
UC Santa Barbara

CS189A - Capstone

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

How Should We Build Software?

Let’s look at an example

•  Assume we asked our IT folks if they can do the following:
–  Every year all the PhD students in our department fill out a progress report

that is evaluated by the graduate advisors. We want to make this online.

•  After we told this to our IT manager, he said “OK, let’s have a meeting
so that you can explain us the functionality you want.”

•  We scheduled a meeting and at the meeting we went over
–  The questions that should be in the progress report
–  Type of answers for each question (is it a text field, a date, a number, etc?)
–  What type of users will access this system (students, faculty, staff)?
–  What will be the functionality available to each user?

UC Santa Barbara

Requirements Analysis and Specification

•  Meeting where we discussed the functionality, input and output
formats, types of users, etc. is called requirements analysis
–  during requirements analysis software developers try to figure out the

functionality required by the client

•  After the requirements analysis all these issues can be clarified in a
Software Requirements Specification (SRS) document
–  maybe the IT folks who attended the requirements analysis meeting are

not the ones who will develop the software, so the software developers
will need a specification of what they are supposed to build.

•  Writing precise requirements specifications can be challenging:
–  formal (mathematical) specifications are precise,

 but hard to read and write
–  English is easy to read and write, but ambiguous

UC Santa Barbara

Design

•  After figuring out the requirements specifications, we have to
build the software

•  In our example, we assume that the IT folks are going to talk
about the structure of this application first
–  there will be a backend database, the users will first login using an

authorization module, etc.

UC Santa Barbara

Design

•  Deciding on how to modularize the software is part of the
 architectural design

–  it is helpful (most of the time necessary, since one may be working
in a team) to document the design architecture (i.e., modules and
their interfaces) before starting the implementation

•  After figuring out the modules, the next step is to figure out how
to build those modules

•  Detailed design involves writing a detailed description of the
processing that will be done in each module before
implementing it
–  generally written in some structured pseudo-code

UC Santa Barbara

Implementation and Testing

•  Finally, the IT folks are going to pick an implementation
language (PHP, Java Servlets, etc) and start writing code

•  This is the implementation phase
–  implement the modules defined by the architectural design and the

detailed design.

•  After the implementation is finished the IT folks will need to
check if the software does what it is supposed to do

•  Use a set of inputs to test the program
–  when are they done with testing?
–  can they test parts of the program in isolation?

UC Santa Barbara

Maintenance

•  After they finished the implementation, tested it, fixed all the
bugs, are they done?

•  No, we (client) may say, “I would like to add a new question to
the PhD progress report” or “I found a bug when I was using it”
or “You know, it would be nice if we can also do the MS
progress reports online” etc.
–  The difficulty of changing the program may depend on how we

designed and implemented it

•  This is called the maintenance phase where the software is
continually modified to adopt to the changing needs of the
customer and the environment.

UC Santa Barbara

Software Process Models

•  Software process (software life-cycle) models
–  Determine the stages (and their order) involved in software

development and evolution
–  Establish the transition criteria for progressing from one stage to

the next

•  Software process models answer the questions:
–  What shall we do next?
–  How long shall we continue to do it?

UC Santa Barbara

Waterfall Model
requirements analysis
and specification

design

implementation

testing and
integration

maintenance

The waterfall model

Software product is not only the executable file:
source code, test data, user manual, requirements specification, design specification

UC Santa Barbara

Waterfall Model

•  Waterfall model is document-driven

•  Documents
–  requirements specification, design specification, test-plan
–  these documents are crucial in achieving maintainability,

traceability and visibility

•  Feedback loops between different stages are confined to
successive stages to minimize the expensive rework involved in
feedback across many stages

UC Santa Barbara

Waterfall Model

Problems with waterfall model

–  Because of the restricted feedback loops, waterfall model is
essentially sequential

•  for example, the requirements have to be stated completely before the
implementation starts.

•  it is often difficult for the customer to state all requirements explicitly
•  it is hard to handle changes in the requirements

–  A working model of the software is not available until late in the
project life-span

•  an undetected mistake can be very costly to fix
•  the delivered program may not meet the customer’s needs

–  For interactive, end-user applications document-driven approach
may not be suitable.

