

so long and thanks 
for all the fish

id udea wen mswevi hdk
wuu msb hris

Can we break it with an ciphertext-only attack?



Not all letters are equally likely!

"English letter frequency (frequency)" by Nandhp - Own work

Possible solution: Encode text as 
something else (e.g., digits), 
eliminating frequency information.



Is this the only way to break a system?

No! Often, attacker can exploit additional partial 
information about the behavior of the scheme under 
the given secret key



Known-plaintext attacks

”The Bletchley Park team would guess 
some of the plaintext based upon when the 
message was sent. For instance, a daily 
weather report was transmitted by the 
Germans, at the same time every day. Due 
to the regimented style of military reports, it 
would contain the word Wetter (German for 
"weather") at the same location in every 
message and knowing the local weather 
conditions helped Bletchley Park guess 
other parts of the plaintext as well.”

https://en.wikipedia.org/wiki/Known-
plaintext_attack

https://en.wikipedia.org/wiki/Bletchley_Park


Common attack settings 

Ciphertext-only attack
• attacker only sees ciphertexts 𝐶!, … , 𝐶"

Known-plaintext attack
• attacker learn additionally some examples consisting 

of plaintext-ciphertext pairs 𝑀!∗, 𝐶!∗ , … , 𝑀%
∗ , 𝐶%∗

Chosen-plaintext attack
• attacker can arbitrarily choose what the plaintexts 
𝑀!∗, … ,𝑀%

∗ are in the examples



stronger 
attack

weaker 
attack

ciphertext-
only 

known 
plaintext

chosen 
plaintext

If encryption resists stronger class of attacks, it 
also offers stronger security!

Bottom line: Good encryption must resist chosen-
plaintext attacks! 



How does a known-plaintext attack affect monoalphabetic 
substitution?



Intercepted ciphertext:
Short = very hard, no 
effective statistical 
analysis!

I J K H L M A U B A I L U W M R

Secret key?

A B C D E F G H I J K L M

? ? ? ? ? ? ? ? ? ? ? ? ?

N O P Q R S T U V W X Y Z

? ? ? ? ? ? ? ? ? ? ? ? ?

Additionally intercepted plaintext-ciphertext pair:

N O T H I N G P R E A C H E S B E T T E R T H A N T H E A C T

D J M O W D Z H U A S I O A B E A M M A U M O S D M O A S I M

𝑀∗ =

𝐶∗ =

𝐶 =



Intercepted ciphertext:
Short = very hard, no 
effective statistical 
analysis!

I J K H L M A U B A I L U W M R

Secret key?

A B C D E F G H I J K L M

S E I ? A ? Z O W ? ? ? ?

N O P Q R S T U V W X Y Z

D J H ? U B M ? ? ? ? ? ?

𝐶 =

C O ? P ? T E R S E C ? R I T ?𝑀 =

Additionally intercepted plaintext-ciphertext pair:

N O T H I N G P R E A C H E S B E T T E R T H A N T H E A C T

D J M O W D Z H U A S I O A B E A M M A U M O S D M O A S I M

𝑀∗ =

𝐶∗ =



Fixing mono-alphabetic substitution

How can we prevent the above attacks?

Possible solution: Encrypt multiple characters at a time 
(call these blocks)!

AAAAAAAAAA AAAAAAAAAB AAAAAAAAAC … ZZZZZZZZZZ

ZIMDQQLPCV QVMWIAZFAA CUHDJQNXAZ MNIOWEWMBA

Why better? 

What is the problem? 

Statistical analysis harder, even known-plaintext attack above not very useful

Key length becomes enormous! Here, 2610 != 1.4 ⨉1014! keys 



Solution: Block cipher

Informal definition. A block cipher is a substitution 
cipher where the plaintext is made of blocks from a 
very large alphabet, but with a very compact key.

Formally, a special case of encryption algorithm:
• Kg outputs a random key of length 𝑘 bits

Typically 𝑘 = 128 or 𝑘 = 256
• Enc is such that for all keys 𝐾, Enc(𝐾, . ) is a one-to-one function 
{0,1}'→ {0,1}' [The substitution table]
𝑛 = block length; usually 𝑛 = 128

That is, the blocks are 𝑛-bit strings 



The magic of block ciphers

• There are 2!&'! permutations over 128-bit strings. 
If the key described the table for randomly chosen such 
permutation, the key would be roughly 128×2"() bits long 

• A block cipher is “as good as” choosing such a 
randomly chosen permutation, but only needs a 
short key, e.g., 128 bits

• How do we build them?
• Two examples next: DES and AES



Data encryption standard (DES)

FK1

L0               R0

+

FK2

+

… …

L1              R1

L2              R2

Originally called Lucifer
- Team at IBM, led by Horst Feistel
- Input from NSA
- Standardized by NIST in 1976

𝑛 = 64
𝑘 = 56

Split 64-bit input into L0,R0 of 32 bits each
Repeat round 16 times

Each round applies function F using 
separate round keys K1 … K16 derived from 
main key.



