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Is confidentiality everything we want?

Alice Bob

C Dec 𝐾, 𝐶𝑀

𝐾 𝐾



Confidentiality is not the only goal

We also want to make sure that the encryption scheme 
guarantees integrity

Imagine Eve tampers with ciphertext sent by Alice to 
Bob, then Bob must be able to detect it!



Encryption Integrity – Abstract scenario

K K

Alice Bob

Eve

𝐶 ← Enc(𝐾,𝑀)

𝐶’

𝑀 𝑀′ ← Dec(𝐾, 𝐶′)

We allow Dec to 
output ”error”

Scheme satisfies integrity if it is unfeasible for Eve to send 
𝐶’ not previously sent by Alice such that Dec(𝐾, 𝐶′) ≠ error



CTR and Integrity

Back to CTR example, imagine Eve sees the following ciphertext
[remember: it encrypts “Hello CS177 students!”, but Eve does not know this]

85 5B EE F4 08 4C FC 3A 8B F5 50 C2 39 99 73 0E  56 4C 70 20 91 3ACC 32 FA B3 E9 12 47 81 FF 1B 3C D6 AA 98 42 03

𝐶

85 5B EE F4 08 4C FC 3A 8B F5 5F C2 39 99 73 0E  56 4C 70 20 91 3ACC 32 FA B3 E9 12 47 81 FF 1B 3C D6 AA 98 42 03

𝐶’

Eve just changed four bits from 0 to 1, and sends 𝐶’ to Bob. 
Bob attempts to decrypt. What does he get?



CTR and Integrity – cont’d

CD 3E 82 98 67 6C BF 69 BA C2 67 E2 4A ED 06 6A 33 22 04 53 B0 3A

48 65 6C 6C 6F 20 43 53 31 37 38 20 73 74 75 64 65 6E 74 73 21 00

⊕

85 5B EE F4 08 4C FC 3A 8B F5 5F C2 39 99 73 0E  56 4C 70 20 91 3A

Which is the ASCII encoding 
for “Hello CS178 students!”

What happened? Eve flipped a few bits 
and produced a valid encryption for 
something that Alice never meant to 
send. NO integrity!

Bob decrypts by 
adding the mask 
back



Important message

“Classical” modes of operation like 
CTR and CBC never guarantee 
integrity, and should never be used by 
themselves.



v

Authenticated Encryption

AE = confidentiality + integrity

One of the trickiest topics in cryptography
• Many mistakes here have led to attacks
• Badly treated by current textbooks
• Misunderstanding is historically rooted

Central tool to achieve integrity: Message-authentication codes
(MACs) 



Message Authentication

Message Authentication Code (MAC) is an efficient 
algorithm that takes a secret key, a string of arbitrary 
length, and outputs an (unpredictable) short 
output/digest. 

MAC: {0,1}k × {0,1}* → {0,1}n

MAC(K, M) = MACK(M) = T

key
message tag



Message Authentication – Scenario

K K

Alice Bob

Eve

𝑀,𝑇 ← MAC(𝐾,𝑀)

𝑀!, 𝑇’

𝑀 𝑀′ or error

Output 𝑀′ iff
MAC 𝐾,𝑀′ = 𝑇′

MAC satisfies unforgeability if it is unfeasible for Eve to let 
Bob output 𝑀′ not previously sent by Alice.



MAC example

𝑀 = “Hello CS177 students!”

Note: No encryption in this example, this is only about integrity!

𝑇 = MAC 𝐾,𝑀 = 5f 68 18 21 b7 f5 
4f b1 10 3d fd fa 89 0e ca 1d 42 10 7d 

2f

𝑀′ = “Hello CS178 students!” 𝑇′ = MAC 𝐾,𝑀′ = ???

Any guess likely incorrect!



Baseline

• Knowing the key allows to compute/recompute the 
message tag.

• Not knowing the key makes the tag unpredictable 
(unless we have seen it already).



Hash functions and message authentication

Hash function H maps arbitrary bit string to fixed length string of
size m 

H
MD5:        m = 128 bits
SHA-1:      m = 160 bits
SHA-256:  m = 256 bits
SHA-3:       m >= 224 bits

M H(M)

Some security goals:   
- collision resistance: can’t find M != M’ such that H(M) = H(M’)
- preimage resistance: given H(M), can’t find M
- second-preimage resistance: given H(M), can’t find M’ s.t.

