
UC Santa Barbara

CS189A - Capstone

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Project Assignments

•  All the teams must be formed today Monday, January 10th
–  If you have not done so yet, you have to form your teams and pick

a project

•  Each team must prepare a two page vision statement about the
project describing, due Friday, January 14th (23:59 PST)

•  A team member from each team is going to present (5 minutes)
this vision statement to the class on Friday, January 14th

•  Each team must form a Google group and must invite the
instructor, the TA, and the industry mentors for their project to
the group by Friday, January 14th

UC Santa Barbara

Software Engineering

•  In 1968 a seminal NATO Conference was held in Germany.

–  Purpose: to look for a solution to software crisis

–  50 top computer scientists, programmers and industry leaders got
together to look for a solution to the difficulties in building large
software systems (i.e., software crisis)

–  The term “software engineering” was first used in that conference
to indicate a systematic, disciplined, quantifiable approach to
the production and maintenance of software

•  Three-decades later (1994) an article in Scientific American
(Sept. 94, pp. 85-96) by W. Wayt Gibbs was titled:

–  “Software’s Chronic Crisis’’

UC Santa Barbara

Software’s Chronic Crisis

Large software systems often

•  do not provide the desired functionality

•  take too long to build

•  cost too much to build

•  require too much resources (time, space) to run

•  cannot evolve to meet changing needs
–  for every six large software projects that become operational, two

are canceled

–  on the average software development projects overshoot their
schedule by half

–  75% of the large systems do not provide required functionality

UC Santa Barbara

Dependability and Failures

•  It is extremely difficult to build dependable software systems
–  it is almost expected that any software system will have bugs

•  There is a long list of failed software projects and software
failures

•  You can find a list of famous software bugs at:
http://www5.in.tum.de/~huckle/bugse.html

•  I will talk about two famous and interesting software bugs

UC Santa Barbara

Ariane 5 Failure

•  A software bug caused European Space Agency’s Ariane 5
rocket to crash 40 seconds into its first flight in 1996 (cost: half
billion dollars)

UC Santa Barbara

Ariane 5 Failure

•  The bug was caused because of a software component that was being
reused from Ariane 4

•  A software exception occurred during execution of a data conversion
from 64-bit floating point to 16-bit signed integer value
–  the value was larger than 32,767, the largest integer storable in a 16

bit signed integer, and thus, the conversion failed and an exception
was raised by the program

•  When the primary computer system failed due to this problem, the
secondary system started running.
–  secondary system was running the same software, so it failed too!

UC Santa Barbara

Ariane 5 Failure

•  The programmers for Ariane 4 decided that this particular velocity
figure would never be large enough to raise this exception.
–  Ariane 5 was a faster rocket than Ariane 4!

•  The calculation containing the bug actually served no purpose
once the rocket was in the air.
–  Engineers chose long ago, in an earlier version of the Ariane rocket,

to leave this function running for the first 40 seconds of flight to make
it easy to restart the system in the event of a brief hold in the
countdown.

•  You can read the report of Ariane 5 failure at:
 http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

UC Santa Barbara

Mars Pathfinder

•  A few days into its mission, NASA’s Mars Pathfinder computer
system started rebooting itself
–  cause: priority inversion during preemptive priority

scheduling of threads

UC Santa Barbara

Mars Pathfinder

•  Priority inversion occurs when
–  a thread that has higher priority is waiting for a resource held

by thread with a lower priority

•  Pathfinder contained a data bus shared among multiple threads
and protected by a mutex lock

•  Two threads that accessed the data bus were: a high-priority bus
management thread and a low-priority meteorological data
gathering thread

•  Yet another thread with medium-priority was a long running
communications thread (which did not access the data bus)

UC Santa Barbara

Mars Pathfinder

The meteorological data gathering thread accesses the bus and obtains the mutex
lock

While the meteorological data gathering thread is accessing the bus, an interrupt
causes the high-priority bus management thread to be scheduled

Bus management thread tries to access the bus and blocks on the mutex lock

Scheduler starts running the meteorological thread again

Before the meteorological thread finishes its task yet another interrupt occurs and
the medium-priority (and long running) communications thread gets scheduled