•  for example, it is hard to document a GUI

UC Santa Barbara

Rapid Prototyping

•  After an initial requirements analysis, a quick design is
developed

•  This quick design should focus on aspects of the software that
will be visible to the user such as input/output formats

•  The quick design is used to construct a prototype

•  The prototype is reviewed by the customer and/or user to refine
the requirements for the software to be developed

•  Prototype serves as a mechanism for identifying software
requirements

•  Especially useful for interactive applications

UC Santa Barbara

Rapid Prototyping

•  Dangers of prototyping

–  The quick and possibly poor choices made in the design and the
implementation of the prototype may influence the real product

–  After seeing a prototype customer may demand a working product
fast

–  The prototype becomes the requirements specification. Since
requirements specification serves as a contract between customer
and developer, a prototype may not be a good contract

UC Santa Barbara

Determine
objectives,
alternatives,
constraints

Evaluate
alternatives,
identify, resolve
risks

Develop,
verify
next-level
product

Plan next
phase

radial dimension shows the cumulative cost
angular dimension shows the progress in
each cycle

cumulative cost

progress in
each cycle

start

Spiral Model

UC Santa Barbara

Spiral Model

•  Spiral model consists of iterative cycles
•  Spiral model can be considered a generalization of other

process models
•  Each cycle consists of four steps:

Step 1
–  Identify the objectives (for example: performance, functionality,

ability to accommodate change)
–  Identify the alternative means of implementing this portion of the

product (for example: different designs, reuse, buy)
–  Identify the constraints imposed on the application of the

alternatives (for example: cost, schedule)

UC Santa Barbara

Spiral Model

Step 2
–  Evaluate the alternatives relative to objectives and constraints.

–  Evaluate the risks involved with each alternative

–  Resolve the risks using prototyping, simulation, benchmarking,
requirements analysis, etc.

•  alternative: write a requirements specification

•  risk: customer may not be able to articulate the requirements precisely
which may end up a costly redevelopment effort

•  risk resolution: develop a rapid prototype

UC Santa Barbara

Spiral Model

Step 3
–  Develop and verify the product

–  Product could be the software requirements specification, the
design specification, etc.

Step 4
–  Plan the next phase

–  Depending on the next-phase this could be a requirements plan, an
integration and test plan, etc.

UC Santa Barbara

Spiral Model

•  The basic idea in spiral model is to evaluate and resolve risks at
every step of the development

•  Based on the risks involved in the development spiral model
may become equivalent to other models (or a mixture of them)
–  If a project has a low risk in user-interface and performance

requirements and has a high risk in budget and schedule
predictability and control, based on these risks spiral model may
turn into the waterfall model

•  The challenges in using the spiral model
–  relies on risk assessment expertise
–  steps of the software life-cycle are not clearly defined

UC Santa Barbara

How Microsoft Builds Software
M. A. Cusumano and R. W. Selby, Communications of the ACM, 1997

•  Microsoft 1996 numbers
–  big company

•  20,500 employees (2010: 80-90K)

•  250 products

•  $8.7 billion in revenues (2010: $62 billon)

–  big products
•  Windows 95: more than 11 million lines of code, a development team of

200 programmers and testers

•  Windows 7: 50+ million lines, 25 feature teams, 40 developers each

UC Santa Barbara

How Microsoft Builds Software
M. A. Cusumano and R. W. Selby, Communications of the ACM, 1997

•  Microsoft philosophy for product development: to cultivate its roots as a
highly flexible entrepreneurial company

–  do not adopt too many of the structured software-engineering practices

–  scale up the loosely structured (hacker) style of development

UC Santa Barbara

Challenges for Microsoft

Large complex software products

•  Cannot be built by 2-3 person teams

•  Team members need to create components that are
interdependent

•  Sequential life-cycle models such as waterfall model does not
work very well
–  It is hard to define components accurately in the early stages of the

development cycle

–  Requirements evolve during the development process

UC Santa Barbara

Microsoft’s Approach

Microsoft’s approach:

•  Small parallel teams (three to eight developers each) or
individual programmers

•  Individual programmers and teams have freedom to evolve their
designs and operate nearly autonomously

•  Teams synchronize their changes frequently to make sure that
the product components all work together

UC Santa Barbara

Synch-and-Stabilize Approach

•  Continually synchronize what people are doing as individuals
and as members of parallel teams and periodically stabilize the
product in increments
–  milestone, daily build, nightly build, zero-defect

•  Build: putting together partially completed pieces of a software
product during the development process to see what functions
work and what problems exist, usually by completely
recompiling the source code and executing automated
regression tests