DES is essentially broken

Attack Attack type Complexity Year

Biham, Shamir Chosen plaintexts,
recovers key

247 plaintext, 
ciphertext pairs

1992

DESCHALL Unknown 
plaintext, 
recovers key

256/4 DES 
computations
41 days

1997

EFF Deepcrack Unknown 
plaintext,
recovers key

~4.5 days 1998

Deepcrack + 
DESCHALL

Unknown 
plaintext, 
recovers key

22 hours 1999

3DES (use DES 3 times in a row with more keys) expands 
keyspace to 168 bits and still found in practice 
(E.g., PIN-based card transactions)

Bottom line: While 3DES may still be fine, just stay away from it if you can! 



Advanced Encryption Standard (AES)

Response to 1990s attacks:
- NIST has design competition for new

block cipher standard
- 5 year design competition
- 15 designs, Rijndael design chosen
- AES is very fast (AES-NI native instruction on modern chips)



Advanced Encryption Standard (AES)

SP

M

+

…
Rijndael (Rijmen and Daemen)

𝑛 = 128
𝑘 = 128, 192, 256

For 𝑘 = 128 uses 10 rounds of:
1) Substitution–Permutation (SP) step : 

SubBytes (non-linear S-boxes)
ShiftRows + MixCols (invertible linear transform) 

2) XOR in a round key derived from K

SP

S1 K1

+S2 K2

SP



Best attacks against AES

Attack Attack type Complexity Year

Bogdanov, 
Khovratovich,
Rechberger

key recovery 2126.1 time + 
some data 
overheads

2011

- Brute force requires time 2128

- Approximately factor 4 speedup

Bottom line: AES is very secure, and there has been surprisingly little progress on 
breaking it! 
Pro-tip: If someone wants to use any different than AES, insist to know why and ask 
a cryptographer you trust. (Never trust home-brewed crypto.)

Exception: Lightweight applications (IoT, memory encryption) often require simpler 
ciphers, but no clear standard



Block Cipher Security Goal

Pseudorandom permutation (PRP)
Informally: A block cipher (e.g., AES) with block length 𝑛
under a random secret key behaves as an ideal mono-
alphabetic substitution cipher with 𝑛-bit alphabet 

• This can hold only for adversaries which have limited (yet large) 
adversarial resources, e.g., they are not able to recover the key 
(otherwise they will be able to tell)

• But as a system designer, you have to think of block ciphers as 
providing this functionality



Pseudorandom Permutations

EK

00000000

10110010

EK

00000000

10110010

EK

00000001

01101011

EK

10000001

10010100

…

Key K: Secret and random!

Important property: as long as the key is unknown and 
randomly chosen, outputs on different inputs look like 
random and independent strings



Example – Play with AES

128 bits = 16 bytes

secret key 1 = 

Plaintext Ciphertext (key 1)

00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00

5b c0 68 39 7b 4f 93 c4 
ce d1 6a 79 94 1a 48 30

00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 01

33 93 ed 94 85 c8 90 a7 
d0 33 9a 78 c0 63 33 d2

33 93 ed 94 85 c8 90 a7 
d0 33 9a 78 c0 63 33 d2

56 dc a7 27 4d eb d5 cd 
71 9c 7e a5 7a 54 67 4d

secret key 2 = 

Ciphertext (key 2)

7d f7 6b 0c 1a b8 99 b3 
3e 42 f0 47 b9 1b 54 6f

57 12 7d 40 34 b1 be bf 
ae f4 66 b9 c7 72 6f c6

8c f0 60 ca 67 67 8b 0a 
c6 64 9d 8f ae 76 d1 f8



How do we encrypt > 16 bytes?