At this point high-priority bus management thread is waiting for the low-priority
meteorological data gathering thread, and the low-priority meteorological data
gathering thread is waiting for the medium-priority communications thread

Since communications thread had long-running tasks, after a while a watchdog timer
would go off and notice that the high-priority bus management thread has not
been executed for some time and conclude that something was wrong and
reboot the system

UC Santa Barbara

The problem scenario

Meteorological (low) Bus Manager (high) Communication (medium)

Running, gets the lock

Waiting, has the lock Running

Waiting, has the lock Running, wants the lock

Running, has the lock Blocked due to the lock

Waiting, has the lock Blocked due to the lock Running

Since the execution of the Communication thread takes too long, the Bus Manager
thread is blocked for a long time. So the system reboots.

UC Santa Barbara

Software’s Chronic Crisis

•  These are not isolated incidents:
–  IBM survey of 24 companies developing distributed systems:

•  55% of the projects cost more than expected
•  68% overran their schedules
•  88% had to be substantially redesigned

UC Santa Barbara

Software’s Chronic Crisis

14

UC Santa Barbara

Capability Maturity Model

•  Maturity levels used to evaluate software development processes

–  1) Initial. The software process is characterized as ad hoc, and
occasionally even chaotic. Few processes are defined, and success
depends on individual effort and heroics.

–  2) Repeatable. Basic project management processes are established
to track cost, schedule, and functionality. The necessary process
discipline is in place to repeat earlier successes on projects with
similar applications.

–  3) Defined. The software process for both management and
engineering activities is documented, standardized, and integrated
into a standard software process for the organization. All projects use
an approved, tailored version of the organization's standard software
process for developing and maintaining software.

UC Santa Barbara

Capability Maturity Model

•  Maturity levels used to evaluate software development processes

–  4) Managed. Detailed measures of the software process and product
quality are collected. Both the software process and products are
quantitatively understood and controlled.

–  5) Optimizing. Continuous process improvement is enabled by
quantitative feedback from the process and from piloting innovative
ideas and technologies.

UC Santa Barbara

Software’s Chronic Crisis

•  Software product size is increasing exponentially
–  faster, smaller, cheaper hardware

•  Software is everywhere: from TV sets to cell-phones

•  Software is in safety-critical systems
–  cars, airplanes, nuclear-power plants

•  We are seeing more of
–  distributed systems
–  embedded systems
–  real-time systems

•  Software requirements change
–  software evolves rather than being built

UC Santa Barbara

Summary

•  Software’s chronic crisis: Development of large software
systems is a challenging task
–  Large software systems often: Do not provide the desired

functionality; Take too long to build; Cost too much to build Require
too much resources (time, space) to run; Cannot evolve to meet
changing needs

•  Software engineering focuses on addressing challenges that
arise in development of large software systems using a
systematic, disciplined, quantifiable approach

UC Santa Barbara

No Silver Bullet

•  In 1987, in an article titled

 “No Silver Bullet: Essence and Accidents of Software Engineering”

 Frederick P. Brooks made the argument that there is no silver
bullet that can kill the werewolf software projects

•  Following Brooks, let’s philosophize about software a little bit

UC Santa Barbara

Essence vs. Accident

•  Essence vs. accident in software development
–  we can get rid of accidental difficulties in developing software
–  getting rid of these accidental difficulties will increase productivity

•  For example, using a high level programming language instead
of assembly language programming
–  the difficulty we remove by replacing assembly language with a

high-level programming language is not an essential difficulty of
software development

•  it is an accidental difficulty brought by inadequacy of assembly
language for programming

UC Santa Barbara

Essence vs. Accident

 Essence vs. accident in software development

 “The essence of a software entity is a construct of interlocking
concepts: data sets, relationships among data items, algorithms and
invocations of functions. This essence is abstract in that such a
conceptual construct is the same under many different
representations. ... The hard part of building software is the
specification, design, and testing of this conceptual construct, not the
labor of representing it and testing the fidelity of the representation.”