H(M’) = H(M)

Many MACs are built from cryptographic hash functions



Hash-function side-note

• MD5 and SHA-1 are broken
– Never use them in anything you are going to 

develop and/or deploy!
– https://www.youtube.com/watch?v=NbHL0SYlrSQ

• SHA-256, SHA-512, SHA-3, BLAKE2 all ok
• SHA-256/SHA-512 most widely used



Goal: Use a hash function H to build MAC 

HK || M

MAC(K, M) = H(K || M)

• Good option for SHA-3 / BLAKE2 

In other words: The MAC is the 
hash of the concatenation of the 
key and the message.

• Completely insecure for SHA-256/SHA-512
• Length extension attack
• from hash(m1), it is easy to compute hash(m1 ‖ m2)

Message authentication with hash functions



Goal: Use a hash function H to build MAC 

HK     ipad || M

TK      opad || h  H

ipad != opad are constants

HMAC(K,M)  defined by:

Unforgeability holds if H is secure in some well-defined sense
No attacks in particular for SHA-256/SHA-512

Message authentication with hash functions



Important

Hash function ≠ MAC

A hash function takes no key, a MAC is a secret-key 
primitive

Helpful intuition: A MAC is like a hash function which 
can only be evaluated by those having the secret key.



How to achieve integrity?

Combine a MAC and a semantically secure encryption 
scheme!

Best solution: Encrypt-then-MAC



Encrypt-then-MAC

M

Enc MAC

C T

K K’

Decryption: Given 𝐶∗ = (𝐶, 𝑇), first check 𝑇 valid tag for 𝐶 using 𝐾’
• If so, decrypt 𝐶, and output result
• If not, output “error”

EtM key consists of two keys 
(one for Enc, one for MAC)

EtM encryption 
algorithm

EtM ciphertext



Encrypt-then-MAC – why is it secure?

Integrity. If the attacker sees 𝐶∗ = (𝐶, 𝑇), and wants to 
change this to a valid 𝐶∗∗ = (𝐶′, 𝑇′) where 𝐶′ ≠ 𝐶, then 
it needs to forge the MAC, i.e., produce a new tag 𝑇′ for 
𝐶′.

Confidentiality. 𝐶∗ = (𝐶, 𝑇) does not leak more 
information about plaintext than 𝐶, because 𝑇 is 
computed from 𝐶 directly, and does not add 
extra information about plaintext.   

EtM is secure as long as encryption scheme is semantically secure, 
and MAC is unforgeable! 



Encrypt-then-MAC

Valid combinations are e.g.

{AES-CTR, AES-CBC} + {SHA-256-HMAC, SHA-512-HMAC} 



Authenticated Encryption – Bad Solutions

Enc

M

MAC

C

M || T

K2K1Enc

M

MAC

C

K2K1

T

Encrypt-AND-MAC MAC-then-Encrypt

Still, they are used all over the place, but just don’t use them



Public-key Encryption Scheme

Definition. A public-key encryption scheme consists of three 
algorithms Kg, Enc, and Dec

• Key generation algorithm Kg, takes no input and outputs a 
(random) public-key/secret key pair (𝑃𝐾, 𝑆𝐾)

• Encryption algorithm Enc, takes input the public key 𝑃𝐾 and 
the plaintext𝑀, outputs ciphertext C ← Enc(𝑃𝐾,𝑀)

• Decryption algorithm Dec, is such that
Dec 𝑆𝐾, Enc 𝑃𝐾,𝑀 = 𝑀



Asymmetric Encryption
(aka public-key encryption (PKE))

PK SK

Alice Bob

Eve

C = Enc(PK, M)

C

M M

PK

KgPK, SK

PK = public key
known to everyone

SK = secret key
known by Bob only



The RSA Algorithm

• Rivest, Shamir, Adleman 1978
• Garnered them a Turing award



RSA math

RSA setup
𝑝 and 𝑞 be large prime numbers (e.g., around 22048)

𝑁 = 𝑝𝑞
𝑁 is called the modulus

p = 7, q = 13, gives N = 91

p = 17, q = 53,  gives N = 901

typically referred to as “2048-bit primes”



Modular arithmetic – Basic sets

𝒁𝑁 = {0,1,2,3, … ,𝑁 − 1}

gcd(𝑋, 𝑌) = 1 if greatest common 
divisor of 𝑋, 𝑌 is 1

𝒁!∗ = { 𝑖 | gcd(𝑖, 𝑁) = 1 }



Basic sets – Example

𝑁 = 13 𝒁#$∗ = { 1,2,3,4,5,6,7,8,9,10,11,12 }

𝑁 = 15 𝒁#%∗ = { 1,2,4,7,8,11,13,14 }

Def. 𝜑 𝑁 = 𝒁&∗ (Euler’s totient function)