Long messages – Electronic Codebook (ECB)

Message 𝑀 = “Hello CS177 students!” 
We use AES, 𝑛 = 128 = 16 bytes

48 65 6C 6C 6F 20 43 53 31 37 37 20 73 74 75 64 65 6E 74 73 21 00𝑀 =
𝑀[1] 𝑀[2]

0F 15 71 C9 47 D9 E8 59 0C B7 AD D6 AF 7F 67 98𝐾 =

To encrypt 𝑀 using the key K: 

48 65 6C 6C 6F 20 43 53 31 37 37 20 73 74 75 64 65 6E 74 73 21 00 00 00 00 00 00 00 00 00 00 00

9A A2 C6 6C 1B 8A 95 7C 99 67 68 6A 3D 78 7C A4 E3 3A 3A 4B E7 44 C3 3B AE 79 C3 29 65 53 35 C1

AESK AESK



Drawbacks of block ciphers

The same 16-byte sequence is always encrypted in the same 
way. Is this ever a problem?

Encrypted block-by-block

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

What does it mean to be secure? What should have we seen 
instead?



Right definition: Semantic Security
[Goldwasser-Micali, 1982]

Turing Award (2013)

“Right” definition of message 
confidentiality



Semantic Security
[Goldwasser-Micali, 1982]

K

00000000

Encryption reveals nothing about the message, not even whether 
the same message was encrypted earlier!

101011101010

K

00001000

001101101101

K

00000000

011101001101

Every time we encrypt (regardless of new or old message), ciphertext “looks random” 
to a computationally bounded adversary.



Semantic Security
[Goldwasser-Micali, 1982]

K

00000000

101011101010

K

00001000

001101101101

K

00000000

011101001101

To ensure this, encryption must use randomization
(many possible ciphertexts for same message)

Ciphertext must be longer than plaintext!



Semantically Secure Encryption

How do we achieve it from block ciphers?



A basic fact – Bitwise XOR

Bitwise XOR ⨁ of two strings 𝑋, 𝑌 ∈ {0,1}(

𝑋 0 1 0 0 1 0 1 1

𝑌 1 0 1 0 1 0 0 1

𝑋⨁𝑌 1 1 1 0 0 0 1 0

Example, 𝑛 = 8



XOR Magic - Masking

Fix a string 𝑋 ∈ {0,1}(

Question: How does 𝑋⨁𝐾 look like? 

Imagine we pick 𝐾 ∈ {0,1}( uniformly at random
That is each of the 2( possible strings is equally likely

Answer: 𝑋⨁𝐾 can become every string 𝑌 with 
probability 1/2(



XOR Magic - Masking

𝑋 0 1 0 0 1 0 1 1

𝐾 1 0 1 1 1 0 1 1

𝑋⨁𝐾 1 1 1 1 0 0 0 0

Example. 𝑋 = 01001011

What is the probability that 𝑋⨁𝐾 = 11110000?

This is exactly the probability that 𝐾 = 10111011, which is 
exactly 1/2'

But the same is true for every 𝑋 and every choice of 𝑋⨁𝐾 … 



The learnt lesson!

Masking: “If we bitwise-xor a random string 𝐾 to any 
string 𝑋, the outcome 𝐶 = 𝑋⨁𝐾 is random and 
independent of the original 𝑋, and thus hides 
everything about 𝑋.”



A little bit of notation

For string 𝑋 ∈ {0,1}( and natural number 𝑎 ∈ ℕ, define 
𝑋 + 𝑎 as the 𝑛-bit string obtained by:
1. Interpreting 𝑋 as the binary encoding of an integer 

𝑏) in {0,1, … , 2( − 1}
2. Compute the binary encoding 𝑌 of 𝑏) + 𝑎
3. Let 𝑋 + 𝑎 be the 𝑛 least significant bits of 𝑌

Examples: 𝑛 = 4

0000 + 1 = 0001 𝑏2 = 0 𝑏2 + 𝑎 = 1 𝑌 = 0001
0010 + 5 = 0111 𝑏2 = 2 𝑏2 + 𝑎 = 7 𝑌 = 0111
1111 + 2 = 0001 𝑏2 = 15 𝑏2 + 𝑎 = 17 𝑌 = 10001



Algorithm Enc(𝐾,𝑀):
Split 𝑀 into blocks 𝑀[1],… ,𝑀[𝑟]
// all blocks except possibly 𝑀[𝑟] are 𝑛-bits
Pick random IV ∈ {0,1}'
𝐶[0] ← IV
for 𝑖 = 1,… , 𝑟 do

𝑃[𝑖] ← 𝐸5(IV + 𝑖)
𝐶[𝑖] ← 𝑀[𝑖] ⊕ 𝑃[𝑖]

return 𝐶 0 , 𝐶 1 ,… , 𝐶[𝑟]

Counter Mode Encryption (CTR)

EK EK EK

M2 M3M1
P2 P3P1

IV

C0 C2 C3C1

IV + 1 IV + 2 IV + 3 

Note: If 𝑀[𝑟] shorter than 
𝑛 bits, then also shorten 
𝑃[𝑟] as necessary

How do we decrypt?