 Even if we remove all accidental difficulties which arise during the
translation of this conceptual construct (design) to a representation
(implementation), still at its essence software development is difficult

UC Santa Barbara

Inherent Difficulties in Software

•  Software has the following properties in its essence:
–  complexity
–  conformity
–  changeability
–  invisibility

•  Since these properties are not accidental representing software
in different forms do not effect them

•  The moral of the story:
–  Do not raise your hopes up for a silver bullet, there may never be a

single innovation that can transform software development as
electronics, transistors, integrated-circuits and VLSI transformed
computer hardware

UC Santa Barbara

Complexity

•  Software systems do not have regular structures, there are no
identical parts

•  Identical computations or data structures are not repeated in
software

•  In contrast, there is a lot of regularity in hardware
–  for example, a memory chip repeats the same basic structure

millions of times

UC Santa Barbara

Complexity

•  Software systems have a very high number of discrete states
–  Infinite if the memory is not bounded

•  Elements of software interact in a non-linear fashion

•  Complexity of the software increases much worse than linearly
with its size

UC Santa Barbara

Complexity

•  Consider a plane that is going into a wind-tunnel for aerodynamics
tests
–  during that test it does not matter what is the fabric used for the seats

of the plane, it does not even matter if the plane has seats at all!
–  only thing that matters is the outside shape of the plane
–  this is a great abstraction provided by the physical laws and it helps

mechanical engineers a great deal when they are designing planes

•  Such abstractions are available in any engineering discipline that
deals with real world entities

•  Unfortunately, software engineers often do not have the luxury of
using such abstractions which follow from physical laws
–  software engineers have to develop the abstractions themselves

(without any help from the physical laws)

UC Santa Barbara

Conformity

•  Software has to conform to its environment
–  Software conforms to hardware interfaces not the other way around

•  Most of the time software systems have to interface with an
existing system

•  Even for a new system, the perception is that, it is easier to
make software interfaces conform to other parts of the system

UC Santa Barbara

Changeability

•  Software is easy to change, unlike hardware

•  Once an Intel processor goes to the production line, the cost of
replacing it is enormous (Pentium bug cost half billion dollars)

•  If a Microsoft product has a bug, the cost of replacing it is
negligible
–  just put the new download on a webpage and ask users to update

their software

UC Santa Barbara

Changeability is not an Advantage

•  Although it sounds like, finally, software has an advantage over
hardware, the effect of changeability is that there is more
pressure on changing the software

•  Since software is easy to change software gets changed
frequently and deviates from the initial design
–  adding new features
–  supporting new hardware

UC Santa Barbara

Changeability

•  Conformity and Changeability are two of the reasons why
reusability is not very successful in software systems

•  Conformity and Changeability make it difficult to develop
component based software, components keep changing

UC Santa Barbara

Invisibility

•  Software is invisible and un-visualizable
–  complete views can be incomprehensible
–  partial views can be misleading
–  all views can be helpful

•  Geometric abstractions are very useful in other engineering
disciplines
–  Floor plan of a building helps both the architect and the client to

understand and evaluate a building

•  Software does not exist in physical space and, hence, does not
have an inherent geometric representation

UC Santa Barbara

Invisibility

•  Visualization tools for computer aided design are very helpful to
computer engineers
–  software tools that show the layout of the circuit (which has a two-

dimensional geometric shape) makes it much easier to design a
chip

•  Visualization tools for software are not as successful
–  there is nothing physical to visualize, it is hard to see an abstract

concept
–  there is no physical distance among software components that can

be used in mapping software to a visual representation
–  UML and similar languages are making progress in this area

UC Santa Barbara

Summary

•  According to Brooks, there are essential difficulties in software
development which prevents significant improvements in
software engineering:
–  Complexity; Conformity; Changeability; Invisibility

•  He argues that an order of magnitude improvement in software
productivity cannot be achieved using a single technology due
to these essential difficulties

UC Santa Barbara

How Should We Build Software?