𝜑 13 =

𝜑 15 =

12

8

𝒁&∗ = { 𝑖 | gcd(𝑖, 𝑁) = 1 }

Fact. If 𝑝, 𝑞 are distinct primes, 𝜑 𝑝×𝑞 =
(𝑝 − 1)×(𝑞 − 1)

𝒁'(#%)∗ = 𝒁*∗ = { 1,3,5,7 }



Modular Arithmetic

Fact.  For any 𝑎,𝑁 with 𝑁 > 0, there exists unique q,r
such that   

𝑎 = 𝑁𝑞 + 𝑟 and        0 ≤ 𝑟 < 𝑁

Def.  𝑎 mod 𝑁 = 𝑟 ∈ 𝒁𝑁
17 mod 15 = 2
105 mod 15 = 0



RSA Math

Lemma. Suppose 𝑒, 𝑑 ∈ 𝒁.(/)∗ satisfy 𝑒𝑑 = 1 mod φ 𝑁 , 
then for any 𝑥 ∈ 𝒁/ we have that

𝑥1 2 = 𝑥12 = 𝑥 [ mod n ]

N = 15, e = 3, d = 3   [ ed mod φ(𝑁) = ed mod 8 = 1 ] 

x 1 2 4 7 8 11 13 14

y = x3 mod 15 1 8 4 13 2 11 7 14

y3 mod 15 1 2 4 7 8 11 13 14

Euler’s Theorem:



𝑃𝐾 = (𝑁, 𝑒) 𝑆𝐾 = (𝑁, 𝑑) with 𝑒𝑑 = 1 mod φ 𝑁

Enc((𝑁, 𝑒),𝑀) = 𝑀𝑒mod 𝑁

But how do we find suitable  𝑁, 𝑒, 𝑑?

Given φ 𝑁 = 𝑝 − 1 𝑞 − 1 , choose 𝑒 first, and then 
choose 𝑑 such that 𝑒𝑑 = 1 mod φ 𝑁 (An efficient 
algorithm for this exists.) 

RSA Encryption

Dec((𝑁, 𝑑), 𝐶) = 𝐶𝑑 mod 𝑁
Messages / ciphertexts
are elements of 𝒁&



Security of “plain” RSA

• Passive adversary sees N, e, and C
• Attacker would like to invert C (get M, or d)
• Possible attacks?

𝑀 C=Enc((𝑁, 𝑒),𝑀)

easy given N,e

hard given N,e
easy given N,d



Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⇥ y (mod N)

EASY because f �1(y) = yd mod N

Know d

EASY because d = e�1 mod �(N)

Know �(N)

EASY because �(N) = (p � 1)(q � 1)

Know p, q

?

Know N

60 / 1We don’t know if inverse is true, whether inverting RSA 
implies ability to factor, but they are equivalent in 
practical terms

Learning p,q from N is 
the factoring problem



Factoring composites – How hard?

• What is p,q for  N = 901?

Factor(N):
for i = 2 , … ,  sqrt(N) do

if N mod i = 0 then 
p = i
q = N / p
Return (p,q)

Woops… we can always factor

But not always efficiently:
Run time is sqrt(N)

O(sqrt(N)) = O(e0.5 ln(N))

If you do this, as soon as you reach 17, 
you will learn that 901 = 17 x 53



Factoring records

Algorithm Year Algorithm Time

RSA-400 1993 QS 830 MIPS
years

RSA-478 1994 QS 5000 MIPS
years

RSA-515 1999 NFS 8000 MIPS
years

RSA-768 2009 NFS ~2.5 years

RSA-x is an RSA challenge modulus of size x bits



Hybrid Encryption

Normally, public-key encryption is orders of magnitude 
slower than secret-key encryption.
• E.g., AES-NI instructions give CPU-level support for 

AES encryption/decryption

How do we deal with this?

Solution: Use public-key encryption only to agree on a 
secret key. Then, use secret-key encryption



Key Exchange

𝑃𝐾, 𝑆𝐾
← PKE−Kg

𝑃𝐾
𝐾 ← AE−Kg

𝐶 = PKE−Enc(𝑃𝐾,𝐾)

PKE scheme PKE = (PKE−Kg, PKE−Enc, PKE−Dec), 
Symmetric auth. encryption scheme AE = (AE−Kg, AE−Enc, AE−Dec)

Goal: Client and server agree on key 𝐾 for AE

𝐾 𝐾 = PKE−Dec(𝑆𝐾, 𝐶)



Hybrid Encryption

Key Exchange

AE−Enc(𝐾,𝑀!)

AE−Enc(𝐾,𝑀")

AE−Enc(𝐾,𝑀#)

AE−Enc(𝐾,𝑀$)

...