CTR – Example

Message 𝑀 = “Hello CS177 students!” 
We use CTR mode with AES, 𝑛 = 128 = 16 bytes

48 65 6C 6C 6F 20 43 53 31 37 37 20 73 74 75 64 65 6E 74 73 21 00𝑀 =
𝑀[1] 𝑀[2]

0F 15 71 C9 47 D9 E8 59 0C B7 AD D6 AF 7F 67 98𝐾 =

To encrypt 𝑀 using the key K: 
CC 32 FA B3 E9 12 47 81 FF 1B 3C D6 AA 98 42 03We have chosen at random IV =

CC 32 FA B3 E9 12 47 81 FF 1B 3C D6 AA 98 42 04IV + 1 =

CC 32 FA B3 E9 12 47 81 FF 1B 3C D6 AA 98 42 05IV + 2 =

CD 3E 82 98 67 6C BF 69 BA C2 67 E2 4A ED 06 6A𝑃 1 = 𝐴𝐸𝑆" IV + 1 =

33 22 04 53 B0 3A 1D DA 84 A9 40 A8 52 75 0B F7𝑃 2 = 𝐴𝐸𝑆" IV + 2 =



CTR – Example (cont’d)

Need to compute final ciphertext

CD 3E 82 98 67 6C BF 69 BA C2 67 E2 4A ED 06 6A 33 22 04 53 B0 3A

48 65 6C 6C 6F 20 43 53 31 37 37 20 73 74 75 64 65 6E 74 73 21 00

𝑀[1] 𝑀[2]

𝑃[1] 𝑃[2]⊕

85 5B EE F4 08 4C FC 3A 8B F5 50 C2 39 99 73 0E  56 4C 70 20 91 3A

𝐶[1] 𝐶[2]

CC 32 FA B3 E9 12 47 81 FF 1B 3C D6 AA 98 42 03

𝐶[0]

Final ciphertext!



CTR – Why is it secure?

Masking strings 𝑃[1], … , 𝑃[𝑟] generated upon each encryption will come from 
disjoint parts of the block cipher domain (with high probability), and thus look 
random and independent

000…0

111..1

block cipher domain (not to scale)

inputs evaluated upon encryption

Therefore: Every encryption adds a new, independent random 
mask to the plaintext, and thus (by our previously established fact 
about masking), every ciphertext looks like a fresh random string!



kn

Stream Ciphers

Masking-generation part can be abstracted through the concept 
of a stream cipher

EK EK EK

P2 P3P1

IV + 1 IV + 2 IV + 3 
IV

K

Efficient stream ciphers (not using block ciphers) exist:
• RC4 -- completely broken, do not use, but has had a hard time dying out

http://www.securityweek.com/new-attack-rc4-based-ssltls-leverages-13-year-old-vulnerability

• Better: Salsa20/ChaCha
Especially fast on architectures without AES-NI hardware support
Google likes it: https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html

Stream Cipher



Alternative: Ciphertext Block Chaining (CBC)

EK EK EK

M2 M3M1

C2 C3C1

IV

C0

Algorithm Enc(𝐾,𝑀):
Split 𝑀 into blocks 𝑀[1],… ,𝑀[𝑟]
// all blocks are 𝑛-bits
Pick random IV ∈ {0,1}'
𝐶[0] ← IV
for 𝑖 = 1,… , 𝑟 do

𝑃[𝑖] ← 𝐸5(𝑀[𝑖] ⊕ 𝐶[𝑖 − 1])
return 𝐶 0 , 𝐶 1 ,… , 𝐶[𝑟]

Note: One needs to make 
the message length a 
multiple of n bits. 



CBC vs CTR

• CBC offers roughly same security as CTR
– Security argument is less clear than in CTR

• For historical reasons, CBC more popular than CTR
• CTR is potentially faster than CBC, since the latter is 

inherently sequential, whereas CTR can be 
parallelized



v

Symmetric Encryption – Confidentiality 

Alice Bob

Eve

C ← Enc(𝐾,𝑀) Dec 𝐾, 𝐶𝑀

𝐾 ← Kg