Let’s look at an example

•  Assume we asked our IT folks if they can do the following:
–  Every year all the PhD students in our department fill out a progress report

that is evaluated by the graduate advisors. We want to make this online.

•  After we told this to our IT manager, he said “OK, let’s have a meeting
so that you can explain us the functionality you want.”

•  We scheduled a meeting and at the meeting we went over
–  The questions that should be in the progress report
–  Type of answers for each question (is it a text field, a date, a number, etc?)
–  What type of users will access this system (students, faculty, staff)?
–  What will be the functionality available to each user?

UC Santa Barbara

Requirements Analysis and Specification

•  Meeting where we discussed the functionality, input and output
formats, types of users, etc. is called requirements analysis
–  during requirements analysis software developers try to figure out the

functionality required by the client

•  After the requirements analysis all these issues can be clarified in a
Software Requirements Specification (SRS) document
–  maybe the IT folks who attended the requirements analysis meeting are

not the ones who will develop the software, so the software developers
will need a specification of what they are supposed to build.

•  Writing precise requirements specifications can be challenging:
–  formal (mathematical) specifications are precise,

 but hard to read and write
–  English is easy to read and write, but ambiguous

UC Santa Barbara

Design

•  After figuring out the requirements specifications, we have to
build the software

•  In our example, we assume that the IT folks are going to talk
about the structure of this application first
–  there will be a backend database, the users will first login using an

authorization module, etc.

UC Santa Barbara

Design

•  Deciding on how to modularize the software is part of the
 architectural design

–  it is helpful (most of the time necessary, since one may be working
in a team) to document the design architecture (i.e., modules and
their interfaces) before starting the implementation

•  After figuring out the modules, the next step is to figure out how
to build those modules

•  Detailed design involves writing a detailed description of the
processing that will be done in each module before
implementing it
–  generally written in some structured pseudo-code

UC Santa Barbara

Implementation and Testing

•  Finally, the IT folks are going to pick an implementation
language (PHP, Java Servlets, etc) and start writing code

•  This is the implementation phase
–  implement the modules defined by the architectural design and the

detailed design.

•  After the implementation is finished the IT folks will need to
check if the software does what it is supposed to do

•  Use a set of inputs to test the program
–  when are they done with testing?
–  can they test parts of the program in isolation?

UC Santa Barbara

Maintenance

•  After they finished the implementation, tested it, fixed all the
bugs, are they done?

•  No, we (client) may say, “I would like to add a new question to
the PhD progress report” or “I found a bug when I was using it”
or “You know, it would be nice if we can also do the MS
progress reports online” etc.
–  The difficulty of changing the program may depend on how we

designed and implemented it

•  This is called the maintenance phase where the software is
continually modified to adopt to the changing needs of the
customer and the environment.

UC Santa Barbara

Software Process Models

•  Software process (software life-cycle) models
–  Determine the stages (and their order) involved in software

development and evolution
–  Establish the transition criteria for progressing from one stage to

the next

•  Software process models answer the questions:
–  What shall we do next?
–  How long shall we continue to do it?

UC Santa Barbara

Waterfall Model
requirements analysis
and specification

design

implementation

testing and
integration

maintenance

The waterfall model

Software product is not only the executable file:
source code, test data, user manual, requirements specification, design specification

UC Santa Barbara

Waterfall Model

•  Waterfall model is document-driven

•  Documents
–  requirements specification, design specification, test-plan
–  these documents are crucial in achieving maintainability,

traceability and visibility

•  Feedback loops between different stages are confined to
successive stages to minimize the expensive rework involved in
feedback across many stages

UC Santa Barbara

Waterfall Model

Problems with waterfall model

–  Because of the restricted feedback loops, waterfall model is
essentially sequential

•  for example, the requirements have to be stated completely before the
implementation starts.

•  it is often difficult for the customer to state all requirements explicitly
•  it is hard to handle changes in the requirements

–  A working model of the software is not available until late in the
project life-span

•  an undetected mistake can be very costly to fix
•  the delivered program may not meet the customer’s needs

–  For interactive, end-user applications document-driven approach
may not be suitable.

•  for example, it is hard to document a GUI