After agreeing on secret key 𝐾, the client and the server can 
exchange messages (very fast) using authenticated encryption
Overall structure behind TLS, SSH, etc. 



Other Key Agreement
Approaches

• Diffie-Hellman Key-Exchange
• Underlying mathematics based on the “discrete 

logarithm on elliptic curves”
• Better security, smaller bandwidth (256 bits per 

round vs 4096 bits for RSA)
• Main disadvantage: Less support (for now), but we 

are getting there – TLS 1.3



Caveat: Man-in-the-middle attacks

Adversary can transparently sit between client and server

𝑃𝐾′

𝐶′

𝐾 𝐾

𝑃𝐾

𝐶

𝐾

Adversary knows 
corresponding 𝑆𝐾’

Adversary now knows secret key K generated by client, as it is encrypted with her key 
(and she can then forward it to server, encrypting it with the server’s PK) 



Public-key infrastructures

Public-key cryptography enables individuals to generate their 
own key pairs, but how does one decide whether a (public) key 
is legitimate? 

google.com

facebook.com

twitter.com

cs.ucsb.edu

(𝑃𝐾", 𝑆𝐾")

(𝑃𝐾#, 𝑆𝐾#)

(𝑃𝐾$, 𝑆𝐾$)

(𝑃𝐾%, 𝑆𝐾%)

Example: We connect to google.com in TLS, receive 𝑃𝐾 -- how do we know whether 
𝑃𝐾 = 𝑃𝐾!? (And not something else sent by a man-in-middle?)



How do we resolve this?

Modern browser’s indeed complain when public-key not trusted



Naïve solution

Every browser stores a list of public keys of all possible 
services!

keys.txt:

google.com: 𝑃𝐾"
facebook.com: 𝑃𝐾#
twitter.com: 𝑃𝐾$
cs.ucsb.edu: 𝑃𝐾%
…

Good idea?

Obvious drawbacks:
• List is huge, needs to contain one 

entry for every address supporting 
TLS

• List needs to be updated/expanded
• Issuer of the list needs to ensure 

that all public keys are correct!
• User needs to trust issuer



Certificates – Transferring trust

We want a mechanism that enforces the following:

If A knows that 𝑃𝐾+ belongs to a trusted (in the eyes 
of A) entity B, and B knows that 𝑃𝐾, belongs to a 
trusted (in the eyes of B) entity C, then A should also 
trust C and 𝑃𝐾,.

Important fact: Normally, trust can only be transferred digitally, 
but never created. Initially, trust needs to be established off-
band. 



Certificates – Transferring trust

(𝑃𝐾", 𝑆𝐾")

(𝑃𝐾#, 𝑆𝐾#)

(𝑃𝐾$, 𝑆𝐾$)

tru
sts

 𝑷
𝑲
∗

trusts 𝑷𝑲𝟏

trusts 𝑷𝑲𝟐

trusts 𝑷𝑲
𝟑

trusts 𝑷𝑲𝟑

trusts 𝑷𝑲𝟐
trusts 𝑷𝑲𝟏

= direct trust
= indirect 
(cryptographically 
ensured) trust

(𝑃𝐾∗, 𝑆𝐾∗)

Client only 
needs to 
store 𝑷𝑲∗



Digital Signatures Think: The public-key version of a MAC!

Definition. A digitial signature scheme consists of three 
algorithms Kg, Sign, and Verify

• Key generation algorithm Kg, takes no input and outputs a 
(random) verification key/signing key pair (𝑉𝐾, 𝑆𝐾)

• Signing algorithm Sign, takes input the signing key 𝑆𝐾 and 
the plaintext𝑀, outputs ciphertext 𝑆 ← Sign(𝑆𝐾,𝑀)

• Verification algorithm Verify, is such that
Verify 𝑉𝐾, (𝑀, Sign 𝑆𝐾,𝑀 ) = 𝐯𝐚𝐥𝐢𝐝



Digital Signatures

SK VK

Alice Bob

Eve

M, S = SignSK(M)

M’, S’

M
M’ if VerifyVK(M’) = S’
error else

Unforgeability: Eve must not be able to generate valid S’ for M’ not 
sent by Alice, even given VK

VK

KgVK, SK



Digital Signatures Instantiations

Most commonly adopted: RSA Signatures

Hash the message, and apply RSA decryption i.e., 
• SK = (N, d)
• VK = (N, e)
• Sign(SK, M) = H(M)d mod N

Further common options: ECDSA and Ed25591
• rely on elliptic curves and give much smaller 

signatures and keys