UC Santa Barbara

Synch-and-Stabilize Approach

•  Three phases

–  Planning Phase: Define product vision, specification and schedule

–  Development Phase: Feature development in 3 or 4 sequential
subprojects that each results in a milestone release

–  Stabilization Phase: Comprehensive internal and external testing
after each milestone, final product stabilization and ship

UC Santa Barbara

Planning Phase

•  Planning Phase
–  Vision Statement: product managers (marketing specialists) and

program managers (who specialize in writing functional
specifications) use extensive customer input to identify priority-
order product features

–  Specification Document: Based on the vision statement, program
management and development group define feature functionality,
architectural issues, and component interdependencies

–  Schedule and Feature Team Formation: Based on the
specification document, program management coordinates
schedule and arranges feature teams that each contain
approximately 1 program manager, 3-8 developers and 3-8 testers
(testers work in parallel, 1:1 with developers)

Experience shows that initial feature set may change up to 30%

UC Santa Barbara

Development Phase
•  Development Phase

–  Program managers coordinate the evolution of the specification. Developers
design, code, and debug. Testers pair with developers for continuous
testing

–  Milestone 1: First 1/3 of features (Most critical features and shared
components

–  Milestone 2: Second 1/3 of features
–  Milestone 3: Final 1/3 of features (Least critical features)

All the feature teams go through a complete cycle of development, feature
integration, testing and fixing problems in each milestone

Throughout the project the feature teams synchronize their work by
building the product and by finding and fixing errors on a daily and
weekly basis

At the end of a milestone the developers fix almost all the errors detected
and stabilize the product

UC Santa Barbara

Development Phase: Milestones
Milestone 1 (first 1/3 features)

– Development (design, coding, prototyping)
– Usability lab
– Private release testing
– Daily builds
– Feature debugging
– Feature integration
– Code stabilization
– Buffer time (20-50%)

Milestone 2 (next 1/3 of the features)
– Development
– Usability lab
– Private release testing
– Daily builds
– Feature Debugging
– Feature Integration
– Code stabilization
– Buffer time

Milestone 3 (last set)
– Development
– Usability lab
– Private release testing
– Daily builds
– Feature Debugging
– Feature Integration
– Feature Complete
– Code Complete
– Code stabilization
– Buffer time
– Zero-defect release
– Release to Manufacturing

UC Santa Barbara

Stabilization Phase

•  Stabilization Phase
–  Program managers coordinate with OEMs (Original Equipment

Manufacturers) and ISVs (Independent Software Vendors) and
monitor customer feedback. Developers perform final debugging
and code stabilization. Testers recreate and isolate errors

–  Internal testing: Thorough testing of complete product

–  External testing: Thorough testing of complete product outside of
company by “beta” sites such as OEMs or ISVs and end users

–  Release preparation: Prepare final release of “golden master” disk
and documentation for manufacturing

UC Santa Barbara

Synch-and-Stabilize Approach: Requirements

•  Vision statement and feature specifications to guide projects
–  leaves developers and program managers room to innovate or adapt to

changed or unforeseen competitive opportunities and threats

•  Base feature selection and priority order on user activities and data
–  Particularly for end-user applications there is a need for continuous

observation and testing by real users during development

UC Santa Barbara

Synch-and-Stabilize Approach: Project Management

•  Divide large projects into multiple milestone cycles with buffer
time (20-50% of total project time) and no separate product
maintenance group
–  buffer times give people time to respond to changes and

unexpected difficulties and delays

•  Control by individual commitments to small tasks and fixed
project resources
–  Managers allow team members to set their own schedules but only

after the developers have analyzed tasks in detail (for example half-
day to three-day chunks). Team members are asked to personally
commit to the schedules they set.

–  Managers then fix project resources by limiting the number of
people they allocate to each project, they also try to limit the time
spent on projects (teams can sometimes delete features if they fall
too far behind)

UC Santa Barbara

Synch-and-Stabilize Approach: Design

•  Evolve a modular design architecture mirroring the product
structure in the project structure
–  Modular architecture allows teams to incrementally add or combine

features

UC Santa Barbara

Synch-and-Stabilize Approach: Implementation

•  Work in parallel teams but “synch up” and debug daily
–  Developers can check-out private copies of source code files from a

centralized master version of the source code.
–  Developers implement their features by changing the private copies of the

source code files.
–  Developers create private build of the product containing the new feature

and test it
–  Then they check-in their private copy of the source code to the master

version. Check-in process includes an automated regression test to make
sure that there are no new errors.

