CS 177 - Computer Security

Linear Cryptanalysis

Linear Cryptanalysis

Linear Cryptanalysis

- Linear cryptanalysis
- known plaintext attack
- exploits high probability occurrences of linear relationships between plaintext, ciphertext, and key bits
- linear with regards to bitwise operation modulo 2 (i.e., XOR)
- expressions of form $X_{i 1} \oplus X_{i 2} \oplus X_{i 3} \oplus \ldots \oplus X_{i u} \oplus Y_{j 1} \oplus Y_{j 2} \oplus \ldots \oplus Y_{j v}=0$
$X_{i}=i$-th bit of input plaintext [$\left.X_{1}, X_{2}, \ldots\right]$
$Y_{j}=j$-th bit of output ciphertext $\left[Y_{1}, Y_{2}, \ldots\right]$
- for a perfect cipher, such relationships hold with probability $1 / 2$
- for vulnerable cipher, the probability p might be different from $1 / 2$
\rightarrow a bias $|p-1 / 2|$ is introduced

Linear Cryptanalysis

- 2 steps
- analyze the linear vulnerability of a single S-Box
- connect the output of an S-Box to the input of the S-Box in the next round and "pile up" probability bias
- To analyze a single S-Box, check all possible linear approximations $\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
E	4	D	1	2	F	B	8	3	A	6	C	5	9	0	7

$\left[Y_{1}, Y_{2}, Y_{3}, Y_{4}\right]$

Linear Cryptanalysis

X1	X2	X3	X4	Y1	Y2	Y3	Y4	$\mathrm{X} 1 \oplus \mathrm{X} 3 \oplus \mathrm{X} 4=\mathrm{Y} 2$	$\mathrm{X} 2=\mathrm{Y} 2 \oplus \mathrm{Y} 4$
0	0	0	0	1	1	1	0	F	F
0	0	0	1	0	1	0	0	T	F
0	0	1	0	1	1	0	1	T	T
0	0	1	1	0	0	0	1	T	F
0	1	0	0	0	0	1	0	T	F
0	1	0	1	1	1	1	1	T	F
0	1	1	0	1	0	1	1	F	T
0	1	1	1	1	0	0	0	T	F
1	0	0	0	0	0	1	1	F	F
1	0	0	1	1	0	1	0	T	T
1	0	1	0	0	1	1	0	F	F
1	0	1	1	1	1	0	0	T	F
1	1	0	0	0	1	0	1	T	F
1	1	0	1	1	0	0	1	T	T
1	1	1	0	0	0	0	0	T	F
1	1	1	1	0	1	1	1	T	F

Linear Cryptanalysis

- Linear approximations with many true or many false entries are interesting
$\begin{array}{ll}p(X 1 \oplus X 3 \oplus X 4=Y 2)=12 / 16=0.75 & {[\text { bias }=0.25]} \\ p(X 2=Y 2 \oplus Y 4)=4 / 16=0.25 & {[\text { bias }=-0.25]}\end{array}$
- How to connect probabilities between different rounds?
consider the following equations, when bias of X 1 is b 1 , and bias of X 2 is b 2

$$
\begin{aligned}
p(X 1 \oplus X 2=0) & =p(X 1)^{*} p(X 2)+(1-p(X 1))^{*}(1-p(X 2)) \\
& =(1 / 2+b 1)^{*}(1 / 2+b 2)+(1 / 2-b 1)^{*}(1 / 2-b 2) \\
& =1 / 2+2^{*} b 1 * b 2
\end{aligned}
$$

Linear Cryptanalysis

- Now, we show how we can eliminate intermediate variables

$$
\begin{aligned}
p(X 1 \oplus X 2=0) & =1 / 2+b 1,2 \\
p(X 2 \oplus X 3=0) & =1 / 2+b 2,3 \\
p(X 1 \oplus X 3=0) & =p([X 1 \oplus X 2] \oplus[X 2 \oplus X 3]=0) \\
& =1 / 2+2^{*} b 1,2 * b 2,3
\end{aligned}
$$

- Let $U_{i}\left(V_{i}\right)$ represent the 16 -bit block of bits at the input (output) of the S -Box of round i. Then, let $\mathrm{U}_{\mathrm{i}, \mathrm{k}}$ denote the k -th bit of the i -th round of the cipher. Similarly, let K_{i} represent the key of round i .

Linear Cryptanalysis

Linear Cryptanalysis

- With probability 0.75 (and bias $=0.25$), we have

$$
\begin{aligned}
\mathrm{V} 1,6 & =\mathrm{U} 1,5 \oplus \mathrm{U} 1,7 \oplus \mathrm{U} 1,8 \\
& =(\mathrm{P} 5 \oplus \mathrm{~K} 1,5) \oplus(\mathrm{P} 7 \oplus \mathrm{~K} 1,7) \oplus(\mathrm{P} 8 \oplus \mathrm{~K} 1,8)
\end{aligned}
$$

- For the second round, we obtain with probability 0.25 (bias $=-0.25$)
$\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8=\mathrm{U} 2,6$
- Because $\mathrm{U} 2,6=\mathrm{V} 1,6 \oplus \mathrm{~K} 2,6$ we can connect these two equations and get
$\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8=(\mathrm{P} 5 \oplus \mathrm{~K} 1,5) \oplus(\mathrm{P} 7 \oplus \mathrm{~K} 1,7) \oplus(\mathrm{P} 8 \oplus \mathrm{~K} 1,8) \oplus \mathrm{K} 2,6$
which can be rewritten as
$\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8 \oplus \mathrm{~K} 1,5 \oplus \mathrm{~K} 1,7 \oplus \mathrm{~K} 1,8 \oplus \mathrm{~K} 2,6=0$

This holds with a probability (see before) of $1 / 2+2^{*} 0.25^{*}(-0.25)=0.375$

Linear Cryptanalysis

- We continue to eliminate intermediate variables in intermediate rounds to obtain
$\mathrm{U} 4,6 \oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8 \oplus \Sigma=0$
where \sum is a constant factor (either 0 or 1 that depends on a number of key bits)

This equation holds with a probability of $15 / 32$ (with a bias of $-1 / 32$).

Because \sum is fixed, we know the following linear approximation of the cipher that holds with probability $15 / 32$ or $17 / 32$ (depending on whether \sum is 0 or 1):
$\mathrm{U} 4,6 \oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8=0$

Linear Cryptanalysis

- Given an equation that relates the input to the last round of S-Boxes to the plaintext, how can we get the key?
- We attack parts of the key (called target subkey) of the last round, in particular those bits of the key that connect the output of our S-Boxes of interest with the ciphertext

Given the equation $\mathrm{U} 4,6 \oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8=0$, we look at the 8 bits $\mathrm{K} 5,5-\mathrm{K} 5,8$ and $\mathrm{K} 5,13-\mathrm{K} 5,16$

Linear Cryptanalysis

- Idea
- for a large number of ciphertext and plaintext pairs, we first feed the ciphertext back into the active S-Boxes S_{42} and S_{44}
- because we do not know the target subkey, we have to repeat this feedback procedure for all possible 256 keys
- for each subkey, we keep a count on how often the linear equation holds
- when the wrong subkey is used
- the equation will hold with probability $1 / 2$ (similar to using random values)
- when the correct subkey is used
- the equation will hold with more or less often than $1 / 2$ (depending on the bias)
\rightarrow after all pairs of plaintext and ciphertext are checked, we take the subkey with the count that differs most from $1 / 2$