–  Developers typically check-in their code twice a week

•  Always have a product you can ship
–  versions for every major platform and market
–  designated developer (project build master) generates a complete build of

the product on a daily basis

UC Santa Barbara

Synch-and-Stabilize Approach: Testing/Debugging

•  Speak a “common language” on a single development site
–  Nearly all teams work on the same physical site with common

development languages (C, C++) common coding styles, and
standardized development tools

•  Continuously test the product as you build it
–  Product teams test the product as they build them including usability

tests on users

•  Metric data to determine milestone completion and product release
–  By monitoring metrics such as how many bugs are newly opened,

resolved, fixed, and active, the managers decide when to move
forward in the project

UC Santa Barbara

Synch-and-Stabilize Approach: Summary

•  Summary of Microsoft’s approach
–  Small parallel teams (three to eight developers each) which have

freedom to evolve their designs and operate nearly autonomously
–  Daily synchronization through product builds, periodic milestone

stabilization, and continuous testing

•  Coordinates teams in a flexible manner

•  Suitable for fast changing demands

UC Santa Barbara

Sync-and-Stabilize vs. Waterfall
Sync-and-Stabilize Process Model
(Evolutionary Development)
•  Product development and testing

done in parallel
•  Vision statement and evolving

specification
•  Features are prioritized and built in

3 or 4 milestone subprojects
•  Frequent synchronizations (daily

builds) and intermediate
stabilizations (milestones)

•  “Fixed” release and ship dates and
multiple release cycles

•  Customer feedback continuous in
the development process

•  Product and process is designed so
that large teams work like small
teams

Waterfall Process Model
(Sequential Development)
•  Separate phases done in sequence
•  Complete “frozen” specification and

detailed design before building the
product

•  Trying to build all pieces of a
product simultaneously

•  One late and large integration and
system test phase at the project’s
end

•  Aiming for feature and product
“perfection” in each project cycle

•  Feedback primarily after
development as inputs for future
projects

•  Working primarily as a large group
of individuals in a separate
functional department

UC Santa Barbara

Evolutionary Software Development

•  Software is built iteratively and incrementally by first providing an initial
version and then improving/extending it based on the user feedback
until an adequate system has been developed

–  Scrum, extreme programming, agile software development

•  As opposed to the sequential nature of the waterfall model, in the
evolutionary software development specification, development and
validation activities are executed concurrently with fast feedback
among these activities

specification

validation

development outline
description

initial
version

intermediate
versions

final
version

UC Santa Barbara

Agile Software Development

Manifesto for Agile Software Development
available at: http://agilemanifesto.org/

“We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on
the left more”

UC Santa Barbara

Principles of Agile Software Development

•  Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

•  Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

•  Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

•  Business people and developers must work together daily throughout
the project.

•  Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

•  The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

UC Santa Barbara

Principles of Agile Software Development

•  Working software is the primary measure of progress.

•  Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

•  Continuous attention to technical excellence and good design
enhances agility.

•  Simplicity -- the art of maximizing the amount of work not done -- is
essential.

•  The best architectures, requirements, and designs emerge from self-
organizing teams.

•  At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

UC Santa Barbara

Extreme Programming

•  Extreme programming (XP) is a type of agile software
development process proposed by Kent Beck
–  “Embracing Change with Extreme Programming,” by Kent Beck,

IEEE Computer, October 1999, pp. 70-77

UC Santa Barbara

Extreme Programming

•  XP follows the agile software development principles as follows
–  Software is built iteratively, with frequent releases
–  Each release implements the set of most valuable features/use-

cases/stories that are chosen by the customer

–  Each release is implemented in a series of iterations, each
iteration adds more features/use-cases/stories

–  Programmers turn the stories into smaller-grained tasks, which
they individually accept responsibility for

–  The programmer turns a task into a set of test cases that will
demonstrate that the task is finished

–  Working as pairs, the programmers make the test cases run,
evolving the design in the meantime to maintain the simplest
possible design for the system as a whole

UC Santa Barbara

Extreme Programming Practices

•  Planning: Customers decide the scope and timing of releases
based on the estimates provided by programmers.
Programmers implement only the functionality demanded by the
features/use-cases/stories in that iteration.

•  Small Releases: The system is put into production in a few
months, before solving the whole problem. New releases are
made often—anywhere from daily to monthly

•  Simple Design: At every moment, the design runs all the tests,
communicates everything the programmers want to
communicate, contains no duplicate code, and has the fewest
possible classes and methods.

UC Santa Barbara

Extreme Programming Practices
•  Tests: Programmers write unit tests minute by minute. These

tests are collected and they must all run correctly. Customers
write functional tests for the features/use-cases/stories in an
iteration.

•  Refactoring: The design of the system is evolved through
transformations of the existing design that keep all the tests
running.

•  Pair programming: All production code is written by pairs of
programmers, each pair uses a single computer.

•  Continuous integration: New code is integrated with the
current system after no more than a few hours.

UC Santa Barbara

Extreme Programming Practices

•  Collective ownership: Every programmer improves any code
anywhere in the system at any time if they see the opportunity.

•  On-site customer: A customer sits with the team full-time.

•  Open workspace: The team works in a large room with small
cubicles around the periphery. Pair programmers work on
computers set up in the center.

UC Santa Barbara

Scrum

•  An evolutionary/iterative/incremental/agile software process

•  The main roles in Scrum are:
–  Scrum team: Team of software developers
–  Scrum master : Project manager
–  Product owner: Client

•  Characteristics of Scrum:
–  Self-organizing teams
–  Product development in two to four week sprints
–  Requirements are captures as items in a list of product backlog

UC Santa Barbara

Scrum Overview

UC Santa Barbara

Scrum Roles

•  Product owner
–  Defines the features of the product
–  Decides on release date and content
–  Prioritize features according to market value
–  Adjust features and priority every iteration as needed
–  Accepts or rejects work results

•  Scrum Master
–  Represents management of the project
–  Responsible for following the Scrum process
–  Ensures that the team is fully functional and productive
–  Shields the team from external influences

UC Santa Barbara

Scrum Roles

•  Scrum Team
–  Typically 5 to 9 people
–  Cross-functional team that does the software development

including designing, programming and testing
–  Co-location and verbal communication among team members
–  Teams are self-organizing, no titles
–  Team membership should not change during a sprint

UC Santa Barbara

Scrum Meetings
•  Sprint Planning (at most 8 hours)

–  This is done at the beginning of every sprint cycle (2 to 4 weeks)
–  Team selects items from the product backlog they can commit to completing
–  Sprint backlog is created

•  Tasks for this sprint are identified and each is estimated (1 to 16 hours). This is
done collaboratively, not by ScrumMaster

–  High-level design is discussed

•  Daily Scrum (at most 15 minutes)
–  Daily, stand-up meeting
–  Not for problem solving
–  Every team member answers three questions:

•  What did you do yesterday?
•  What will you do today?
•  Is anything in your way? (ScrumMaster is responsible for following up and

resolving the impediments)

UC Santa Barbara

Scrum Meetings

•  Sprint Review (at most 4 hours)

–  Team presents what it accomplished during the sprint

•  Typically a demo of new features or underlying architecture

•  Incomplete work should not be demonstrated

–  Informal meeting, no slides

–  Whole team participates

–  Open to everybody

UC Santa Barbara

Scrum Meetings

•  Sprint Retrospective (at most 3 hours)
–  Periodically take a look at what is and is not working

–  Done after every sprint

–  ScrumMaster, Product owner, Team and possibly customers and
others can participate

–  One way of doing sprint retrospective is to ask everyone what they
would like to

•  1) Start doing, 2) Stop doing, 3) Continue doing

UC Santa Barbara

Scrum Artifacts

•  Product Backlog
–  These are the requirements
–  A list of all desired work on the project
–  Prioritized by the product owner

•  Reprioritized at the start of each sprint
–  Each backlog item also has an estimated time it will take to

complete it

UC Santa Barbara

Scrum Artifacts

•  Sprint Backlog
–  Team members sign up for work of their own choosing
–  Estimated work remaining is updated daily
–  Any team member can add, delete or change the sprint backlog
–  Each sprint backlog item has daily estimates for the amount of time

that will be spent on that item each day

•  Burn Down Chart
–  A daily updated chart displaying the remaining cumulative work on

the sprint backlog. It gives a simple view of the sprint progress.

UC Santa Barbara

More on Scrum

•  More information about Scrum process is available at:
–  www.mountaingoatsoftware.com/scrum
–  www.scrumalliance.org
–  www.controlchaos.com

